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the largest solution of a certain equation. In addition,
the proportion of letter { in the maximum scoring
subsequence was given explicitly. These results were
extended by Karlin and Altschul (1990), who consider
more general scoring schemes. They require the ex-
pected score of two letters to be negative and do not
allow insertions or deletions. They describe generali-
zations of Arratia, Morris and Waterman (1988) and
give a Chen-Stein style formula to assess statistical
significance:

In(nm)
P(M,,,,,, >

+ x) =< Ce™=,

It is straightforward to simulate random sequences
and to obtain estimates of the 95th percentile of the

Comment

Louis H. Y. Chen

The work of Arratia, Goldstein and Gordon is cer-
tainly an important contribution to the development
of Poisson approximation. I am particularly impressed
by their clever treatment of process and compound
Poisson approximation and the large number of in-
genious applications. Their work comes at about the
same time as that of Barbour and Holst (1989) and
Barbour, Holst and Janson (1988b), which is another
important contribution to the development of Poisson
approximation. The latter work and other new results
will be reported in a forthcoming monograph by Bar-
bour, Holst and Janson (1991). In considering depend-
ence, Arratia, Goldstein and Gordon take an approach
similar to that of Stein (1972) and Chen (1975, 1978),
while Barbour and Holst (1989) and Barbour, Holst
and Janson (1988b) assume the existence of certain
coupling. The possibility of using coupling was also
discussed in Stein (1986, pages 92-93). Arratia, Gold-
stein and Gordon cleverly adapt Poisson approxi-
mation to process and compound Poisson approxima-
tion, but Barbour chooses to develop new techniques
(Barbour, 1988, Barbour and Brown, 1990; Barbour,
Chen and Loh, 1990). Both the work of Arratia,
Goldstein and Gordon and Barbour and colleagues
have significantly advanced the theory and application
of Poisson approximation.
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score distribution. Why then is the Chen-Stein analy-
sis valuable to molecular biology? An important part
of the answer lies in the number of sequence compar-
isons that are made. When a newly determined se-
quence is compared to the full GenBank database, the
sequence is compared to about 49,000 sequences of
average length 1,000 nucleotides. These sequences are

_ of differing compositions and could each require a

simulation. Since comparison of sequences is the rate
limiting step in database searches, we need to have a
rapid, accurate way to assess statistical significance.
The Chen-Stein method provides that. In addition,
very small p-values are almost impossible to determine
by simulation, and the Poisson approximation is of
much use there.

I would like to mention a result of Barbour and
Eagleson (1983), which has also played an important
role in the development of Poisson approximation.
Barbour and Eagleson improved significantly the
bounds obtained by Chen (1975) on the solution of
the difference equation in the Poisson approximation.
The improved bounds have helped to ease substan-
tially the task of bounding the error terms in the
approximation.

Although it enjoys special attention (due mainly to
the work of Arratia, Goldstein and Gordon and Bar-
bour and colleagues), the method of Poisson approxi-
mation discussed in the article by Arratia, Goldstein
and Gordon is a special case of a general method:
Stein’s method. In his fundamental paper, Stein
(1972) introduced not only a new method of normal
approximation but also a whole new way of proving
approximation theorems. An exposition of Stein’s
method in its abstract form is given in the monograph
by Stein (1986). For a more recent exposition, see
Stein (1990).

CONNECTION WITH POINCARE INEQUALITIES

Arratia, Goldstein and Gordon mentioned several
connections that the differential equation

(1) f'(w) — wf(w) = h(w) — Nh

has with other areas. I would like to show here a
connection that it has with Poincaré inequalities. For
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any random variable X, let us define the functional
R(X) = sup, Var[g(X)]/E[g’ (X)?], where the supre-
mum is taken over the class of absolutely continuous
functions g such that 0 < Var[g(X)] < «. If ¢2 =
Var(X) < o, define U(X) = R(X)/o2 It is proved in
Brascamp and Lieb (1976) and Chernoff (1981) that,
if X is normally distributed with variance ¢2%, then
Var[g(X)] = ¢2E[g’ (X)?] for all absolutely continu-
ous g with Var[g(X)] < «. Since equality holds
with g(x) = x, this implies that U(X) = 1. Borovkov
and Utev (1984) proved the converse that in general
U(X) = 1 and that if U(X) = 1 then X has a normal
distribution. (They also proved that if R(X) < o then
the moment generating function of X exists.) This
characterizes the normal distribution and, using this
characterization, they went on to prove that, if X,
X,, --- is a sequence of random variables such that
U(X,) — 1, then the moment generating function of
(X, — EX,)/[Var(X,)]"/? (which must exist by virtue
of R(X) < =) converges to that of the standard normal
random variable on a neighborhood of zero.

We now sketch a simpler proof of the result of
Borovkov and Utev concerning the characterization
of the normal distribution. Without loss of generality,
assume X to have zero mean and unit variance. Sup-
pose U(X) = 1. Then by a variational argument (sim-
ilar to that in Borovkov and Uter) we obtain

2 E{f'(X) - Xf(X)} =0

for every bounded C' function of f. Now let f be the
unique bounded solution of (1) with h being bounded
and continuous. Then Eh(X) = Nh. This implies that
X is normally distributed. This argument is used in a
more general context in Chen and Lou (1987, Theo-
rem 4.1) and also in Chen and Lou (1989). In the
latter, it is proved that for a random variable X with
nonvanishing continuous density function on an open
interval I (possibly infinite), R(X) < « if and only
if there exists a finite constant ¢ > 0 and a C* func-
tion ¢ on I with ¢’ > 0 and E|¢(X)| < o such that

(3 Eley’(X)f"(X) —y¢(X)fX)} =0

for every C* function f with compact support in I. In
the case ¢ = 1 and ¢/(x) = x, (3) reduces to (2).

UNBOUNDED FUNCTIONS AND LARGE
DEVIATIONS

The article by Arratia, Goldstein and Gordon deals
with Poisson approximation for bounded functions. I
would like to take this opportunity to discuss briefly
Poisson approximation for unbounded functions and
large deviations. Let X;, ---, X, be independent

indicators with

W= Z Xi,
i=1
WO =w-X,
A= '2 Dbi

i=1
and let Z be a Poisson random variable with mean .
We begin with the following identity
4) Eh(W) — Eh(Z) = ¥ p!EV\h(W®),
i=1

where h is not necessarily bounded, Vyh(w) = f,(w +
2) — fu(w + 1) and f, is a solution of the difference
equation

() M@+ 1) — wf(w) = h(w) — Eh(Z).
Let A;(k) = P(W® = k)/P(Z = k). Then the right
hand side of (4) can be written as

S p?EAAZ)Vih(Z).
i=1

It is proved in Chen (1975¢c, page 998) that
Ai(k) = S/(1 - py),

where

n t

S = {1 + 271 ¥ pi/a —pi)}

i=1

and ¢ is the largest integer not exceeding
A+ 1+ ¥ pi/(1—p).
i=1

It is not difficult to see that S is of the order
exp(X 7%, p?) (since \™! ¥, p? is small). Using this

result, we can bound the right hand side of (4) to
obtain the following result:

| ER(W) — Eh(Z)|

= S<§ p—’?){(ZV)‘lEZ(Z - 1I|h(2Z)|

i=11—p

+ \EZIR(Z)| + §E|h<zn}

2

=S
<i§1 1-p;

){%m h(Z + 2)|

+ E|h(Z+1)| + gEIh(Z)l}.
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By iterating (4) and using similar arguments as
for (6), the following large deviation result is ob-
tained in Chen and Choi (1990): let h be a poly-
nomial, A C {1, 2, ---}, a = min A, H = hl,. Suppose
max;<;<, p; — 0, A remains bounded and

n —1/2
a=o()\[2p?] ) as n — o,
i=1

Then
EH(W) a’?frn
M EHZ) ' 2>\2(,-§1 piJ
Here X,, .-, X, and p,, ---, p, are regarded as

triangular arrays. By taking h =1 and 4 = {z + 1,
z+ 2, --.} we obtain the following corollary:

P(W > 2) 22
R TR 3o £1)

This approach to large deviations is different from
that in Stein’s heuristic treatment (1986, Chapter 5).
The above result (6), (7) and (8) are improvements of
those in Chen (1975c¢) in the Poisson case, and (6) an
improvement of the corresponding ones in Barbour
(1987). By using the method (Section 6) in Arratia,
Goldstein and Gordon (1989), extension of 6), (7)
and (8) to the multivariate case seems straightforward.
But it seems less so to extend these results to the
dependent case.

COMPOUND POISSON APPROXIMATION

My final point for discussion concerns an approach
to compound Poisson approximation that is different
from that of Arratia, Goldstein and Gordon. I would
like to discuss compound Poisson approximation using
Stein’s method directly. This is a natural extension of
the Poisson approximation, and in this approach we
consider the solution of the integral equation

9) Aftf(w"'t)du(t)—wf(w)
= h(w) — Eh(Z),

where p is a probability measure with no atom at 0, h
is a bounded function and Z has the compound Pois-
son distribution e**~%). In the case u is the Dirac
measure at 1, (9) reduces to (5). An advantage of this
approach is that it does not apply only to indicators.
Unfortunately, the integral equation (9) is difficult to
solve in general, and even if a solution is obtained it
is difficult to obtain an effective bound on it. However,
I believe that this approach will produce the best
results when effective bounds are obtained on the
solution of (9).

In Barbour, Chen and Loh (1990), Stein’s method
is applied to obtain the following result: let {X,: « €
I} be nonnegative random variables. Suppose for each
a € I, there exist A, C B, C I with a € A, such that
X, is independent of {X;: 8 € A%} and {X;: 8 € A, }
is independent of {X;: 8 € B:}. Let

wW=3% X,,
a€l

Yat = 2 Xﬁ’
BEA,

A=Y EX, Y.}
a€l

Pa = P(X, > 0)

and

£a=P< ) Xﬁ>o>.

BEB,

Define the probability measure x on the Borel subsets
of (0, =) by

n(A) =27 ¥ EX, Y 'I(Y, € A).

a€l

Here we adopt the convention that 0/0 = 0. Let Z be
distributed as e***~%’, Then

I2(W) = Z(@2)| < 4e* T pata

a€l

=4¢’ ¥ Y pups.

a€l BEB,

(10)

In the case the X,’s are indicators, the factor e* in the
bounds in (10) can be improved to (1 A AthHe, where
N=1i"Yer EX,I(Y,=i). If, in addition, iX; | 0 as
i — =, then e* can be replaced by

1 1 N
— 2X2) .
(1 A A — 2)\2>|:4()\1 —2)\) + log*2(\ 2)]

The appearance of the factor e* is due to our inability
to bound the solution of (9) effectively.

Suppose X,, a € I, are indicators satisfying the
above dependence assumption. Then by Theorem 1 of
Arratia, Goldstein and Gordon, the error bound for
the Poisson approximation is

21 A A‘l){Var(W) -A+2 3.3 p,,,p,g}.

a€l BEA,

This together with (10) imply that, in the case
(I A XY (Var(W) — ) is large, for which Poisson
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approximation fails, we still have an approxima-
tion—compound Poisson approximation, provided
(1 A ATY)e* T uer Dok« is small. A consequence of this
is that we can avoid declumping in applications, as we
shall see below.

Consider the example in Section 4.2.1 of Arratia,
Goldstein and Gordon with X, = C,Cy4; --
Then the above dependence assumption is satisfied
withA,={lV(a—t+1), ---,a+2t—2}and B, =
{1V(e—2t+2), .-, a+ 3t— 3}. By (10), we obtain

* Ca+t—1 .

| ZU) - @)
< 4e*(1 A ((p + nq)gp*)")n(5t — 4)p*,
where ¢ = 1 — p. Note that W = U. In order that the

distribution of Z be determined, we need to compute
\: for all i. It can be shown that

N=i"1"Y pPVir+ Viner=i—1)
a=1

where V, =0, V,, and V, are geometric (p) truncated
at m, and V,_, and VA, are independent. We can
either proceed to compute each \; explicitly to deter-
mine .#(Z) or approximate . (Z) by ¥ (Z*) to obtain

Rejoinder

Richard Arratia, Larry Goldstein and Louis Gordon

At least one of us used to speak of the methods we
have presented here as the philosopher’s stone. None
of us make such extravagant claims any longer; the
discussants have put their collective fingers on a num-
ber of reasons why.

The method as we have presented it works best for
dealing with local dependence, corresponding to situ-
ations in which b, is small and b; = 0. In these
situations, b, is small and our approximations are
useful if and only if second moments are well behaved.
Steele gives an intriguing example having weak long-
range dependence that is much harder to deal with. In
Steele’s problem, even if second moments were well
controlled, there would still be difficulties due to the
nonlocal dependence captured by bs. Here is another
such related example.

The question is inspired by the important problem
of analyzing the expected, as opposed to worst-case,
behavior of the simplex method. See Borgwardt (1987)
for an exposition. Specifically, one is led to study the
number of edges or vertices in the convex hull of n

the following result:
| ZU) - 2(Z*)]

1) = 4e*(1 A ((p + ng)gp*) ™ )n(5t — 4) p*
+ 4(2n — t)p* + 4q7'p**,

where Z* has the compound Poisson distribution
exp[A*(u* — 6)] with \* = ngp* and u*({i}) = gp'™,
i=1,2, ... (“one plus a geometric (p)”). In approx-
imating .Z(Z) by Z(Z*) we need not calculate \;
explicitly. For bounded A*, the order of the error
bound in (11) is the same as that obtained by Arratia,
Goldstein and Gordon. Note that gA\* = \; = A\ =
np’ = g *A\*. Hence the result (11) not only provides
an approximation for .#(U) but also can be used
to obtain the asymptotic distribution of R,, the
length of the longest run of heads beginning in the
first n tosses of a coin, since {R, < t} = {U = 0} and
P(Z*=0)=e™.

In the same way, (11) can also be applied to the
biological example in Section 5 of the article by Ar-
ratia, Goldstein and Gordon to obtain an approxima-
tion result for .Z (Y .er I(S. = s)) and the asymptotic
distribution of M, (t,), the largest number of matches
witnessed by any comparison of length ¢, substrings
of two strands of DNA.

independent and identically distributed points in, say,
R2 For a line segment joining two of the observed
points to be an edge of the convex hull, all of the other
points must lie on one of the half-planes determined
by these points. The usual heuristic applies. There are
alarge number of pairs of points to serve as a potential
edge, and the probability that a given pair is actually
an edge in the convex hull is small. Hence, the total
number of edges in the convex hull should be approx-
imately Poisson. As with Steele’s example, first mo-
ments are tractable. Unfortunately, second moments
and nonlocal dependence are again a problem. If an
edge is indeed in the convex hull, one of its endpoints
is also on a second edge of the convex hull, this is
reflected in the second moment and b,. There is also
some additional nonlocal dependenge which is part of
bs. This type of behavior reinforcess the issues raised
by Steele’s example.

In discussing Section 3.1, Barbour gives an example
involving a Bernoulli variable with p,, = %. This
example shows that no negative power of A\ can be



