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Choosing a Kernel Regression Estimator

C.-K. Chu and J. S. Marron

Abstract. For nonparametric regression, there are two popular methods
for constructing kernel estimators, involving choosing weights either by
direct kernel evaluation or by the convolution of the kernel with a
histogram representing the data. There is an extensive literature con-
cerning both of these estimators, but a comparatively small amount of
thought has been given to the choice between them. The few papers that
do treat both types of estimator tend to present only one side of the
pertinent issues. The purpose of this paper is to present a balanced
discussion, at an intuitive level, of the differences between the estima-
tors, to allow users of nonparametric regression to rationally make this
choice for themselves. While these estimators give very nearly the same
performance in the case of a fixed, essentially equally spaced design,
their performance is quite different when there are serious departures
from equal spacing, or when the design points are randomly chosen.
Each of the estimators has several important advantages and disadvan-
tages, so the choice of “best” is a personal one, which should depend on
the particular estimation setting at hand.

Key words and phrases: Asymptotic variance, design points, kernel
estimators, nonparametric regression.

1. INTRODUCTION

Nonparametric regression, by smoothing meth-
ods, has been well established as a useful data-
analytic tool. Figure 1a shows an example of this.
The data here are from Ullah (1985). The scatter
plot shows 205 pairs of log(income) versus age, as
described in that paper. The solid curve is a “scat-
terplot smoother,” which is a moving weighted av-
erage of the points in the scatter plot, where the
weights are proportional to the curve at the bot-
tom. Scatter plot smoothers are often also called
nonparametric regression estimators, because the
points can be viewed as coming from a bivariate
probability structure, for which the local average
provides an estimate of the conditional expectation.
As expected, there is a general increase in earning
" power with increasing age, over the younger years,
with a tendency to level off as age increases. Per-
haps not too surprising is the fact that average
income actually decreases in the latter years, as
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more and more people retire. However, the dip in
average income in the middle ages is certainly
unexpected and, if not merely a consequence of the
sampling error, is clearly of strong interest because
it represents the discovery of a new economic phe-
nomenon. A. Ullah, C. Robinson and K. Ball have
found a strong indication in favor of the existence
of this dip, by noticing its presence also in other
data sets of this type. Two important questions are
the subject of ongoing research by these workers:
(a) Is this part of the underlying structure or only a
sampling artifact? (b) What mechanism causes this
phenomenon? Deeper discussion of this example
goes beyond the scope of this paper. Its purpose

" here is to illustrate the point: Nonparametric re-
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gression is a simple and useful tool for obtaining
insight into the structure of data.

See the monographs by Eubank (1988), Miiller
(1988), Hiardle (1990) and Wahba (1990) for a large
variety of other interesting real data examples
where applications of such methods have yielded
analyses essentially unobtainable by other tech-
niques, and also for access to the literature concern-
ing these estimators (see also Cheng, 1991).

For intuitive understanding of smoothers, there
are two common viewpoints. Those who focus most
on data analysis, often have uppermost in their
minds the philosophy we will call PI1: We are look-
ing for structure in this set of numbers. This philos-
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Fic. 1. Scatter plot and smooths for earning power data. Kernel
is N(0,1); window widths are represented by curves at the bot-
tom: solid curves h = 3; dotted curve h = 1, dashed curve h = 9.

ophy is most in keeping with the terminology
“scatter plot smoothers.” On the other hand, most
of the methodological work, including a large body
_of mathematical analysis, has been in the spirit of
philosophy P2: We want to construct estimates,
based on some data from an underlying probability
structure. This second philosophy is in the spirit of
the name ‘“nonparametric regression estimators.”
We feel that for proper understanding of this sub-
ject, both points of view provide important insights,
and both need to be kept in mind. We believe that
P2 is very useful for learning many important
things, however the relevance of the lessons learned
from that point of view should always be assessed
from the P1 side as well.
From either point of view, the most important
thing to know about any type of regression smooth-

ing is that the amount of smoothing needs to be
specified. This is demonstrated in Figure 1b, which
shows three different smooths, for the same data
set as in Figure la. The three different curves
there represent three different choices of the width
of the window used in the local average. Note that
the shape of the resulting smooth is highly depend-
ent on the choice of this width. When the width is
too small, the curve feels sampling variation too
strongly. From the viewpoint P2, there is too much
“variance” present because each part of the mov-
ing average is making use of too few observations.
On the other hand, when the width is too large,
important features disappear, because points from
too far away are being used in each local average.
Those who adopt the viewpoint P2, will say there is
too much “bias” present.

This dependence of the result on the window
width makes it clear why the problem (a) men-
tioned above is indeed a challenging one, because,
with a large enough window width, the dip in the
middle incomes can be made to disappear. This
shows that there is a price to be paid for the use of
smoothers: Important insights can be easily ob-
tained because of their great flexibility, but this
same flexibility is also a curse because it requires
choice of the degree of smoothing. An important
subject is the use of the data to choose the window
width, however there are still no universally ac-
cepted methods for this; see Marron (1988) for a
survey. In this paper, we take the approach that is
currently used most frequently in data analysis:
The window width is chosen visually by a trial and
error approach.

The simplest and most widely used regression
smoothers are based on kernel methods, although
strong reasons for considering other possibilities,
especially splines, are discussed in Eubank (1988)
and Wahba (1990). The name “kernel”’ comes from
the fact that these smoothers are local weighted
averages of the response variables, whose weights
are somehow based on a “kernel function.” The
precise way that this kernel function is used can
make quite a difference, and indeed comparison of
the major ways of doing this is the main point of
this paper. On the other hand, shape of the kernel
function (i.e., the curves appearing at the bottoms
of Figures 1a and b) makes very little difference;
see, for example, the monographs Miiller (1988) or
Hardle (1990). In this paper, a Gaussian kernel is
always used, because we like its visual appearance
slightly more, but this choice is personal.

Nadaraya (1964) and Watson (1964) proposed
choosing the weights by evaluating a kernel func-
tion at the design points, and then dividing by the
sum of the weights, so that they add up to 1. These
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weights are called ‘“‘evaluation” weights here. The
essential idea is illustrated in Figure 2, which
demonstrates the construction of this estimator, for
a data set that is contrived to make a certain point
later, but also suffices for this purpose. The solid
curve comes from a moving average of the data,
which is constructed by sliding the “window func-
tion” (i.e., “kernel function”) shown at the bottom
along the x axis, and simply calculating the aver-
age of the points in the window, using weights
proportional to the height of the kernel above each
corresponding x coordinate. These heights are
shown as solid vertical bars in the figure, for the
current kernel location. A drawback to this ap-
proach is that the estimator becomes tricky to ana-
lyze from the technical view point, that is, under
philosophy P2. Indeed, for some kernel functions,
Hirdle and Marron (1983) have shown that the
moments of such an estimator can fail to exist,
when the predictor variables are also random.

An alternative, which overcomes this problem, is
to consider kernel smoothers based on “convolu-
tion” of a kernel function with some function repre-
senting the raw data in an absolutely continuous
sense. The first version of this that we are aware of
was proposed by Clark (1977, 1980), although here
we will study a version which is currently more
strongly advocated, due to Gasser and Miiller
(1979). See Jennen-Steinmetz and Gasser (1988) for
literature on other closely related estimators. Intu-
itive insight into how these convolution estimators
are constructed is given in Figure 3, which again
shows a data set contrived to make a point later.
The histogram is that picture is one way of repre-
senting the data in a “continuous sense,” that is,
the “mass” of each data point is represented by one
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Fic. 2. Intuition behind evaluation weighted kernel smoother.
Solid curve is moving average of scatter plot, with weights chosen
proportional to heights of kernel function (curve at bottom) evalu-
ated at ordinates of data points.
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Fic. 3. Intuition behind convolution weighted estimator. Solid

curve is convolution (i.e., continuous moving average) of step

function representing observations, with kernel function (curve at
bottom).

step in this step function. Now the convolution
smoother, shown as the curve going through the
data points, is simply the convolution (this can be
viewed as a “continuous moving average”) of this
step function with the kernel function, which is the
curve at the bottom of the picture. The Clark
version of this estimator replaces the histogram
with a function which linearly interpolates the
observations.

Because the evaluation weighted estimator is in
fact a discrete version of the continuous convolu-
tion used in Figure 3, one should intuitively expect
that quite often there will be little practical differ-
ence between the evaluation and convolution
weighted estimators, which is indeed often the case.
If the design points are equally spaced (or essen-
tially so, as defined below), then the evaluation and
convolution weighted estimators are very nearly
the same, by the integral mean value theorem.

- However, when the design points are not equally

spaced, or when they are iid random variables,
there are very substantial and important differ-
ences in these estimators. The main point of this
paper is to make clear both sides of the issues
involved. While opinions have been expressed in
both directions, in fact there can never be an abso-
lute resolution of which is “best.” For some pur-
poses one will be better, for other purposes the
other is superior.

The advantages of the evaluation weighted esti-
mator in the random design case are: (1) superior
variance qualities (discussed in Section 3) and (2)
superior performance in high dimensions (discussed
in Section 7). Advantages of the convolution
weighted estimator are: (1) superior interpretabil-
ity and “null space” properties, in the nonuniform
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case (discussed in Section 4) and (2) more straight-
forward generalization to the estimation of deriva-
tives and easier adjustment for boundary effects
(discussed in Section 7).

Section 2 introduces mathematical notation, in-
cluding precise formulation of the estimators, and
various setups commonly used under philosophy
P2.

Section 3 illustrates, both through simple exam-
ples, and also through asymptotic analysis, situa-
tions in which the evaluation weighted estimator is
superior to the convolution weighted estimator. The
main idea is that because the bars in the histogram
of Figure 3 can have unequal width, some of the
observations can be severely down weighted by the
convolution estimator, which can lead to severe
inefficiencies, in terms of increased variance, in
several different ways.

Section 4 discusses the other side of the choice of
which estimator to use. In particular, examples and
also asymptotic analysis are used to show when the
convolution estimator is superior. The key idea
here is that precisely this same adjustment in the
weighting scheme that can lead to inefficiency in
some situations can also be of large practical and
intuitive benefit in others, of a type important to
the other side of the smoothing problem, bias.

Because there are situations in which each esti-
mator will clearly be superior, the choice of which
should be used must depend on the particular con-
text at hand. In particular, this choice should be
made on the basis of whether one is willing to pay
the price in terms of increased variance, shown in
Section 3, for the bias advantages discussed in
Section 4. Section 5 shows how variance and bias

should be considered together in making this neces- -

sarily personal trade-off.

Section 6 discusses two possibilities for combin-
ing the best aspects of both estimators.

Other issues that can affect the choice between

evaluation and convolution weighted estimators are -

discussed in Section 7. In particular, it is known
 that the convolution weighted estimator has severe
problems with the bias approximation in the case of
a high-dimensional design, while the evaluation
weighted estimator is unaffected. On the other
hand, because it is a fraction of sums, it is more
complicated to do boundary adjustments and to
construct derivative estimates using the evaluation
weighted estimator.

2. THE ESTIMATORS

In this section, mathematical models, under phi-
losophy P2, for studying scatter plot smoothers are
given. There are two such models commonly consid-
ered. One is M1: “fixed design,” where the ordi-

nates of the data points in the scatter plot are
thought of as being deterministic values. These
ordinate values are usually chosen by the experi-
menter, as in a designed experiment. Since in the
absence of other information it is intuitively sensi-
ble to take such points to be equally spaced, this is
frequently the case. The other is M2: “random
design,” where the data points in the scatter plot
are thought of as being realizations from a bivari-
ate probability distribution. These ordinates are
usually not chosen by the experimenter, as in sam-
ple surveys, or other types of observational studies.

The fixed design model, M1, is given by

Y, = m(x;) + ¢,
for j=1,2,...,n, where m(x) is the “mean” or
regression function, the x;’s are nonrandom design
points with 0 =%, <x,< -+ <=x, =<1 (without
loss of generality), and the ¢;’s are independent
random variables with mean 0 and variance o¢2.
The random design model, M2, is given by

Y= m(X)) + ¢,
for j=1,2,...,n, where the (X;,Y))’s are inde-
pendent identically distributed random variables,
with ¢; defined by ¢; = Y; — m(X) and assumed to
have mean 0 and variance o2. In each case, the
goal, under P2, is to use Y,,..., Y, to estimate the
curve m(x). In both cases, the technical assump-
tions can be weakened substantially in several di-
rections, with no major changes in the key ideas.
However, weaker assumptions are technically cum-
bersome, so we stick with these for simplicity of
presentation.

At first glance, one might think there is little
practical difference between these models, because
the regression function (i.e., conditional expected
value), only depends on the conditional distribu-
tion, where the ordinate values are given. While
this is correct, it will be seen that the particular
configuration of these ordinate values is very rele-
vant to the performance of the two types of estima-
tors. Because the way in which this happens can be
intuitively understood quite well by thinking of
these two models, both are considered here.

The evaluation weighted estimator of m(x), for
0 < x < 1 (defined here for the fixed design, for the
random design case replace x; by X;), motivated
intuitively in Figure 2, is given by

Y Ky(x - %)Y,
fh’E(‘x) = _1 n
n Zj:lKh(x - ;)
where K,(:) = h~'K(:/h) (if the denominator is 0,

take rmg(x) = 0). For 0 < x <1, the convolution
weighted estimator is given by (again explicitly
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defined only in the fixed design case)

n Sj
o) = LY, [ Ky(x - o),
Jj= si_q

J

where s, = —o, s, =0, X;= 8<%y fo.r J=
1,...,n -1, and K is a density function (in the

random design case x; is taken to be the jth order
statistic X ;) among the X’s and Y, is replaced by

Y, which is the corresponding Y). The choice
given here for s, and s, ensure that the sum of the
weights is one. This will create a strong “boundary
effect,” because near either end the observation at
the end will receive a very large weight. This
should usually be adjusted for; see, for example,
Section 4.3 of Miiller (1988). However, the best of
such adjustments tend to be rather complicated, so
again for simplicity of presentation, this is not done
here. Another way of handling these boundaries is
to take s, = 0 and s, = 1, however this gives pic-
tures with even more severe boundary effects, be-
cause near the edges the weights do not sum to 1
(so instead of giving large weight to the outermost
data point, it is essentially given to the arbitrary
value of 0).

A convenient structure for displaying most of the
choices of the s; that have appeared in the litera-
ture is s; = ij + (1 - B)xj+1, where 3 is a param-
eter allowed to range between 0 and 1. A 3 that is
easy to work with is 8 = 1, which would put the
vertical parts of the steps in the histogram in
Figure 3 at the observations. However, from that
picture it is clear that the step function better
represents the data if one uses 8 = 1/2. In a num-
ber of early papers, little distinction has been made
between these two, because in the fixed and essen-
tially equally spaced case (this includes designs
which satisfy the asymptotic condition x, = i/n +
o(n™1)), the practical difference is negligible. How-
ever, it will be seen in Section 3 that for the
random design case there is quite a large differ-
ence, with 8 = 1/2 being clearly superior. In all
examples constructed in this paper, 8 = 1/2, unless
otherwise noted.

While it may not be immediately obvious, it is a
straightforward calculation to check that 7, is
indeed the convolution with the histogram illus-
trated in Figure 3. The mathematical form given
above motivates another way of thinking about this
estimator. Note that the integral of K over the
subinterval is providing a weight for Y, in the
moving weighted average. This idea is demon-
strated in Figure 4, which gives a feeling for how
these weights work, by representing them as areas
between s;’s under the kernel function K, for a
particular choice of x’s and for 8 = 1/2.

The monographs Eubank (1988), Miiller (1988)
and Hérdle (1990) are excellent sources for intro-
duction to, and detailed discussion of many aspects
of, these and related estimators.

3. EFFICIENCY ISSUES

One way of seeing how the convolution weighted
estimator can be inefficient is already being shown
in Figure 4. Note that because the x;’s there are
not equally spaced, the relative weight assigned to
Y5 will be much less than that assigned to either
Y, or Y;. The fact that this can have a very strong
effect on the resulting smoother is demonstrated in
Figure 5. The construction of the estimator shown
in this picture is the same as in Figure 3, except
that it is now applied to the artificial data set of
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Figure 2. Note that the resulting smooth is now
substantially different. In particular, near the cen-
ter, the curve is pulled downwards by the two low
observations in the center. This is disconcerting,
since the visual impression of “average behavior of
the data” is much different, because the downward
influence of the low observations should be can-
celed by the two nearby high observations. How-
ever, because weights are proportional to the
histogram widths, the convolution weighted esti-
mator fails to make this cancellation. Simply
because the ordinates of these high observations
arbitrarily happen to be closer to other data points,
they receive less weight. If the high observations
were to trade ordinates with the low ones, the
convolution estimator would then be pulled upward
by roughly the same amount, but the visual im-
pression of the data would still be essentially the
same. On the other hand, note that the evaluation
weighted estimator in Figure 2 is behaving in a
more intuitively reasonable fashion, recovering
conditional structure in a way that is much closer
to what can be seen by eye.

Another means of viewing this down weighting
effect of the convolution smoother is given in Fig-
ure 6. Recall that in both Figures 2 and 5, the
smoothers are constructed, by calculating at each
location on the axes, a weighted average of the Y’s.
Figure 6 summarizes the local structure of those
weights by showing, for each value of x on the axes
in Figures 2 and 5, and for each data point at site
x;, the effective weights for the jth observation. In
Figure 6a, the heights of the surface at each point
are calculated by evaluating the kernel function
and dividing by the sum of the weights (i.e., those
for the evaluation estimator), while in Figure 6b
the heights are calculated by integrating K over a
subinterval (recall this is equivalent to taking the
convolution of the kernel with the data histogram).
For a fixed j, the curves as a function of x show the

weight applied to Y}, as the kernel is moved along

horizontally. Note each of these curves is a “bump”
with its highest point at x;, and tapering off else-
where, which reflects the local averaging character
of these estimators. In both figures, note the weights
on the last observation become quite large, al-
though this effect is less drastic for the evaluation
weights. This is generally true, because the unad-
justed convolution estimator puts so much weight
on the observation closest to the edge. For this
reason, boundary adjustments are much more im-
portant for the convolution estimator than they are
for the evaluation estimator.

The main lesson from Figure 6 comes from look-
ing at the weights for the Y, in the interior. Note
that, for the evaluation estimator, these are very
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Fic. 6. Surface plots, showing for each data point Y; the weights
as a function of location x, used in constructing the kernel
smoothers in: (a) Figure 2; (b) Figure 5.

nearly the same for the four interior points. On the
other hand, the two center points (representing the
high observations in Figures 2 and 5) are drasti-
cally down weighted by the convolution estimator,
compared to their two nearest neighbors (for the
low observations).

Another way of looking at this down weighting
effect, which allows some mathematical quantifica-
tion of the inefficiency of the convolution weighted
estimator, will be considered in the next example.
The intuitive idea here is that illustrated in Figure
4 (and mathematically understood through the in-
tegral mean value theorem), the essential weight
given to each observation by 7 is proportional to
the length of the corresponding subinterval
[s;_1, 8]

Start with an equally spaced design (i.e., x; =
J/n), and consider consecutive triples of points. For
each triple, move the first and the third towards
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the center. The points x,, x5, x4 (locations shown
by the heavy vertical lines) in Figure 4 gives an
example of what is meant here. The amount of shift
to the center can be parameterized by a value
a €[0, 1], which results in the design

x4;(5—a)/n
x5 =5/n

xg=(+a)/n

Note that o =1 gives the usual equally spaced
design, while « = 0 gives a design that is also
essentially equally spaced but with three replica-
tions at each point. We are not claiming this design
is important in practice, however it is considered
here because it provides a clear and simple illustra-
tion of the points being made, and the numerical
answer appears in a surprising way later. The
effects described will obviously also be present in
more realistic unequally spaced designs, and, most
important, they will provide an intuitive basis for
understanding the causes of the same effects in the
more complicated random design case.

The inefficiency of the convolution type estimator
can now be seen at an intuitive level by considering
the effect on the weight given to the center observa-
tion of each triple (i.e., x5 in Figure 1), as « varies
between 0 and 1. Note that the weights given to
these points by the kernel evaluation estimator,
m g, are nearly independent of «, while the weights
assigned by the kernel convolution estimator, .,
are roughly proportional to « (this weight is the
unshaded area between the two shaded areas in
Figure 1). Hence, for « close to 0, the weight on the
center observation is essentially 0, so the weighted
average, M, is making use of only 2/3 of the
available observations. The extent of the ineffi-
ciency caused by this can be measured in terms of
the asymptotic variance, which in view of this intu-
ition should be expected to be larger by a factor of
-about 3/2 for « close to 0. ’

For simple mathematical quantification of these
ideas, we will consider some simple asymptotic
analysis. A very useful type of asymptotics in non-
parametric regression has been to study the behav-
ior of a sequence of estimators, in the limit as
n— oo, with h > 0 and nh — o. The last two as-
sumptions ensure that, as more information is
added, only successively nearer points are used in
each local average and that the local averages are
taken over an increasing number of points, respec-
tively. An important philosophical point is that
asymptotics are not done because we feel that n is
large, but instead because they provide an analyti-

cal tool, which enables us to see the simple main
structure that underlies the rather complicated
quantities being studied.

To facilitate the analysis, we will make the fol-
lowing technical assumptions (which again can be
weakened in many ways, but with additional effort,
which will tend to obscure the main ideas): (A.1) m
is twice continuously differentiable on a neighbor-
hood of the point x; (A.2) K is a symmetric, proba-
bility density supported on [—1, 1], bounded above
0 on [-1/2,1/2], with a bounded derivative; and
(A.3) n— o, with n71*° < h < n~? for some ¢
0,1/2).

Under these assumptions, for 0 < x < 1,

Var(rmg(x))

3.1
( ) - n‘lh‘la2/ K2 + O(n_2h‘2),

- C(a)n‘lh‘loz/ K%+ 0(n%h"2),

where C(a) =1+ (o — 1)2/2, 0 < « < 1. This can
be shown by standard methods; see, for example,
Section 4.1 of Miiller (1988) (details in this case
may be found in equations (2.2.2) and (2.2.3) of
Chu (1989)). The main idea of the proof is the usual
formula for the variance of a sum of independent
random variables, together with a Riemann ap-
proximation of the resulting sum by [ K2.

In addition to allowing simple comparison of these
estimators, through the function C(«), the repre-
sentations (3.1) and (3.2) demonstrate clearly the
usefulness of asymptotic analysis, because they
provide simple and insightful quantification of other
aspects of nonparametric regression. For example,
note that this shows how the estimation becomes
more accurate as either n increases, or else ¢2
(which measures the magnitude of the variability
in the errors) decreases. In addition, the depen-
dence of A~ ! quantifies an important effect visible

in Figure 1b: As h is decreased, the estimator

becomes more wiggly, that is, variable.

Observe that for @ = 1 (the minimizer of C(«)),
the two estimators have essentially the same per-
formance, which, as remarked above, is to be ex-
pected from the integral mean value theorem,
because in this case the x; are equally spaced.
However, in other cases, the variance of 71, will be
larger. In the extreme case of o = 0, note that
will have 3/2 times the variance of g, which, in
view of the above intuition, is also to be expected,
because then i, only using 2/3 of the available
data (this effect is even worse when 8 =1). Of
course, if one really had three replications at each
design point (as we have when o = 0), the obvious
thing to do is to pool, by working with the average
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of the observations at these points. It is a com-
pelling feature of /7 5 that it makes this adjustment
automatically, as o — 0, while i has a disturbing
tendency to delete an observation. These appear to
be extreme examples, but, as remarked above, the
basic ideas carry over to more natural nonequally
spaced examples, such as random designs as dis-
cussed in the next section, and the inefficiency of
2/3 appears in an interesting way quite soon.

While it is the variance that quantifies the ineffi-
ciency of the convolution weighted estimators, as
with any smoothing method attention must also be
paid to the bias. In the present example, both
methods are, at least asymptotically, the same in
the following sense. Under the above technical as-
sumptions, it can also be shown (equations (2.2.4)
and (2.2.5) of Chu, 1989) that

Bias(5(x))
(33) = [ Ky(x=0)(m(t) - m(x)) dt
+0(n),
Bias(ric(x))
(B4 = [ Ku(x-)(m(t) - m(x)) dt
+0(n™1).

Proofs of these are proofs of the equations (2.2.4)
and (2.2.5) of Chu (1989). The essential ideas are
that the expected values of the estimators give the
convolution of K with m, and the integral comes
from a Riemann sum approximation.

This example can be generalized in a straightfor-
ward fashion, to the case of forming clusters of &
points, instead of just three as done above. When
this is done, all of the above results remain the
same, except the constant C(«) in (3.2) becomes
Coa)=1+(a-1)%(k-2)/2,k=2and 0<a=<
1. Note that the down weighting effect of the convo-
lution weighted estimator can be made arbitrarily
bad here, subject of course to the fact that these
asymptotics describe only the situation where nh >
k (by this we intend to convey the intuitive idea
that nh is much bigger than %, but it can be
mathematically formulated as lim,,_,,, nh/k = o).

Both the above example and that represented in
Figures 4 and 5 can be criticized on the grounds
that they are quite artificial and contrived. How-
ever, they have been included here because they
illustrate well what typically occurs in the very
important case of the random design model M2.

The down weighting property of the convolution
estimator has a very strong effect in the random
design case. It is clear that, just by chance, some
design points will certainly have nearest neighbors

closer than the others. The magnitude of this effect
on the variance of the convolution weighted estima-
tor is much more than we had expected, in fact
being on average as bad as in the worst a = 0 case
of the deliberately pathological example just
discussed.

As illustrated in Figure 4, the relative weights
assigned to each observation Y; by . are pro-
portional to

Dj = Sj - sj—l
= —BX;-1~ (1-2B) X, + (1 - 8) X4y

For an intuitive feeling as to just how much
variability there is among the D; for a typical
random sample, consider Figure 7. Here X;,..., X,
are simulated Uniform([0, 1] random variables. The
relative weight given to the observation Y, in the
construction of 7., that is, D, is plotted as a
function of j/(n + 1). Figure 7a shows the case
B = 1 and Figure 7b shows 3 = 1/2. Note that, in
both cases, the relative weights differ across obser-
vations to a surprisingly large degree, with a sub-
stantial number of the points significantly down
weighted, which means that the convolution
weighted estimator is making very inefficient use
of the data. At an intuitive level, it seems clear
that inefficient use of the data can be expected to
give dramatically increased variance of m. with
respect to iy, whose relative weights are essen-
tially given by the horizontal line. Another way to
view this is to consider the shape of surface plots
analogous to Figure 6 for these data. For each j,
the curve in the variable x will again be a bump
centered at X ;, and the height of these bumps at
the peak will correspond to the heights shown in
Figure 7b. Hence the weights will vary wildly for
m¢, but be nearly constant for 7.

Note that the inefficient use of the data appears
worse when 8 = 1 than when 8 = 1/2. This is be-

‘cause there is some slight averaging of consecutive

order statistics being done in the latter case, which
gives greater stability to D;. A means of increasing
this averaging effect, to give an improved modifica-
tion of the convolution weighted estimator, is dis-
cussed in Section 7.

To quantify the above ideas, we now consider
some more asymptotic analysis. In addition to the
assumptions (A.1) to (A.3) above, add: (A.4) The
marginal density f of X; has a bounded and con-
tinuous first derivative and is bounded above zero,
on a neighborhood of x and (A.5) X; and ¢; are
uncorrelated.

Again, these can be weakened; see Chu (1989).
Under the assumptions (A.1) to (A.5), it can be
shown (see equations (2.3.1) and (2.3.2) of Chu,
1989, for details, and for closely related results see
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Bl

Collomb, 1981; Jennen-Steinmetz and Gasser, 1987;
and Mack and Miiller, 1989a),

Var(sig)
(3.5) = n-lh-lf(x)‘la2/ K?
vo(n-th1),
Var(iie) |
(3.6) =20-8+p)nh(x) ot [ K2
ro(n~1h-Y).

Observe that (3.5) and (3.6) are rather similar in
form to (3.1) and (3.2), which is not surprising
given the strong intuitive connection between ran-
dom and fixed designs discussed in Section 2. In
fact, n, h, 02 and K appear in exactly the same
way. An important difference is that f now ap-
pears, in a way that makes sense, because at points
where f(x) is bigger there will be more observa-
tions, and hence less variability. The other impor-
tant difference is the coefficient 2(1 — 8 + 82) for
me. This quantifies the intuition, as provided by
Figures 7a and 7b, about the relative variabilities
of the two estimators. In particular, because of the
variability of the spacings, the variance of i is
bigger than that of iy by a factor of 2(1 — 8 +
B?) = 3/2.

Note that, as intuitively expected, the choice
B =1/2 is optimal in the sense of minimizing the
leading coefficient in (3.6). In the other cases, the
performance of 7. is substantially worse. In par-
ticular, the choice of 3 =1, made in Jennen-
Steinmetz and Gasser (1988) and Mack and Miiller
(1989a), seems definitely inadvisable in practice,
although it seems clear that this was done in those
papers only for technical convenience.

Even with the best possible choice of (8, note that
me is still only 2/3 as efficient as . This and
Figure 7 make it clear that the issues raised in the
previous examples were not idle pathologies, but
indeed the effective deletion of 1/3 of the data is a
situation that arises on the average, in random
sampling. The opinion has been expressed by Mack
and Miiller (1989a) and by Gasser and Engel (1990)
that this is not a large lack of efficiency. The latter
authors in particular seem to feel that variability is
not a major issue, apparently basing their feelings
on the premise that it is always easy to simply
gather more data. We are not convinced by this. In
particular, we feel that when any reasonable scien-
tist is given a choice between two estimators, one

 with a given accuracy for 100 observations and

another which requires 150 observations for the
same accuracy, he will always select the former
when all other factors are equal. In real life, data
cost money, and hence need to be utilized as effi-
ciently as possible. However, we stress that this is
only one side of this issue. While strong reasons are
certainly essential to justify discarding 1/3 of the
data, in fact such strong reasons do indeed come up
in certain important situations, as discussed in Sec-
tion 4.

There is one other important area where the
inefficiency of the convolution estimator can make
a real difference in data analysis. This is when
there are replications among the ordinates, as one
can see in Figure la. The reason for the replica-
tions is that, while age itself is a continuous vari-
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able, the values in this data set have been
truncated to the next smallest integer (it is very
common to record ages-in this way). Such round-
ings happen quite frequently in real data, espe-
cially those in sample surveys. In fact, given that
we must always work with only digitized values,
there must be at least some rounding during the
analysis of any data set. Of course, if there is not
much rounding, then the continuous model is very
useful and effective. However rounding to the point
where replications appear can have a strong effect
on M.

An example of this is shown in Figure 8a. This
shows what happens when the § = 1/2 version of
the convolution weighted estimator is applied in
the simplest possible way to the data of Figure la.
For each distinct x i there are now two bars in the
histogram, which represent all of the points having
that ordinate. This representation is very poor,
because the height of the bar to the left of x;
represents the first such Y, in the raw data, and
the height of the bar to the right of x; represents
the last such Y,. The remaining Y, do not appear at
all in this picture because for them s; ; = s;. Fig-
ure la shows that in the present case this amounts
to deleting in fact the majority of the data. For this
present data set, this deletion of most of the data
was not terribly disastrous, although the increased
variability of the result (the solid curve in Figure
8a) can be seen in terms of more oscillation around
the much more stable 7y (the dotted curve in
Figure 8b). Since the estimator is in effect ran-
domly choosing only two of the observations, some-
times the result is above average, and sometimes
below. This estimator also goes down too sharply at
the ends, but this is a boundary effect that looks
especially bad for these data because the final ob-
servations on each end happen to be unusually low.
This edge effect is not an important issue, because
it can be substantially mitigated, using for example
the methods discussed in Section 4.3 of Miiller
(1988). Again this is not done here, because the
best of these is rather complicated to describe and
implement, and off our main points.

When there are replications among the design
points, it is clearly inappropriate to use the Section
2 definition of 7, in this simple-minded manner.
We do this to make the point that great care needs
to be taken with this estimator. In particular, we
feel it would be a fundamental mistake to design
any software package implementations of this esti-
mator without this effect firmly in mind.

It is intuitively clear that, when there are repli-
cations among the x;, one should pool observations,
by replacing the values with the same x; by a
single point representing their average. However,
the ideas discussed above, concerning relative
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Fic. 8. Convolution weighted estimators applied to data in Fig-
ure la, using same kernel and window width as there. Figure 8a
shows the straightforward implementation, as defined in Section
2, that is, as in Figure 3. Figure 8b shows the estimator applied
to the pooled data where replications are replaced by the average
over points having the same ordinate.

weights of observations, can still be seen to apply
even when this is done, in Figure 8b. In that pic-
ture, except at the boundaries, which again are not
discussed here, the estimator 7, is now closer to
mg. However, there are some differences which do
make this point. Note that near age 46, M is
higher than ;. We feel this to be inappropriate,
and only due to the arbitrary and unnatural way
that the convolution estimator chooses weights. In
particular, a look at the scatterplot in Figure la
shows only two observations for each of the ages 46
and 49. Furthermore, all of these are higher than
usual. The evaluation weighted estimator is not
seriously affected by this, but the convolution esti-
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mator is, because it gives each of these higher
values the same weight as the much more repre-
sentative values at-other points that represent
averages of more values. In the terminology of
robustness, these are “leverage points” for .
However they do not have such “high influence” on
Mg, so it is much more robust in this sense. A
visually more distressing occurrence of this same
phenomenon occurs for ages between 50 and 60,
where . is now quite a bit too low. This is caused
by the low single values at 57 and 61. The his-
togram in Figure 8b shows visually how these
values pull down 7., compared to 7y, which is
affected only to the extent seen visually in the
scatter plot of Figure 1. We feel it is an important
property of /iy that it behaves more like the eye in
scatter plot smoothing.

4. BIAS ISSUES

Variance, which was the main theme underlying
the difficulties illustrated in the previous section,
comprises only half of the smoothing problem. For
a balanced assessment of the situation, one also
needs to consider the bias.

A simple, but illustrative, example of how the
down weighting effect of the convolution estimator
can be very beneficial is given in Figure 9, which
shows the performance of 72 on the same artificial
data as used for 7, in Figure 3. In both of these
figures, the observations lie on a straight line. Note
that away from the boundaries (as discussed above
this is the only relevant area for the points being
discussed here), m, runs nicely through the data
as one would hope. On the other hand, i is quite
disturbing because it lies always below the data.
This is caused by the fact that /75 uses the data in
a symmetric fashion, but they are highly asymmet-

1.0

Evaluation Weights

0.8

0.6 -

1.0

X
Fic. 9. Evaluation weighted estimator applied to same data,
and also using same kernel and window width, as in Figure 3.

ric, so the greater density of lower observations on
the left side tends to pull down each local average.
On the other hand, because 7z, assigns weights as
shown in Figure 3, each observation is weighted
exactly as needed to cancel this effect. This occur-
rence is not a special artifact of this example, but
in fact happens quite generally. It is straightfor-
ward to make this effect appear much stronger, but
such examples require more data points, which
were not added here because they would tend to
obscure the other purpose of Figure 3. This is why
the efficiency issues of the previous section are not
a sufficient basis for sensible choice between g
and M.

Another way of looking at this is in the surface
plots of Figure 10. Note that, except for the bound-
ary effect at j = 1, the convolution weights fall off
faster for smaller j than the evaluation weights.
The convolution estimator also puts more weight
on the bigger values for x large. These effects

Evaluation Weights

Y
710

(b)
Fic. 10. Surface plots, showing for each data point Y; the
weights as a function of location x, used in constructing the
kernel smoothers in: (a) Figure 3; (b) Figure 8.
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cause M, in Figure 3 to run through the data
points, while m 5 in Figure 9 is too low.

Once again asymptotic analysis is useful for sim-
ple and intuitive quantification of these ideas. It
can be shown that for bias considerations, the ran-
dom design case is essentially the same as for fixed
designs satisfying the asymptotic property x; =
G Y(i/n) + o(n™1) (for some cdf G), so we explic-
itly treat only the former. Under the assumptions
(A.1) to (A.5), one may also show (same references
as at (3.5) and (3.6) above)

Bias(z)

_ Ky = )(m(t) - m(x)) £(2) de

(1) [K,(x—t)f(t)dt
+0(n"12R12),
Bias( ()
42) = /Kh(x — t)(m(t) - m(x)) dt

+0(nY).

Note that, in the important special case of a
uniform design, that is, f is constant on some
interval, these two expressions are the same. How-
ever, when the design is nonuniform, the bias is
much more simple for . This yields benefits in
two forms. Gasser and Engel (1990) point out that
this gives a large advantage in terms of inter-
pretability. In particular, it is much easier to ex-
plain to a nonexpert (especially one who is not very
mathematically inclined) how bias is entering for
mc. The other advantage comes in terms of when
the estimator will be unbiased (at least to the level
in (4.1) and (4.2)). Mack and Miiller (1989a) point
out that m, is unbiased in the case that m is
linear (and my is generally not, except in the
important case of m constant). This is especially
important because the linear case comes up when
nonparametric regression is being used to address
such questions as: Is the regression function linear
or not? Of course, combinations of f and m can be
, found that make 5 unbiased when i, is not, but
they do not include this important special case.

To gain an intuitive feeling for these issues, con-
sider Figure 11. The idea for this was given to us in
private conversation by Hans-Georg Miiller. It
shows the bias of 7z, as given in (4.1) in the case
where m is linear, the kernel K is Gaussian and f
is taken to be: (a) the standard normal(0, 1) density,
(b) the standard exponential(l) density, (c) the
piece wise parabolic density, f(x) = (3/4)(1 — x2) -
1;_; 11(x), and (d) the mixture density, 0.5N(2,1) +
0.5N(-2,1). In each part, m(x) is the diagonal
line, f(x) is the solid curve and the dashed curve
represents E[rg(x)] by the sum of the dominant
part of the right side of (4.1) and m(x). Feeling for

the bandwidth and the effective amount of smooth-
ing being done is given by the dotted curve at the

bottom of each part, which is a vertical rescaling of

K,.

Observe that, for all but the normal mixture,
there is some curvature, which can be quite dis-
turbing when one is trying to decide if the regres-
sion is linear or not (recall the actual estimate has
a distribution centered around this curve). How-
ever, for the exponential, this curvature appears
only near the edges, and is entirely due to bound-
ary effects caused by the fact that f(x) is taken to
be 0 outside the interval shown. In the important
special cases of the normal and the exponential
(away from the boundaries), while there is defi-
nitely a good deal of bias present, the dashed curve
is still essentially linear. The reason for this will be
discussed later in this section, but at this point
observe that in these cases bias will not affect one’s
visual impression as to whether or not the regres-
sion is linear. Observe that the magnitude of all
these effects is an increasing function of h. We
chose these h’s because speaking visually they are
among the largest we have worked with.

Certainly the curvatures in Figures 11c and 11d
are of major importance and cannot be ignored. We
were pleased that Gasser and Engel (1990) were
sufficiently impressed with a version of Figure 11d,
appearing in an earlier version of this paper, that
they used it as their Figure 1. See their Figure 2
for another variation on this idea.

While the bias of . is certainly more simple, it
is not clear that it is ‘“more natural.” A case can be
made for the bias of My being the more natural
one. In particular, when the data are being used
efficiently (recall from Section 3 that i, does not
do this), the design density f(x) is an important
entity, which intuitively should affect how well one
can estimate m(x). The fact that it nearly disap-
pears in the analysis of 71, can thus be considered
to be an unattractive feature of that estimator. An
interpretation of this is that, in order to make the
design density f(x) essentially disappear from the
bias, one must pay some price, which in this case
is increased variance, as quantified in the last
section.

Note that by (A.1)-(A.5) and by Taylor’s theo-
rem, (4.1) and (4.2) admit the further expansions:

Bias(hz)
(4.3) = h¥(m"f+ 2m' f)(/ u’K)/(2f)
+ O(n~'2Rh'2) + o(h?),
(4.4) Bias(mc) = B2m"( [ u®K)/2
+ 0(n™') + o(R?),

where m/, m” denote first and second derivatives of
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Bias in evaluation weighted estimator. Diagonal line is m(x) and also essentially Efn(x); dashed curve is essentially Er g(x),

dotted curve is a vertical rescaling of the kernel function K ,(x) and solid curve is f(x), which is (a) standard normal, (b) exponential, (c)

piecewise parabola and (d) normal mixture.

m(x), etc. These representations again show the
usefulness of asymptotic analysis. In particular,
the simple idea that, when m has more curvature,
it is 'harder to estimate (because nearby observa-
tions contain less information about m(x)) is nicely
quantified by (4.4), which measures this effect in
terms of the ‘“curvature,” m”(x). When m(x) is
curved upward, . will be too big, and vice versa
for m”(x) < 0. Furthermore, this reflects the point
made intuitively in Figure 1b that bias effects are
worse when the window width 4 is large.

It is unfortunate that, for comparison purposes,
(4.3) and (4.4) are not comparable: For some choices
of m, f and x one will be bigger in magnitude
(depending on the signs of m”(x)f(x) and

m'(x) f'(x)), while for other choices the other will
be. It would be nice to find some way to resolve this
completely, say by some finding some average sense
in which one bias is bigger than the other, but we
do not see how to do this. The next section dis-
cusses the relative effects of variance and bias on
the mean squared error.

The representation (4.3) provides considerable in-
sight into the effects observes in Figures 11a-d. In
particular, the biases exhibited in Figures 11a and
b are so surprisingly close to linear because, when
m is linear, (4.3) shows that E[Mz(x)] is roughly
proportional to

(slope of m) f'(x)/f(x).
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In the normal and exponential cases, these func-
tions are linear (and essentially only in those cases
by an elementary differential equation argument).
The curvatures in Figures 11c and d are also easily
understood by this method. For example, observe
that the normal mixture bias is linear in those
regions where one peak or the other is dominant,
and curved in between.

5. MEAN SQUARE ERROR

In Section 3, it was seen that the variance of
M () is substantially better than for 7(x). How-
ever, Section 4 discusses several bias related rea-
sons why one may be prepared to pay the price of
increased variance entailed by use of mi(x). In
private conversation, Jeff Hart has pointed out that
one should use “sensitivity analysis” ideas, devel-
oped at the end of Section 3 of Scott (1979) and in
Corollary 2.1 of Scott (1985), to properly account
for the relative effects of variance and bias.

This is done as follows. From (3.5), (3.6), (4.3)
and (4.4), it is clear that under the assumptions
(A.1)-(A.5), for m(x) representing either rmg(x) or
Ae(x), the mean square error is

MSE((x)) = E[ (x) — m(x)]”
~vn A1 + b2hY,

(5.1)

where ~ means the ratio tends to one in the limit
and where the specific values taken on v and b are
easily seen from (3.5), (3.6), (4.3) and (4.4). Simple
calculus shows that the right hand side of (5.1) is
minimized by h,opp = (v/4b%n)'/5, from which it
follows that

(5.2) MSE(hopr) ~ 5+ 4= */5v*/5p2/5n =415,

Hence, for reasonable values of the bandwidth
(there are a number of ways to ensure that the
bandwidth is asymptotically the same as h,gpr; see
Marron (1988) for access to the bandwidth selection
literature), the effect of the variance on the MSE is
much stronger than that of the bias. In particular,
the factors of either 2 or 1.5 (which come up when
comparing variances as in (3.5) and (3.6)), should
really be squared when comparing with the various
derivatives involved in (4.3) and (4.4). We feel that
this, together with the fact that mg(x) is clearly
superior when the design density is uniform, is a
weak indication that, in many situations where
MSE is considered to be most important, mg(x)
may turn out to be marginally better. However, it
must be kept in mind that this is only personal
opinion, and in fact the estimators are not gener-
ally comparable in this sense. In the nonuniform

design case, the other considerations pointed up in
Section 5 can easily outweigh MSE considerations
in the choice of an estimator.

Another means of attempting to assess the rela-
tive performance of these estimators is through
formulation of minimax results. One result of this
type may be found in Gasser and Engel (1990), who
prove a theorem, of which the main intuitive con-
tent is that, if one first fixes the regression function
m, then the worst case over a class of f’s is worse
for my than for .. They go on to assert that they
feel this provides strong motivation for general
choice of the convolution estimator. We are uncon-
vinced by this for several reasons. One is that their
result is dependent on assuming the design density
f is bounded below. This does not seem reasonable,
for example in observational studies where the X;
could easily be normally distributed. Their theorem
falls apart when this assumption is deleted. Hence
we are left with the same conclusion given above:
The estimators are not comparable.

A second reason is that their result is poorly
formulated, because information containing impor-
tant intuitive content is buried away in the case
“oo = 00.” If this case is analyzed properly, using
ratios of the given quantities, then a different pic-
ture appears. In particular, note that, for any A, in
the case of m(x) constant, letting F denote the
class given in Gasser and Engel (1990) (despite the
inappropriateness of this class argued above), and
defining IMSE to be the integrated (over x) MSE as
there,

IMSE(rng, k). 2
SUPp 7 o ) . o’
feF IMSE(mE, h) -3

for any bandwidth A. Now taking the minimum
over h, as done in the comparison of Gasser and
Engel, reveals that in fact this ratio can be either
bigger or smaller than 1, depending on the curve
m(x). This provides a second way to see that these
estimators should not be considered comparable,
even in this special sense.

A third reason is that, for honest and relevant
minimax comparison, suprema should be taken over
both f and also m.

We feel a much more relevant and unbiased min-
imax comparison is made through the study of

IMSE( mg, hIMSE)
sup —
fim IMSE(’”C, hIMSE)

and of

cof IMSE(71g, hivsg)
f,m IMSE(m,C, hpysg)
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where the supremum and infimum are taken over
some suitable class, and where hApygg is the band-
width to minimize IMSE. It is straightforward
to use calculations along the lines in Gasser and
Engel (1990) to check that the former is o and the
latter is 0. Once again we arrive at the same
conclusion derived intuitively in Section 4: These
estimators are not comparable in any reasonable
minimax sense.

6. IMPROVED ESTIMATORS

The results of Section 3 show clearly that the
increased variance of M. in the random design
case is caused by the instability of the s;. A means
of reducing this instability is to average together
more order statistics in the definition of the s;. One
means of doing this is, given a nonnegative integer
k, to define

2k+2
§; = Z 'YiX(j—k+i—l)’

i=1
for j=k+1,...,n— k — 1, where the weights v,
are nonnegative and satisfy ¥ 212y, = 1, and where
the values near the boundaries s,,...,s, and
Sy_ps---» S, are defined in any reasonable manner
(again the exact definition not affecting our main
ideas). Note that (3.5) is the special case %k = 0.
Once again using the assumptions (A.1)-(A.5),
equations (2.4.2) and (2.4.3) of Chu (1989) show
that

Var(th,)
2k+2
(6.1) =1+ El 7,.2)n‘1h‘102f(x)_1/K2
+o(n"1h"1),
Bias(m ;)
6.2) = /Kh(x— £)(m(t) — m(x)) de
+ 0(n71).

It is easy to see that the best choice of the v, is
v=1/Qk+2), i=1,...,2k + 2. In this case,
Var(;) = O(n A= 11 + 2k + 2)7 1), so the
amount by which the variance of /5 improves over
m; can be made arbitrarily small in the limit, by
taking %k large. Of course a practical limitation is
that these asymptotics are enly meaningful when
nh> k.

Deeper analysis of this estimator and several
obvious modifications of it go beyond the intent of
this paper, but provide interesting topics for future
research.

Another means of combining the best properties
of both estimators has been found by Fan (1990),
who shows that this happens for the old idea of
replacing local averages by local linear fits (i.e.,
instead of taking local advantages, doing local
weighted linear least squares). It will be interest-
ing to see how this variation fits into the ideas of
this paper.

7. OTHER ISSUES

There are other aspects to the problem of choice
between my and i, that can sometimes be impor-
tant. We have not highlighted these in the above
discussion, because they all pertain to modifica-
tions of the very basic nonparametric regression
settings considered here.

In Hardle (1990), it is pointed out that one of
these is the extension to the case where the real
valued X becomes a d-dimensional vector. One
can still use kernel estimators to estimate the d-
dimensional regression function, and many of the
same lessons still apply. For my there are appro-
priate analogs of (3.5), (4.1) and (4.3). However, the
situation becomes more difficult for ;. In particu-
lar, the negligible error in (4.2) rapidly becomes
dominant. For example, using Theorem 6.1 of
Miiller (1988), observe that, in our setting (Miiller’s
v=0, k=2, m = d), this breakdown occurs at d =
4. It is an interesting open problem to find an
adaptation of . that shares its nice bias proper-
ties and technical tractability, without having this
high dimensional breakdown problem.

Mack and Miiller (1989a) point out that my is
much harder to work with for the estimation of
derivatives. This is because its derivatives take on
a very complicated form because of the quotient
structure. The result suffers both in being messy to
analyze, and also in losing insight and inter-
pretability.

Jeff Hart, in private correspondence, and also

"Mack and Miiller (1989a) point out that for proper

adjustment for boundary effects (see Rice, 1984;
Gasser, Miiller and Mammitzsch, 1985), the form of
M is again far more convenient.
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Theo Gasser, Christine Jennen-Steinmetz and Joachim Engel

Nonparametric curve estimation is coming of age,
and it is thus timely to study the merits of various
approaches. Two weighing schemes have been pro-
posed in the kernel estimation literature, called
“evaluation weights’” and “convolution weights”
by Chu and Marron. The goal of their paper is to
give a balanced discussion of their merits, based on
two complementary philosophies P1 and P2. We
feel that the paper falls short of presenting a bal-
anced discussion and often disregards philosophy
P1, that is, looking for structure in a set of num-
bers. For many years the evaluation weights (due
to Nadaraya and Watson) have been studied pri-
marily for random design, the convolution weights
for fixed design. Random design is defined and
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treated adequately by the authors, while fixed de-
sign is represented by rather peculiar examples
(see below). As is common (see, e.g., Silverman,
1984), we define a regular fixed design as x; =
F~Y((i — 0.5)/n), f = F’, where F is some distribu-
tion function with density f. Under standard as-
sumptions, the asymptotic bias and variance for the
two weighting schemes are as in Table 1, where

" M,(K) = [ u’K(u) du and V(K) = [ K(u)? du.

VARIANCE

The factor C in the variance of the convolution
estimator is 1 for fixed and 1.5 for random design.
Thus, we have an increase in variance for convolu-
tion weights with respect to the random design
only; variances are asymptotically identical for reg-
ular fixed design. There is one fixed but not regular
design of importance, that is, when we have multi-
ple points, for example, due to rounding. It is easy
to modify convolution weights for this design appro-
priately, and this has been done in our programs.

We are puzzled by the frequent use of the word
efficiency in Section 3, when in fact only variance is



