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meaningful to perform an asymptotic analysis at
places where there are hardly any data. It may
seem a bit ironical that Chu and Marron make the
same assumption ‘“bounded from below” in the
same paper (assumption A.4 of Section 3). In an
interesting paper, Fan (1990) concludes indepen-
dently about the Nadaraya-Watson estimator
(remark 2, Section 3) “...hence its asymptotic
minimax efficiency is arbitrary small.”

CONCLUSIONS

Our conclusion is that the convolution weights
are clearly superior to evaluation weights for fixed
design, since we have the same variance for both
methods but a nasty bias for evaluation weights.
For random design, the problem seems to us more
open: There is a minimax argument, and we would
like to repeat a general argument, which is not
well quoted by Chu and Marron (Section 3): “The
latter authors [Gasser and colleagues] in particular
seem to feel that variability is not a major issue,
apparently basing their feelings on the premise
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1. OBJECTIVES OF SMOOTHING

Smoothing has become a standard data analytic
tool. A good indicator of this is the increased offer
of smoothing procedures in a variety of standard
statistical software packages. It is therefore high
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that it is always easy to gather simply more data.”
What we said when discussing the structural bias
of the evaluation weights was the following (Gasser
and Engel, 1990): “These bias problems are partic-
ularly accentuated in the scientific process of many
empirical sciences: studies are usually replicated
by sticking to the design of the previously pub-
lished study. In this way, qualitatively misleading
phenomena as obtained by the Nadaraya-Watson
estimator will be attributed even more confidence.”

OUTLOOK

One way out of this problem has been opened by
Fan (1990), who showed that for random design
local polynomials have the same bias as convolu-
tion weights and the same variance as evaluation
weights (the equivalence of local polynomials to
convolution type kernel estimators for fixed design
had been shown by Miiller, 1987). A further possi-
bility for improving the variance properties of con-
volution weights has been described by Chu and
Marron in Section 6.

time to provide background information that en-
ables statisticians and users to critically evaluate
the—in the meantime—rich basket of smoothing
tools. The paper by Chu and Marron meets this
demand for information and compares two different
kernel regression estimators on an easy, under-
standable level. The authors combine successfully
careful mathematical discussion with heuristic ar-
guments in a well-done exposition. Cleverly chosen
striking examples provide an easy access to not
immediately apparent problems in smoothing for
data analysis. We congratulate the authors to this
valuable contribution.

Among the many objectives of smoothing, there
are certainly the two perhaps most discussed. These
are P1: to find structure; and P2: to construct esti-
mators from a probability distribution.

We agree that the interplay of these two objec-
tives is vital for an honest parameter-free data
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analysis. Each responsible statistician should be
aware of the limitations of the used methods. Even
if we pretend to follow mainly P1, that is, to look
for structure in the data, breakpoints, etc., without
caring too much for theoretical optimality, we
impose implicitly certain assumptions on the un-
derlying probability structure. In the case of non-
parametric curve regression those assumptions
could concern the design distribution (uniform or
with modes), the observations (independent/de-
pendent), the error structure conditional on X (ho-
moscedastic/heteroscedastic) and some features of
the regression curve. Thus, the degree of trusting
our own results is always an indicator for trusting
the validity of our model, whether we recognize or
neglect its existence.

On the other hand, “elaborated” methods, which
provide estimators with good theoretical properties,
more obviously require a bunch of assumptions. We
are aware of them, but usually can’t guarantee
their validity. Therefore, any outcome of a smooth-
ing algorithm should be regarded skeptically and
checked whether it is plausible, regardless of
whether we mean to follow P1 or P2.

The problem of the unknown underlying proba-
bility structure is also present, if we decide to trust
either the evaluation or the convolution estimator.
Certainly, the latter has its deficiencies for a
nonuniform design. Figure 5 in Chu and Marron
makes it very clear. One should, of course, not
conclude from this and also the mean square error
discussion there that the evaluation estimator is
the “universal wonderful super-smoother” in all
situations. We shortly demonstrate in Section 2
that there is no uniform outperformance of one
estimator over the other; in a simple example we
display where and to which extend we can expect
superiority of the evaluation or the convolution
estimator.

In our opinion, there are other important objec-
tives, too, for example P3: computational efficiency.

Particularly the problem of computational effi-
ciency is oftenly underestimated by theoreticians,

"although it influences the choice and applicability
of the smoothing method significantly in real life.
Certainly, P3 becomes a vital issue when iterative
algorithms have to be used, in optimizing smooth-
ing parameters or solving for implicitly defined
functions like in the generalized additive modeling;
see Hastie and Tibshirani (1990).

In Section 3, we demonstrate how kernel-
type estimators can be modified to ensure fast
computation.

2. EVALUATION OR CONVOLUTION?

Let us confine to the decision problem: evalua-
tion or convolution estimator?

We assume the random design model with ho-
moscedastic variances, given by

Y, =m(X;) + ¢,

for i = 1,..., n, where the (X}, Y;)’s are identically
distributed variables; the design variable X, has
the probability density f; the ¢;’s have mean 0 and
variance o2. Following the notation of the paper by
Chu and Marron, we denote the evaluation and the
convolution estimator by i, and i, respectively.

Obviously, there is a trade-off between bias and
variance. For the heuristical understanding of esti-
mates, it is certainly advisable to regard both ef-
fects separately. Nevertheless, in real life, we have
to decide for the one or the other estimator taking
into account both bias and variance simultane-
ously, and the final choice of the “better’” estimate
will depend as well on the underlying problem as
on the optimality criterion.

In this section, we compare iz and ris by the
relative efficiency

_ IMSE (¢, h,MSEA)
IMSE (g, h,MSEA) ’

(2.1) RE

where IMSE,(/, h) denotes the leading term of
the integrated mean square error of i, for m rep-
resenting either iy or M. Using the notation in
Section 5 of the paper by Chu and Marron, we have

(2.2) IMSE,(m,h) = n 'R~V + h*B?,

where V= [vdx and B? = [ b2 dx. The optimal
bandwidth A5, is defined to minimize the
right-hand side of (2.2).

Simple calculus provides us

IMSE (¢, hiysg,)
IMSE (g, h,MSEA)
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The following simple examples are designed to
demonstrate the interplay of the design distribu-
tion and the shape of the true regression curve in
determining the relative efficiencies of my and
me.

ExamMpLE 1. We consider the class of regression
curves

1 +x)“’+1

(2.4) m(x) = (45
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for xe[—1,1] and for v = 0, and the family of
random designs with densities

(2.5) fu(x) = (1 — ©)(1/2) + wer_y (%),

for wel0,1], where ¢;_, ;; denotes the density of
the standard normal distribution, truncated to
[-1,1]. For w = 0, the design variable X is uni-
formly distributed on [—1,1]; the most concen-
trated design in this example is the truncated
standard normal distribution (v = 1).

Some representatives of the regarded regression
curves are shown in Figure 1. The parameter y = 0
corresponds to a linear function, and for growing vy
the curves deviate more and more from the straight
line.

Figure 2 below displays RE (see (2.1)), for all
combinations of designs f, and true regression
curves m,. With respect to the y-scale here, the
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Fic. 1. Regression curves m.(x) = (1 + x)/2)'*7 for different
values of y. With respect to the y-scale of the Figures 2 and 4, the
curves are equidistant and cover the whole range.

Fic. 2. Relative efficiency RE of m¢ and myg, in dependence
from design density f,, and regression curve m.; see Example 1.

curves in Figure 1 are equidistant and represent
the whole range.

We have chosen the above families for conve-
nient control of bias and variance.

Under uniform design (v = 0) both my and M,
have the same bias, but 7z, has a bigger variance.
More precisely, vy = 3vg/2 for all xe[-1,1], for
all bandwidths and any regression curve. This
setting causes

RE = (3/2)*° forally =0

and is reflected by the straight line on the right
front side of the box.

The left front side of the box in Figure 2 corre-
sponds to estimating a straight line under increas-
ingly nonuniform design, the ideal background for
the convolution estimator. We see that the trade-off
between bias and variance begins to favor . at
about w = 1/3.

The region where the convolution estimator is
superior to the evaluation estimator (RE < 1) is
rather small for this example. Even under the most
nonuniform design (v = 1) the convolution estima-
tor is better just for y < 0.5 (see Figure 1).

ExampLE 2. We regard the same class of regres-
sion curves, but the class of random designs is now
given by the densities

x
fu(x) = 5"[-1,1](_)’

w
for w > 0, that is, the truncated N(0, w?) normal
distributions. Figure 3 below shows some represen-
tatives. We see that w = 2.3 describes almost the
uniform design.

The relative efficiency RE is displayed in Figure

4. Note, that the densities in Figure 3 are not
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Fic. 8. Truncated normal densities f(x) = ¢;_1,1(x/w) for
different values of v.
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Fic. 4. Relative efficiency RE of m¢ and mpg, in dependence
from design density f,, and regression curve m.; see Example 2.

equidistant with respect to the w-scale of Figure 4.

Figure 4 provides a similar impression about the
relative behavior of the convolution and the evalua-
tion estimator as we saw in Example 1. Again, the
convolution estimator is preferable for regression
curves with low slope (v small) and rather concen-
trated design (w small). The region where the con-
volution estimator is superior seems to be greater
here. But note that values w < 0.4 correspond to a
rather peaky design density.

3. COMPUTATIONALLY FAST ESTIMATORS

We have motivated the need for fast smoothing
techniques. One possibility to speed up computa-
tion is to use weighted averaging of rounded points
(WARPing). This technique is based on the follow-
ing three steps: discretize the data, generate kernel
weights and convolute the binned data with the
kernel.

Regression data are discretized by counting
the X observations that fall into bins [(j — 1/2)4,
(j + 1/2)6), where 6 denotes the (small) bandwidth
and j varies over all integers. Additionally, one
records the sum of the response Y’s in these bins
and maintains a pointer structure to nonempty
bins. We describe this technique here only for the
evaluation estimator, it could of course be applied
also to the 7, estimator.

WARPing is designed for kernels with compact
support. Let us assume that K is supported on
[—1, 1]. Define the index function

(1) dx)=jexe[(J-3)5 (J+3)0),
which returns the index of the small bin that x

belongs to. Then the WARPing approximation to
the evaluation estimator ry is

Y L K((((x) - o( X))/ M)Y;
YK ((d(x) - U X))/M)

mM,K(x) =

here the integer M = hé~! stands for the band-
width of the discretized kernel. An easy recalcula-
tion leads to

M-1

Y- K(l/M) Yeiuxy+:
M-1 )
l=l—MK(l/M)nL(x)+l

(3.2) rhM,K(x) =

where n; and Y,; denote the number of X’s that
fall into bin j and the sum of the corresponding
Y'’s, respectively.

Formula (3.2) shows that essentially the problem
of varying h depends now only on the number of
bins, which is usually orders of magnitude smaller
than the sample size n.

Thus, the above mentioned iterations and succes-
sive calls of kernel smoothing subroutines is per-
formed much faster. Suppose we want to estimate
m at N points. The evaluation kernel estimator
requires O(nN) operations for a kernel with non-
compact support like the Gaussian kernel. For a
kernel with compact support, this numerical effort
is reduced slightly to O(nhN). For the WARPing
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Fic. 5. Leading term of the MSE of fg (solid line) and of the
WARPing step function my g. Underlying model: m(x) =
xsin(@mx) + 3x, uniform design, o = 0.25. Parameters: h =
0.25, M = 5, n = 100, quartic kernel.
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Fic. 6. Leading term of the MSE of fiy (solid line) and of the
corresponding WARPing polygon function (dotted line), with
conservative bounds for the latter (dashed line). The same model
and parameters as in Figure 5.
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approximation, we need n operations to discretize
the data into Nz nonempty bins. Thus,
the numerical effort for this method is of order
O(n + NgM).

Of course, the WARPing method introduces a
discretization bias. The bias may be reduced by
joining the obtained discrete step function (see
(3.2)), via a polygon. Breuer (1990) has computed
for m(x) = x sin(27 x) + 3x and uniform design the
MSE as a function of x for both the i estimator
and the WARPed estimator 7, .

In Figure 5, the discretization bias is seen to be

Comment
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Chu and Marron have provided us with a clear
and thorough account of the relative merits of eval-
uation and convolution type kernel regression
estimators. One is left with the impression
that neither type of estimator is to be preferred
universally over the other. We learn, for example,
that the weights of the convolution estimator some-
times have the unsettling behavior exhibited in
Figures 6b and 7 of Chu and Marron. The authors
make it clear that there are a number of factors,
including type of design (fixed or random), design
density and nature of underlying regression func-
tion, that need to be considered before choosing an
estimator type. Having reading their article, I now
have a slight preference for i, over m in the
random design case, at least in the absence of any
information about the design density or regression
curve. When the design points are nonrandom and
evenly spaced, I prefer 7., since its convolution
form appeals to me, and since boundary kernels are
easy to construct with 7i, (see Gasser and Miiller,
1979). Below I will mention a modification of
that I feel is a viable competitor of 71y even in the
random design case.

The authors’ point about the down weighting
phenomenon of the convolution estimator is cer-
tainly well taken. However, I would like to ques-
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quite drastic, although we gained in speed of com-
putation. The linear interpolant has a much better
bias behavior, as is seen in Figure 6. For this
estimator conservative bounds for the numerical
discretization error and its effect on MSE(x) can be
given and are displayed in Figure 6 as long dashed
lines.
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tion an aspect of their comparison of the variances
of my and M. As the authors note in Section 4,
the biases of the two estimators are not compara-
ble, the bias of /5 being smaller in some cases and
that of M, smaller in other cases. It follows that
“good” bandwidths for the estimators will gener-
ally be different. Why then is it sensible to compare
Var(rz) and Var(s;) at the same value of h?

A little-used but informative way of comparing
the errors of my and M is to consider the limiting
distribution of

| mg(x) — m(x)]

@) [e(®) ~ m()]

Unlike an MSE comparison, this approach takes
into account the joint behavior of the two estima-
tors. Suppose that Chu and Marron’s assumptions
(A.1)-(A.5) hold and that the design density is
U(0,1). Suppose further that the bandwidths of m
and 7, minimize their respective MSEs. Then it
can be shown that, for each x, the ratio (1) con-
verges in distribution to

o )

3
as n — o, where (Z,, Z,) have a bivariate normal
distribution with Z, ~ N(0,1), Z, ~ N(0,1) and

Corr(Z,, Z,)
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