GRAPHICAL ANALYSIS 213

based, multidimensional scaling method may be se-
lected along with a higher degree, inner-product based,
projection pursuit method. If the same qualitative
features are present in such “orthogonal” analyses,
the user can be more sure that the corresponding
effects are real ones and not just an artifact of a
particular method employed.

Finally, I wonder to what extent the OMEGA sys-
tem could fruitfully be developed along the general
lines very briefly sketched in my published discussion
of Van der Heijden, de Falguerolles and De Leeuw
(1989, page 275). The thrust of those remarks was in
favor of a general constructive interplay between two
broad approaches to data analysis: the exploratory,
graphical approach and the confirmatory, modeling
approach. Could OMEGA benefit from blending with
the second of these? Some particular possibilities that
come to mind are: brushing points that are influential
for particular aspects of the analysis; examining the
robustness of the methods proposed; borrowing ideas
from the model choice literature in the present method
choice context; and filtering to remove uninteresting
model effects to see more clearly what remains (the
thrust of the original paper).

REMARKS ON THE EXAMPLE

The following remarks concern “color strength: un-
expected nonpredictability” (Section 5.2):

To what extent is the reduction from 29 to 5 vari-
ables in the PCA-COV analysis a reflection of domi-
nant variation of these variables compared to the rest?
Recalling the discussion in Section 3.1, it would be
helpful to know to what extent the results go through
in a PCA-COR analysis.

The (3, 5) and (4, 5) scatterplots in Figures 6 and 7
seem to reveal an outlier with low STRVI and
STRREM values for its STRTRA figure.

Comment

N. I, Fisher

I am grateful for the opportunity to comment on
this interesting piece of work. I regret that the rude

N. I. Fisher is Program Leader, Applied and Industrial
Statistics, in the CSIRO Division of Mathematics and
Statistics. His mailing address is CSIRO DMS, PO Box
218, Lindfield NSW 2070, Australia.

GTJ
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ/ )7
Statistical Science. MINGY

The authors note two oddly placed batches in Figure
8: numbers 84 and 93. Could it be that these are ill-
fitting points in the dominant PCA plane (perhaps
with high loadings on a particular minor component)?
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interjection of the Australian holiday season has pre-
vented me from giving the paper the attention it
deserves, so I shall confine my remarks to a couple of
specific aspects relating to graphical testing and esti-
mation.

The authors are confronted by a common problem:
the sheer volume of data sets being presented to the
in-house statisticians means that the treatment of all
but a very small number of sets must necessarily be
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brisk. Despite this, they wish to have some scope for
exploratory analysis because of the complex multivar-
iate nature of the data. The result, for each data set,
is a conducted coach tour rather than a leisurely
excursion.

This being the case, it is important that each stop
on the tour provide the best view possible. In the
context of graphical estimation, this means, for ex-
ample, equipping fitted curves with pointwise or si-
multaneous confidence bands; and in graphical
testing, it means designing plots which have charac-
teristic shapes under the null and alternative hy-
potheses, and including objective means of
assessment. These issues have been argued by Fisher
(1987), but go back at least to Gnanadesikan (1985).

Specifically, consider the problem of testing for
independence of X and Y. The authors go some way
to building more statistics into their graphical display
of (X1, Y1), -+, (X,, Y,.) by suggesting that plots be
made of (X;, Y), ---, (X, Y;) for a
few random permutations Y;, ---, Y, of Y3, ---, Y,
to see whether the point clouds look similar. Unfor-
tunately, structure in point clouds can be very difficult
to assess. For this reason, Fisher and Switzer (1985)
developed a general technique, the x-plot, whereby
transforms (X\;, x:) of the data points (X;, Y;) are
plotted, to yield patterns of points characteristic of
independence, monotone dependence or more complex
forms of dependence. Control lines based on permu-
tations or large-sample theory can be added to allow
more objective assessment of departure from the
model of independence. The technical definition of
the (X\;, x:) values is appended below.

The technique can be extended to multivariate data.
Fisher (1987) presented a chi-plot (or x-plot) matrix,
to be used in conjunction with a scatterplot matrix:
the example from that paper is reproduced here.
Figure 1 shows the scatterplot matrix for data based
on test scores in the categories Visual Reception (VR),
Visual Memory (VM), Auditory Association (AA), Au-
ditory Memory (AM) and Grammatic Closure (GC),

measured on 54 children using the Illinois Test of

Psycholinguistic Ability (Seber, 1984, pages 122-123).
, The treatment and control groups were individually
centered and then pooled, and the signs of the scores
for Auditory Association changed to “—”. The eye has
some difficulty assessing the nature of possible de-
pendences between the variates. On the other hand,
the x-plot matrix in Figure 2 readily expresses the
similarities and differences. (The control lines are as
defined below.) The x-plots not involving Auditory
Association all show modest positive association,
whereas those involving Auditory Association all show
comparable amounts of association but opposite in
sign.
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Fi1G. 1. Scatterplot matrix for ITPA scores (see text for variable
descriptions).

John Robinson and I have generalized the concept
of the x-plot to testing for independence of two, or
even k, vectors, based on the distribution function
identity

F(xy, -+, xx) — Fi(x1)

under independence, and will report on this elsewhere.

Symmetry of a distribution can also be assessed
graphically by plotting simply constructed functionals
of the data; see, for example, the description and
references cited in Fisher (1983, Section 2.2).

In the context of graphical estimation, similar prop-
erties of permutation or sign invariance can be ex-
ploited in some specific instances. In many other
cases, we do not have recourse to such invariance
structures and need to use resampling methods such
as the bootstrap. Here again, we should be looking to
see whether we can do rather better than simply
displaying a cloud of grapeshot in the vicinity of a
point estimate, or a skein of spaghetti strangling a
density or regression estimate; rather, we should be
attempting to draw on the increasing body of knowl-
edge about proper use of the bootstrap for accurate
estimation.

However, these remarks are at a rather trifling level
compared with the main thrust of the authors’ work,
and I congratulate them on progress to date and look
forward to subsequent developments.
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F16. 2.  Chiplot matrix for ITPA scores plotted in Figure 1.

APPENDIX: DEFINITION OF (M, x;) VALUES
IN A x-PLOT

Let (X;, Y1), -+, (X,, Y,) be a random sample of
bivariate data, and define the bivariate and marginal
sample distribution functions, evaluated at the data
points, by

Ho=H,(X,Y)=Y (X, =X, Y, <Y)/(n—1),
FniEFn(Xt)= ZI(stXt)/(n_]-)a
j#i
GniEGn(Yi)= 2 I(}Ijs Yt)/(n_ l)a

JFL

where I(A) = 1 or 0 according as the event A is true
or false. Then ’

Hni - FniGm
{Fni(l - Fni)Gni(l - Gm)}l/z ’

Xni = X(Xzy Yl) =

Also, set
>\ni =4 Sgnnimax{(Fm . 1/2)27 (Gnt - I/Z)Z}y

where

sgn,; = sign{(F.; — %) (G,; — %)}.

The value \,; is a measure of the distance of (X;, Y;)

from (median (X), median (Y)). A x-plot is based on

the values of (\.;, x.:). Control lines can be added at

x = *1.96+/n, outside which we expect about 5% of

points to fall under the hypothesis of independence.
In practice, two modifications are made.

(i) sin(wx/2) is used instead of x ; in sampling from
the bivariate normal populations, the average value of
Xn; near A = O approximates the correlation between
XandY.

(ii) the approximate normality of each x,;, when X
and Y are independent, breaks down for extreme
sample points. Accordingly, the (X,.;, x.:) value is not

“plotted if | A, | = 4{1/(n — 1) — %}%

ADDITIONAL REFERENCES

FISHER, N. I. (1983). Graphical methods in nonparametric statistics:
A review and annotated bibliography. Internat. Statist. Rev. 51
25-58.

FiSHER, N. I. (1987). Graphical methods in statistics: Current and
future perceptions. Bull. ISI Proc. 46th Session.

FisHER, N. I. and SwiTZER, P. (1985). Chi-plots for assessing
dependence. Biometrika 72 253-265.

GNANADESIKAN, R. (1985). Statistical graphics: Retrospective and
prospective looks. Symposium in Honor of J. W. Tukey, North-
ern New Jersey Chapter, American Statistical Association, May
1985.

SEBER, G. A. F. (1984). Multivariate Observations. Wiley, New York.



