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MINIMAX RISK BOUNDS IN EXTREME VALUE THEORY

BY HOLGER DREES

University of Heidelberg

Asymptotic minimax risk bounds for estimators of a positive extreme
value index under zero-one loss are investigated in the classical i.i.d. setup.
To this end, we prove the weak convergence of suitable local experiments
with Pareto distributions as center of localization to a white noise model,
which was previously studied in the context of nonparametric local den-
sity estimation and regression. From this result we derive upper and lower
bounds on the asymptotic minimax risk in the local and in certain global
models as well. Finally, the implications for fixed-length confidence inter-
vals are discussed. In particular, asymptotic confidence intervals with al-
most minimal length are constructed, while the popular Hill estimator is
shown to yield a little longer confidence intervals.

1. Introduction. Consider i.i.d. random variables X;, i € N, whose dis-
tribution function (d.f.) F' belongs to the weak domain of attraction of an
extreme value d.f. G,, that is,

L (a;l <{nax X, — bn)> — G, weakly
<i<n

for some constants a, > 0 and b, € R. Here G, (x) = exp(—(1 + yx)~'/7) for
1+ yx > 0, which is interpreted as G,(x) = exp(—e*) if y = 0. The shape of
the upper tail of F is largely determined by the real parameter y = y(F'), the
so-called extreme value index. Several estimators of y have been discussed in
literature [see, e.g., Hill (1975), Pickands (1975), Csorgd, Deheuvels and Ma-
son (1985), Dekkers et al. (1989) and Drees (1998a,b)], yet much less is known
about the best achievable performance of arbitrary estimators for y. It is the
main goal of the present paper to establish asymptotic risk bounds for arbi-
trary estimators of a positive extreme value index, and thereby to determine
how much space is left for further improvements of known estimators.

Falk (1995) and Marohn (1997), among others, use LAN-theory to calculate
asymptotically sharp risk bounds for sequences of estimators y, that depend
only on the %, largest order statistics. However, under the conditions they
imposed on the sequence (%,,),n, the distribution of y, under F' can be ap-
proximated in the variational distance by its distribution under a suitable
generalized Pareto distribution [Reiss (1989), Corollary 5.5.5], that is, essen-
tially not semiparametric, but parametric models are considered. Moreover,
estimators attaining these risk bounds are inefficient in the following sense:
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For any family .7 of distributions considered in those papers one may find
estimator sequences ¥,, n € N, which are based on a larger number %, > %,
of order statistics, such that for any sequence (7,),n of the aforementioned
type one has ¥, — y(F) = op(y, — y(F)) uniformly over all F € 7.

Here we consider genuinely semiparametric models of heavy-tailed distri-
butions, that is, we assume F € D(G,) for some y > 0. While for environmen-
tal data light—tailed distributions (with y < 0) often cannot be excluded a pri-
ori, financial data sets and teletraffic data usually exhibit heavy tails [see Em-
brechts, Klippelberg and Mikosch (1997), Section 6.2, particularly Example
6.2.9, and Adler, Feldman and Taqqu (1998), Chapter 1, for several examples].
Another important field of applications are non-life (re—)insurances, in partic-
ular fire insurances [Embrechts Kliippelberg and Mikosch (1997), page 332ff ],
storm insurances [Rootzén and Tajvidi (1997)] and business interruption in-
surances [Zajdenweber (1995)], where indeed the very existence of heavy tails,
which show up in the data sets of insurance claims, is the main reason why
classical methods to calculate premiums based on the central limit theorem
are supplemented (or even replaced) by extreme value procedures.

For the case y > 0, Hall and Welsh (1984) established optimal uniform
rates of convergence over families of d.f’s with density of the type f(x) =
cx~/7+D(1 + r(x)), where |r(x)| < Ax*/” for fixed constants A, p > 0. This
result was generalized in Theorem 2.1 of Drees (1998c), which can be refor-
mulated in the following way. Define

F(y1,¢,6,u) = {F d.f. l Fl1—-t)=ct"exp (/1 n(s)/sds) ,

t
1.1
ly =l =e& @) =u(?), te(0, 1]}

where y; > ¢ > 0, ¢ > 0 and u denotes a bounded function that is p—varying
at 0 for some p > 0 and satisfies lim,, u(¢) = 0 yet is bounded away from 0
on [, 1] for all 6 > 0. Observe that every d.f. F' € Z(y;, ¢, &, u) belongs to the
weak domain of attraction of G, for some y > 0. Conversely, if F satisfies the
well-known von Mises condition g(x) := (1 — F(x))/(xf(x)) — y as x — oo,
then F~1(1—¢)=ct™ exp(ft1 n(s)/s ds) for some ¢ > 0 and 7(s) := g(F~1(1—
s)) — vy tends to 0 as s tends to 0; in particular, this holds true if F' belongs
to the weak domain of attraction of G, and if it has an eventually monotone
density. Notice that g(x) = y (i.e. n = 0) corresponds to the Pareto d.f. F,(x) =
(x/c)"1/7. Hence, essentially Z(v;, c, €, u) consists of smooth distributions in
the domain of attraction of an extreme value distribution G, with y € (y; —
&,v1 + €) such that the distance to the pertaining Pareto d.f. F,, measured
in terms of the difference between the von Mises function g and its limit, is
bounded by the function u. In view of the prominent role the (generalized)
Pareto distributions play in extreme value theory [cf. Reiss (1989), Chapter
5], this choice of a semiparametric model seems natural. Furthermore, it can
be shown that for any d.f. F' satisfying the von Mises condition one can find
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a regularly varying function u that converges to 0 and dominates 7, so that
F e F(y1,c ¢ u)for y, € (y(F) — &, y(F) + ).
Let (¢,,),cn be a sequence satisfying

(1.2) lim wu(t,)(nt,)"? = 1;

the existence and asymptotic uniqueness of such a sequence follows from The-
orem 1.5.12 of Bingham, Goldie and Teugels (1987).
Then, for arbitrary estimators vy, based on a sample of size n, one has

(1.3) lim inf sup {1V, — y(F)| > au(t,)} >0

T FeF(nicieu)

foralla < c0if p > 0, and all @ < 1 if p = 0. Here P} denotes the joint
distribution of n i.i.d. random variables with d.f. F.

If p = 0, that is, u is slowly varying at 0, then u(¢,) is an asymptoti-
cally sharp lower bound for the estimation error in the following sense: For
any a,, liminf, ,a,/u(t,) < 1 implies limsup,,_, o SUPpeg(y, c.e.u) Pr{Vn —
v(F)| > a,} > 0 for all estimators y,, whereas there are estimators v,
(e.g., the well-known Hill estimator based on a suitable number of largest
order statistics) such that lim,_, . SuPpc7(y, c,e,u) Pr{l¥n — Y(F)| > a,} = 0 if
liminf, ,  a,/u(t,) > 1.

In contrast, such a sharp bound does not exist if p > 0; in this case in-
equality (1.3) merely describes the optimal rate of convergence. For exam-
ple, if one chooses u(¢) = A¢” (which essentially leads to the model consid-
ered by Hall and Welsh), then u(¢,) ~ AY@r+Dp=r/Ce+D): that is, the op-
timal rate equals n—?/?*1)  (Here a, ~ b, means a,/b, — 1.) Moreover,
it was proved that the Hill estimator based on a suitable number of order
statistics converges with the optimal rate [Drees (1998¢c), Theorem 2.2]. How-
ever, since the same holds true for a large class of estimators of vy, including
Pickands’ (1975) estimator and the maximum likelihood estimator examined
by Smith (1987) [see Theorem 4.3 of Drees (1998d)], inequality (1.3) is too
crude to yield a useful benchmark for the evaluation of the performance of
estimators for the extreme value index. [A similar remark applies to a rather
rough risk bound for the Hall-Welsh model that was derived by Donoho and
Liu (1991a).]

In more general extreme value models allowing arbitrary y € R the sit-
uation is somewhat different, in that estimators of the extreme value index
that are not location invariant [like, e.g, the moment estimator proposed by
Dekkers, Einmahl and de Haan (1989)] usually do not converge with the opti-
mal rate, provided the finite right endpoint is not known in advance in case of
v < 0, whereas a large class of location invariant estimators do attain the op-
timal rate [Drees (1998c), Section 3, and Drees (1998d), Theorem 4.3]. Hence,
unlike in the case y > 0, the result about the optimal rate of convergence
renders it possible to sort out certain well-known estimators with unfavor-
able asymptotic properties. This new phenomenon is due to the qualitatively
larger impact of a shift in the data if the underlying distribution has a finite
right endpoint (compared with heavy-tailed distributions). However, since it
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was seen in Drees (1998¢) that the incorporation of a location parameter leads
to substantially more complicated local models, these general extreme value
models will be examined elsewhere.

Here we will establish an asymptotically almost sharp lower bound for the
left-hand side of (1.3); that is, a lower bound for the asymptotic minimax risk
under the zero-one loss generated by the function L|_u, ) qu(,)e- This new
bound may serve as a benchmark to assess the efficiency of estimators in the
present semiparametric setup. For the aforementioned reasons, we concen-
trate on the case p > 0.

First, it is proved in Section 2 that certain local experiments with Pareto
distributions as center of localization converge to white noise models of a
type that was previously studied in the context of nonparametric local density
estimation and regression. Therefore, the powerful tools of LeCam’s theory
of the convergence of experiments show that the asymptotic minimax risk
for the sequence of local experiments is bounded from below by the mini-
max risk in the limit experiment, which we investigate in Section 3 using
methods introduced by Ibragimov and Khas’'minskii (1985) and Donoho and
Liu (1991b). In Section 4, implications for the minimax problem described
above and for the construction of fixed-length confidence intervals are dis-
cussed. In particular, it is shown that in typical situations the Hill estima-
tor leads to a confidence interval which is merely a few percent longer than
the shortest possible fixed-size confidence interval. All proofs are collected in
Section 5.

It is worth mentioning that although we focus on a lower bound on the
minimax risk of estimators for y under zero-one loss, the main result of
Section 2 also makes it feasible to establish risk bounds under quadratic
loss or even risk bounds for estimators of certain extreme quantiles (see
Section 2).

For the sake of notational simplicity, in the sequel we assume that ¢ = 1
and let 7 (yq, &, u) := F(y1, 1, &, u).

2. Weak convergence of local experiments. As mentioned above, our
investigation of the minimax risk is based on a result about the weak conver-
gence of certain local experiments related to the model 7 (y;, €, ©). The basic
idea of this approach is to consider sequences of local alternatives converging
to a fixed center of localization in such a way that the increasing degree of
difficulty to discriminate between these alternatives and the center of local-
ization compensates the increase of information contained in the sample as n
tends to infinity.

Relations (1.2) and (1.3) show that the function u, which describes the max-
imal deviation between the upper quantile function (q.f.) F~1(1 — ¢#) and the
pertaining Pareto q.f. £77, determines the optimal rate of convergence of esti-
mators for y. Hence it is natural to fix a Pareto q.f. Fy'(1 —¢) = ¢ as the
center of localization and then to consider alternatives with extreme value
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index converging to y, with the rate u(¢,). More specifically, we define

FL(1—t):=F.} (1-t)

n,h, v

1
= t—Yo exp </ M ds
t S

= ¢~ (+d,h(0)) exp (/1 dn(h(CnS) - h(O)) dS) , t e (0,1],
t

S

where d,, — 0 and ¢,, — oo; in the applications below we choose d,, = u(¢,)
and ¢, = 1/t,, such that (1.2) reads as

2
2.1) lim "%n _

n—>oo ¢,

1.

To discuss the effect of this localization, assume for the time being that the
function £, which acts as the local parameter, has compact support, say [0,1].
Then F;’lh =F, Lon [0,1 — 1/c,], that is, the deviation from the Pareto q.f.
is more and more concentrated in the tail. A similar approach, which gave
rise to the concept of extreme value tangents, was proposed by Janssen and
Marohn (1994). Likewise, Low (1992) demonstrated that a sequence of local
experiments, in which the difference between the densities of the center of lo-
calization and of the local alternatives, respectively, is supported by a compact
interval shrinking towards a fixed point, is appropriate for local density esti-
mation problems [cf. also Low (1997)]. Then it was proved that this sequence
converges to essentially the same white noise model that occurs as the limit
experiment in Theorem 2.1 below. The fact that local extreme value, density
and regression models converge to the same type of white noise model under-
pins the close relation between the corresponding semiparametric estimation
problems.

In order to ensure that F:l,lh actually is a q.f., one has to assume that
Yo + d,h(c,s) > 0 for all s € (0, 1]. Moreover, for the application to our mini-
max problem, we must assure that F, , € (v;, €, u), and thus in particular
d,(h(c,s)—h(0)) =d,h(c,s)+0o(1) < u(s) which is bounded for s € (0, 1]. For
the proof of the main result of this section we need uniform versions of these
restrictions, that is, we suppose

he {h € Ly[0,00) | =0 < inf dy, inf h(cys)
mz=n se(0,

<supd,, sup h(c,s) <oof,

m=n s€(0,1]

t A= {h e L,[0, 00) i ~ <liminfd, inf h(c,s)
n—oo s€(0,

<limsupd, sup A(c,s) < oo
n—o0 5€(0,1]

In particular, bounded square integrable functions belong to 7.
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For h € #™ denote by P" » = Py 4, the distribution of n ii.d. random
variables with q.f. F,_L}h and let P, := P, , be the Pareto distribution with q.f.
Fy!. Moreover,

1 .
Qh = Qp,, =~ (y—ofo h(s)ds + W)

where W denotes a standard Brownian motion (defined on some abstract prob-
ability space) with paths belonging to the space C[0, o) of continuous func-
tions on the positive real line, which is equipped with the o—field ¢[0, c0)
generated by the canonical projections. (In the sequel, often the index v, is
omitted, when a fixed local model is considered.)

THEOREM 2.1.  Suppose that d,, > 0, d, — 0 and ¢, — oo are sequences
satisfying (2.1). Then

(R",B", (P} hearin)) — (€10, 00), €10,00), (@n)ier )

weakly, that is, for all hq, ..., h,, € ¥ one has

Py
() ) () @)
hi2 <hwh>
(5,4,
Y0 J1<iem Yo 1<i,j<m

weakly, where (h;, h;) := [;° h;(s)h;(s)ds and || = (h, h)*? are the inner
product and the norm, respectively, of the Hilbert space L4[0, 00).

The main step in the proof of this result is to verify a kind of Ly—differen-
tiability in the tail, which implies an approximation of the loglikelihood:

PROPOSITION 2.1. Under the assumptions of Theorem 2.1, one has

tim [~ [n42 (£22(0) ~ £32(®) ~ bgnn(@)fE20)] dx=0

n—o0 Jq
where f, , and f are the Lebesgue-densities of P, ; and P, respectively, and
nl/zdn 1 h(cns) 1
. _ -1/
gnn(x) = . (/xl/m . ds—h(c,x )) , x> 1.

Consequently,

AP, e LT
22 g Tl x k) =Y (e~ D (1),
dp:

i=1 70
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By virtue of LeCam’s asymptotic minimax theorem, Theorem 2.1 has im-
plications for our estimation problem. Observe that in the local model the
extreme value index y(F, ;) = vy + d,h(0) is determined by A(0), which
hence is the local parameter of interest. An estimator h/(a) for this parameter
defines an estimator for the extreme value index via y,, = v, + dnh/(a), so that
[V — Y(F, )|/, = |h/(6) — h(0)|. However, recall from the minimax theorem
that in the limit experiment one has to consider the infimum over all random-
ized estimators for 4(0), that is, Markov kernels K from (C[0, ), €[0, o0)) to
(R, B); the pertaining risk equals [ K(x,[2(0) — a, h(0) + a]°) Q;(dx). Thus
we have the following result:

COROLLARY 2.1.  Let (V,),en be an arbitrary sequence of estimators for .
Then, under the assumptions of Theorem 2.1, for all # C # and all a > 0

liminf sup P} {19, — v(Fn 1)l > ad,}
=00 pe Ny

= inf sup [ K (x,14(0) - a, h(0) + al) @4(dx)

where on the right-hand side the infimum is taken over all randomized esti-
mators K of h(0).

Of course, the assertion holds true if we consider randomized estimators of
the extreme value index, too.

Next we examine the implications of this result for the minimax estimation
in the global model .7 (vy;, &, u). For the clarity of exposition, we concentrate on
the case u(t) = A¢? for some A, p > 0, corresponding to the model considered
by Hall and Welsh, yet in a sequence of remarks we indicate the necessary
changes when dealing with more general p—varying boundary functions u with
p > 0 satisfying the conditions stated below (1.1).

To employ Corollary 2.1 with d, = u(t,) = AY@tDp=r/@r+D) and ¢, =
1/t, = A%/@rtD) p1/Ce+D) one must ensure that eventually the local models
are included in 7 (4, ¢, u), that is,

u(t,)|h(s/t,) — h(0)| < u(s), s€(0,1] < |h(s) — h(0)| < s”, s> 0.

Furthermore, we assume that A € Ly[0, 00) is bounded. Thus, let

H,) = {h € L,y[0, 00) i |h(s) — h(0)| < s”, s >0, i1>10p|h(s)| < oo} CcH.

COROLLARY 2.2. For a,p > 0, u(t) = At for t € (0,1], and an arbitrary
sequence of estimators (7, ),en for v, we have

liminf  sup  Ph{|9, — ¥(F)| > au(s,)}

n—00 FeT (y1,e,u)

> sup inf sup K(x, [2(0) — a, h(0) + a]c> @R}, (dx).

lvo—vil<e K he,
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Therefore, a lower bound on the minimax risk in the white noise experiment
defines a lower asymptotic minimax risk bound in the model .7 (v, €, ©), too.

REMARK. For more general p—varying functions u (p > 0), one may use
the Potter bounds [Bingham, Goldie and Deheuvels (1987), Theorem 1.5.6] to
show that for all

he Jf; = {h € Ly[0, 00) | sup |A(s)| < oo, for some 6 > 0

s>0

A(s) — R(0)] < (1 — &) min(s"~°, s**?), s > o}

one has F, ;, € F(v;, ¢, u) for sufficiently large n. Therefore, the analog to
Corollary 2.2 with 7, replaced by J/i holds true in this situation [where,
of course, d,, = u(t,) and ¢, = 1/¢, with ¢, satisfying (1.2) differ from the
constants in the Hall-Welsh model]. O

Likewise, one gets asymptotic lower risk bounds under arbitrary lower
semicontinuous, level compact loss functions, for example, under quadratic
loss. Furthermore, one may also obtain asymptotic lower risk bounds for esti-
mators of extreme quantiles

—Yo c,
Fo=are) = (L) “ew(a, [ *Pas). g=o,

n q

from minimax risk bounds for estimators of the linear functional f;° h(s)/sds
if A is assumed to have a compact support C [0, ¢;].

3. Minimax risk bounds in the white noise model. In this section we
analyze the minimax risk in the limiting white noise experiment (C[0, co),
¢[0, 00), (Q4)ner,)- While unfortunately that risk is not known exactly, one
may establish suitable bounds, taking up the approach by Donoho and Liu
(1991b).

To derive an upper bound on the minimax risk, we first look for affine
minimax estimators in one-dimensional linear submodels. Because #, is sym-
metric about 0, one may restrict oneself to families of the type (@,1)re(-1,1)5

where h € #, with h(0) > 0.

Let
[hdx
Y, =—,
S
where again [ 2 dx denotes a stochastic integral. Hence
(3.1 LY | Q) = A (M R]/v0, 1) = A(9,1),

where ¥ := A||k| /v, is bounded in absolute value by 7, := ||&||/y,. An esti-
mator 9 for the bounded normal mean ¥ defines an estimator A := y,9/| A
and hence an estimator for the parameter of interest AA(0), too, such that
|AR(0) — AR(0)| > a is equivalent to |} — &| > a||hl|/(yoh(0)) =: ay.
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The minimax affine estimator for ¥ under the zero-one loss generated by
equals ¢, Y, with

1 /1 1 o+ a;\ Y2\
== - 1
Ch <2+(4+2ah7h ngh—ah> )
1 (1 w0y . hO)+a\"Z)
Yo
—|24(= 1
(2 * (4 T RS O a) )

if A(0) > a, and ¢;, = 0 if A(0) < a; the corresponding minimax risk is equal
to

1

—ay,a;l¢

Rog(h) = @ (-T’”L—ah + Th) 4O (T’L % _ Th)
Ch Cp

if 2(0) > a, and R,4(h) = 0 else [Drees (1999), Theorem 1]. Here ® de-
notes the standard normal d.f. The arguments of Donoho and Liu (1991b) and
Donoho (1994) show that the maximum of these minimax affine risks among
all one-dimensional submodels equals the minimax risk among all affine es-
timators in the full model and thus is an upper bound for the minimax risk
among all estimators for ~(0) in the full model. (An estimator in the full
model is called affine if it can be represented as d + [ hdx for some d € R
and 2 € Ly[0, 00).) Furthermore, the minimax affine estimator in the most

difficult one-dimensional submodel defines a minimax affine estimator in the
full model. This leads to:

THEOREM 3.1. Let ¢ be the unique positive solution of the equation

&V e +1)

(3.2) log §f—Z "

and define

(3.3) he(t) := (& = t7) Lo v (2).
Then

(3.4) h(0) = yo(1+1/p)& 1) [ b da

is minimax among all affine estimators for h(0) in the full model (Qy)c z,-
The corresponding minimax risk is

£1+1/(2p) 2p+1
¢ <_70(2(P e (7 “))

© £1+1/(20) (1 B 2p + 1a>
Yo(2(p + 1)(2p + 1))1/2 3 ’

(3.5)




RISK BOUNDS IN EXTREME VALUE THEORY 275

Observe that the least favorable direction 2 must be of type (3.3) for some
¢ > 0, since this way A(0) = ¢ is maximized among all 4 € #, with fixed norm

|| (and thus fixed 7,,), so that a, is minimized and the risk pertaining to &
and hence also to A%(0) is maximized.

Next we turn to the lower bound on the minimax risk, which is obtained as
the supremum of all minimax risks in one-dimensional linear submodels. No-
tice that now the restriction to affine estimators has been dropped. Zeytinoglu
and Mintz (1984) described the minimax estimator for 9 in model (3.1) under
zero-one loss. It turned out that the minimax risk depends on 7, only through
the smallest integer [ that is greater than or equal to 7,/a; = h(0)/a. The
arguments given in the last paragraph show that it is sufficient to consider
functions A of type (3.3) when looking for the supremum of these minimax risks
among all one-dimensional submodels. Moreover, for fixed [, a;,, = a|lA[|/(vo€)
is minimized and thus the minimax risk maximized if ¢ | (I — 1)a, because
[ h¢ll/€ is a strictly increasing function of &.

The corresponding minimax risk R,,,(%;) can be derived from the solution
of a system of nonlinear equations; for details refer to Zeytinoglu and Mintz
(1984) or Drees (1999). To find the supremum of all minimax risks in one-
dimensional submodels, one must compare lim;;_1), Rym(h,) for all [ > 2
numerically (see Section 4). Note that here the supremum is not attained, that
is, there is no most difficult one-dimensional submodel. A detailed discussion
of the relationship between the minimax risks in the full model and its one-
dimensional submodels, respectively, can be found in the paper by Donoho and
Liu (1991b).

REMARK. Since in the definition of 2?;, the constant 6 > 0 may be cho-
sen arbitrarily small, it is easily seen that the minimax affine risk and the
minimax risk are both the same in the models (@), and (Qh)hejp.

To sum up, we have found an upper and a lower bound for the minimax
risk in the limiting white noise model. In the next section it is seen that these
bounds carry over to the sequence of local models, and that they are almost
identical for those values a which arise from the construction of confidence
intervals.

4. Minimax risk bounds for the extreme value index. According to
Corollary 2.1, the lower risk bound in the limiting white noise model obtained
in the preceding section, namely, the supremum of minimax risks among all
one-dimensional linear subfamilies, is a lower bound for the asymptotic mini-
max risk in the sequence of local models. In contrast to that, it is not obvious
from the LeCam-theory that the upper bound on the minimax risk in the
limiting model carries over in a similar manner. To prove that this holds true
indeed, we construct a sequence of estimators for the local parameter of in-
terest ~(0) that asymptotically attains the upper bound (3.5) on the minimax
risk.
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To this end, recall that the minimax affine estimator (3.4) in the limit ex-
periment is a multiple of the stochastic integral of 4, defined in (3.3). In view
of Theorem 2.1, approximation (2.2) and the Girsanov formula (5.10) (see the
proof of Theorem 2.1 below), the estimator

Yo(L+1/p)¢ VPR~ 2 3" g (X))
i=1

" X;
=& 1/pu(t ) g (log —(fl/pt ) 7

p+1 X, —p/Yo
2 () )

1 X
X 111,00) @ty )

with d,, = u(t,) and ¢, = 1/c, satisfying (1.2), is a natural candidate. [Here

and in the sequel we use the canonical model, that is, X; := X, , : R" - R,
(%1, ..., %,) = x;; hence, under P} ; the random Varlables X; are ii.d. with
df F, ;.1

Note that this estimator is based only on the exceedances over the threshold
(&Yr¢,)™". As usual, instead one may use all exceedances over the random
threshold X,_, .,; that is, the (k, + 1)th largest order statistic, where £, is
chosen such that Fy'(1 — k,/n) = (k,/n)"% ~ (£Yrt,)~%. By virtue of (1.2)
and y(F, ;) = vo+u(t,)h(0), this modification leads to the following estimator
for the extreme value index in the local model:

k
~loc P +1 1 n i+1in
Yo =Yoot —— 17— log ———
" P kn i=1 < Xn ky:n

P + 1 ((XniJrl:n)p/m ))
+7v0 X -1
4.1) p n—k,:n

Hill , L[ aHi
= 42 (55~ )
—p/
+')’ <p+1>2 1 an Xn7i+1:n P 1
0 7 ~ - 4 s
P kn i=1 Xn—kn:n ,0+1

where £k, := [£V/P A=2/Cr+D)p20/2p+1)] £ ig defined by (3.2) and

1 k
AH111 - Z n i+1:n
T, =% X

n—k,:n

is the popular Hill estimator. Notice that 71 can be interpreted as a modifi-
cation of the Hill estimator, depending on A and a only through the number
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k, + 1 of order statistics on which it is based. Moreover, it can be represented
as the functional

p+ z(t) p+1 2(t) =P/
(4.2) Toe(2) =0 + T/ log 2(1) + % . ((2(1)) — 1) dt

applied to the tail empirical quantile function
Qup,(8) =X (k1) 0<t=1,

that is, 9! is a statistical tail functional in the sense of Drees (1998a,b).
Following the approach of those papers, it is not difficult to prove that indeed
this estimator attains the asymptotic minimax affine risk bound:

THEOREM 4.1. Let d, = AY®@r+tDp=r/Crtl) gnd ¢, = A%/ (rtDpl/Cp+l)
Then, for all a > 0, the maximal risk

NI
sup Py {194 = ¥(F,0)l > ad, |
he,NH' ™)

converges to the minimax affine risk (3.5) in the white noise model, which thus
is an upper bound on the asymptotic minimax risk in the sequence of local
models.

REMARK. Check that the parameter space -#, enters the proof of Theorem
4.1 only via the bias term (5.18), and that for %, it is merely essential that
kpt? ~ £ Y@r)d . So if in case of a more general boundary function u we
choose &, = [¢'/7(u(t,)) 2], then we arrive at the same conclusion as in The-
orem 4.1, because obviously the limit in (5.19) is not altered if 7, is replaced
with 2?;.

So far we have shown that the bounds on the minimax risk in the limit-
ing white noise model are also bounds on the asymptotic minimax risk in the
sequence of local models. To obtain an analogous result for the global model
F (v1, &, 1), in the next step we construct an estimator of the extreme value
index in Z(y;, €, u) by replacing the parameter vy, of the center of localiza-
tion by a suitable initial estimator. Although any estimator that converge to
the true value with the optimal rate n~*/(2¢+1) works, the calculations become
particularly simple if one uses the Hill estimator in the initial estimation
step. For the asymptotic behavior of this estimator has been studied thor-
oughly, and, in addition, the second term in the representation (4.1) vanishes.

— _ - k,
Thus, we define k, := [n2//2**D] and y, := k;' Y ", 1og(X—i-r1in/ X n—fn)-
Let £, be the solution of (3.2) if y, is replaced by ¥, and define y* := k1 Zfil
log(X,,_is1:/ X ) with &, := [£, A=2/@pt1)p20/2p+D] Then our adaptive

nkn
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estimator for vy in the model 7 (yy, &, u) is

,}7 — ')’*+')/* ,0+]- Zi};n Xn—i+1:n _p/yn_ 1
nE ) E AW X pt1

In the following theorem it is shown that the asymptotic maximal risk of
v, equals the supremum of the asymptotic maximal risks pertaining to the
estimators $!°¢ among all local models under consideration. To determine this
supremum, note that the solution ¢ = £(y,, a, p) of (3.2) satisfies

(4.3) 3 (070, c?/@rig, p) = /Py, a, p)

for all ¢ > 0. Consequently, the minimax affine risk (3.5) remains the same if
(7o, @) is replaced with (cy,, c2?/2**Dq). Since obviously the risk is a decreas-
ing function of a for fixed y,, it follows that (3.5) is an increasing function of
v, for fixed a, and thus the aforementioned supremum of maximal risk of §1°

among all local models is obtained by replacing y, with y; + ¢ in (3.5).

THEOREM 4.2. Under the assumptions of Theorem 4.1, vy, attains the
asymptotic minimax affine risk, that is,

lim  sup  Ph{l9, — ¥(F) > ad,}

"% P (vy.e.u)

B ~ £1+1/(20) 20 + 1
‘q’( (71 + o) (@(p + D)(2p + )17 (” ¢ ”‘))

£1H1/(2p) B 20+1
0 ((«/1 +o)(2(p+ D(2p+ 1)1 (1 £ “)> ’

where ¢ = &(y1 + &, a, p) is the solution of (3.2) with vy, replaced by y; + «.

It should be emphasized that the estimator ¥, in the global model is adap-
tive only in the sense that the parameter vy, of the center of localization used
in the construction of 9\ is estimated from the data. In particular, 7, still
depends on the choice of A and p, which determine the global model under
consideration. However, because A and p are parameters of the model and
not of the underlying d.f. F, in general, it does not make sense to “estimate”
them. On the other hand, one may assume that F itself is of the form

(44) F-(1—)=ct~7exp < [ 20) ds) with 7(s) = As*(1 + o(1))

(and not merely |n(s)| < As” as supposed up to now). In this situation, Drees
and Kaufmann [(1998), Theorem 1] and Danielsson et al. [(1998), (3.9)] pro-
posed consistent estimators p, of p and a data—driven choice &; * of the number
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of order statistics that minimizes the asymptotic mean squared error of the
Hill estimator. Since the number %, used in (4.1) is related to e ! via

b= (Gnan) " (2

(2h,41)
m) kP (14 0p(1)),

one may construct a consistent estimator %, for &, (in the sense that &, /k, —
1 in probability) based on p, and £Y’. Then the estimator 7, depending on
the unknown values of %k, and p and the estimator where these are replaced
with their respective estimators have the same limit distribution under F
[although the latter need not be adaptive in the sense used, e.g., by Lepskii
(1991)]. In fact, in (4.4) one may even replace As”(1+ o(1)) by a more gen-
eral p—varying function; see Drees and Kaufmann [(1998), Theorem 3] for
details.

In Figure 1, the solid lines represent the asymptotic maximal risk (3.5) of
Plo¢ regarded as a function of the constant a defining the loss function, for
p = 0.1 (left) and p = 1 (right), where y, = 1 in both cases. The broken
line is the lower bound for the asymptotic minimax risk, which was computed
numerically as sup;.o lim; | ;_1), Rnm(h¢) (see Section 3).

Notice that for the calculation of the lower bound it is crucial not to use
the one-dimensional submodel that is most difficult for affine estimators. For
example, for p = 1 and a = 0.82, the direction 4, is least favorable for the mini-
max affine estimator if ¢ = £, =~ 1.638 and for the general minimax estimator
if ¢ | 1.64; despite this small difference, the minimax risk lim; ; g4 Rpm(h¢)
is about 12% greater than R, (h, ). Hence, the use of h, would yield a
substantially less accurate lower bound. In fact, the minimax risk R,,,(%) is
a discontinuous function of ¢ as the minimax risk in model (3.1) is a discontin-
uous function of 7;,. Thus, even minor changes of ¢ may lead to large changes
of the risk. On the other hand, for some @, the minimax risks R, (k, ) and

Fic. 1. Asymptotic maximal risk of i/}f’c (solid line), of iln{i“ (dotted line) and asymptotic lower
risk bound (dashed line)
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sup;en limg ;-1yq Bmm(he) =t limg 1)y Rm(h,) are almost equal, although
(I* —1)a is significantly larger than A, ; for instance, p = 1 and @ = 0.01 lead
to (I*—1)a = 2.62 and &, ~ 1.587, yet the relative deviation of the pertaining
risks is less than 0.1%.

The plots clearly demonstrate that the difference between the asymptotic
lower risk bound and the asymptotic risk of the “minimax affine” estimator
P9¢ is moderate; particularly for large values of a, which are decisive for the
construction of confidence intervals (see below), it is negligible. Hence !¢ is
almost optimal.

Since 71° is a modification of $i!! it is interesting to compare its risk with
that of the much simpler Hill estimator. Taking up the approach by Csoérgo,
Deheuvels and Mason (1985) (or imitating the proof of Theorem 4.1), one can

prove that for k, = [An2r/(2p+1)]

sup Py {19 = y(F, )| > ad,}
heA,NH'™

— N (APAZP/(2P+1)/(p +1), /\‘lygA_Z/(ZPH)) [—a,a]

= (_l <Ap+1/2i + Al/zAl/(2p+1)a>>
Yo p+1

+@ (i (/\p+1/2 A )\1/2A1/(2p+1)a>>
Yo p+1

[cf. Drees (1998c), proof of Theorem 2.2]. Straighforward calculations show
that an asymptotically optimal number of order statistics is given by

1/p
il . pt+1 _
RHll |:<2p - 1§Hﬂl) A 2/(2p+1)n2p/(2p+1)j| ’
leading to the maximal risk

1)1/(2p) 2 1
q>< (p+1) £LH1/) (1+ p+ a>>

y0(2p + 1)1/ SHIl Hill

of (P DVE fuuam<1_2p+la>
Yo(2p + 1)1+1/(2p) >Hill i

(4.5)

where &5y is the unique solution of

1+1
(4.6) HEl/p _ )’(2)(2[) + 1)1+1/p
’ log §H111+Z 2a(p + 1)1/P

Emin—

Observe that the structure of these formulas is similar to that of (3.2) and
(3.5).
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TABLE 1

Length of a—confidence intervals based on w}}fc and i/nHiH divided by
lower bound for confidence interval length

p a 0.9 0.95 0.99 0.995
0.1 e 1.00 1.00 1.00 1.00
i 1.02 1.02 1.02 1.02

1 e 1.01 1.00 1.00 1.00
il 1.05 1.04 1.04 1.04

The graphs of (4.5) are represented by the dotted lines in Figure 1. By
and large, the difference between the asymptotic risk of 71 and i is even
smaller than the distance between the risk for 7°° and the lower bound, yet
now the difference is more distinct in the upper tail. Notice that the behavior of
the risk for large a is particularly important for the construction of asymptotic
confidence intervals with fixed (deterministic) length that are symmetric about
the estimator under consideration if, as usual, the confidence coefficient « is
close to 1. For the half-length of such a confidence interval equals the value a
where the graph of the pertaining risk intersects the line “risk =1 — «.”

In Table 1, the ratio of the length of these confidence intervals to the lower
bound on the length of arbitrary fixed-size confidence intervals, which is ob-
tained from the lower risk bound plotted in Figure 1, is given for « = 0.9, 0.95,
0.99 and 0.995 and p = 0.1 and 1. Note that these ratios can be regarded as
measures of efficiency for the estimators $1° and $. The confidence inter-
vals based on 7! have almost minimal length in all cases. In contrast, if one
uses the Hill estimator, then the confidence intervals are a few percent longer.
Nevertheless, in practice the slight loss of efficiency hardly justifies the use of
the substantially more complicated adaptive minimax estimator.

Finally, it is worth mentioning that one obtains a similar picture for differ-
ent parameters vy, of the center of localization. For it is easily seen from (4.3)
and the subsequent discussion, in combination with analogous arguments for
the lower risk bound and the risk of the Hill estimator, that the plots for gen-
eral y, > 0 can be obtained from Figure 1 by stretching the a-axis by the
factor yo"/***1). Consequently, the change of the center of localization does
not affect the ratios given in Table 1, which hence also equal the correspond-
ing ratios of the length of fixed-size confidence intervals in the global model
9‘(71’ & u )

5. Proofs.

PROOF OF PROPOSITION 2.2. For the sake of notational simplicity, the index
h, which indicates the dependence of g, ; on A, is omitted. Throughout the
proof, const. denotes a generic constant which depends on A but not on n, s
or ¢ and which may vary from line to line.
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First note that g, is well defined since for A € Ly[0,00) and ¢ > 0 the
Cauchy-Schwarz inequality yields

“ |h(s) g ~ 2y
(5.1) /t Tdsf(/t h2(s)ds/t 3—2d3> < |[Rlle V2.

Furthermore, the boundedness of 2 € &# on compact intervals, which is im-
mediate from the definition of /#, implies

(5.2) /OO [A(s)] ds < ||h|| + sup |A(s)||logt| < oo for t € (0, 1].
t S 0<s<1

By the definition of F;’lh, one has

1

1 _ — _
Fan(Fpp(l=1) = d/dt(F,}(1—1))
t

- (vo + dnh(cnt))F;’lh(l 1) t€(0,1],

and fo(x) = x~(/%*) /y, for x > 1. Hence the change of variables x = F, "}, (1—
t/c,) leads to

/100 [nl/z (f1/2( ) — 1/2( )> _ _gn(x)fl/z(x):r i

e (fn,hw;}ha - t/cn»)” B
e o |\ Fo(F 5 (1—t/c,)
n-1/2

———&n(F, (1~ t/cn))}

CoF (b))
t
fn,h(F;z,lh(l - t/cn))

(o) el 2000 )

n-1/2
- 2d,

1+a, M0 _dn () 4 ar.
<(1ea D)o (-5 [ 57 0)

(5.3) 2

2

g, (1 - t/cn»}
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To prove that this expression tends to 0, first we consider
Cn 1/2 Cn
[ o ((rat) o5 10 w) 1)
0 Yo 2y Jt S
n-1/2 2
- —Y0
g En((/6) )
<1 td ’“”) p(__ [ Mg >dt
Yo Yo S
ol d, e h(s) 1 e h(s) , 7
1 _n 77 _ - 7
53(/0 |:dn (eXp<270/t S ds) 1) 270/t S ds
(-5

X exXp h(s) ) dt

S

Y
(5.4)

oWl rOVYZ\ 1 ’
+/0 [dn (1 (1+d ” ) ) + Z_y()h(t)]
X exp <—2l/—;‘/tcn Eds) dt

S

e [n@ds_hm)‘?( (144, h;?)”)

X exp (—%/Cn @d.s‘.) dt)
Yo Yt S
=3(I,+1,+ 1 1
= 11t 12 472 3]-

By (5.1), (5.2) and a Taylor expansion of the exponential function, one can
show that, for large n, the integrand of I; is bounded in absolute value by

[ ([ 120 | (2 22 )

d? 4
< o {nhn‘*t 21 w)<t>+(||h||+ sup |h(s>||logt|) 11(0,1]@)]

lo
X €Xp <1+| %8 |]l(0 1](t))
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Hence,
00 1
I, <d? (const. / t2dt+ const./ (1+|logt|)*+1/2 dt) — 0.
1 0

Using the fact that, according to the definition of 27, 1 + d, h(t)/7v, is uni-
formly bounded and bounded away from 0 on (0, ¢, ], one can prove in a similar
way that the integrand of I, converges to 0 and that it is bounded by an in-
tegrable function of the form const.r?(¢) 1 ,(¢) +const.t=*/21 , 1(¢). Hence,
by the dominated convergence theorem, I, vanishes asymptotically, too.

Because of (5.1), (5.2) and the definition of -#, on (0, 1] the integrand of
I, is eventually bounded by const.(1 + |log #|)2¢~1/2. On the other hand, using
the definition of -# and a Taylor expansion, it is readily seen that (1 — (1 +
d,h(t)/vy)/?)? < min(const.,const.h?(t)) for ¢ € (0, c,], so on account of (5.1)
and (5.2), the integrand is bounded by the integrable function

const. (||h||2t‘1 + h2(t)) min(1, 22(¢)) < const. (¢ 2A2(¢) + h%(t))

n [1, ¢,,]. Since obviously the integrand tends to 0 for every ¢ > 0, it follows
by the dominated convergence theorem that I3 — 0.
In view of (2.1), (5.3) and (5.4), it remains to verify that

-1/2 2

/ocn[’;d 8n (Fuh(1=t/e,) = gn((t/c ) Vo)}

<1+d h()) < y—oft”@ds)dt

vanishes asymptotically. Because the factor 1+d,, A(¢)/v, is uniformly bounded
on (0, ¢, ], it suffices to prove that

¢ B ) o e
/0 (/C;Fnh(l—t/cn»l/vo % dS) exP (‘70 /t %d:;) dt
+/0cn (h (Cn (F, (- t/cn))‘”%) _ h(t))2

X exXp <—%/cn @ds) dt
Yo ¢ S

For this end, check that ¢, (F, L1 —t/c,)) Vv = texp(—d, /v [{" h(s)/sds)
implies

I, < 0s<1;£)2|h(s)|/ ( / @ds)2exp (—i—;/:n @ds) dt
exp( Voft his) )dt

(5.5)

IR [ = GAE = e, )
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¢ h(s
<o(1)+const/ tl)l—ex ( / () ))dt
Yo

Ih(S)I

< o(1) + const. d,, / tlf dsdt.

Hence integration by parts shows that I, — 0:
1/2
L O] e |h(D)] S
/1 g /t s det—/l logt——dt < ||| /1 t2log*tdt) < oo.

Now we turn to the last integral. From cn(F;’lh(l —t/c,)) V% — t and (5.2)
we conclude that for m € (0, 1] and sufficiently large n,

/Om ( (ca (Foh(1 = t/¢,)) ™) = h(t))2 exp (-‘i—;‘ /t @ ds) dt

< 8sup k(1) /m 12 gy,
0

t<2
which can be made arbitrarily small by choosing m small. Moreover,
d _ ~1/y h(t) d, o h(s)
5.6) —c, (F,5 (11—t ‘=(1+4d, - —=d
( ) dtcn( n,h( /cn)) ( + Yo exp Yo /t s S
is uniformly bounded away from 0 on [m, c, ], so that eventually

/z;n (h (cﬂ (Fr_tlh 1- t/Cn))fl/v()) — h(t)>2 exp <_7_0/t h(s) ) dt

S

< 4/0” r? (c, (F, 51— t/cn))_l”‘)) + h2(t)dt

< const. / KA(s)ds+4 [ " R(0)dt
M

eu(Fp5(1=M/c,))"1/7
< const./ " h2(s)ds+4/ " h2(t) dt
M/2 M

which is arbitrarily small for large M because h € Ly[0, c0).
For every 6 > 0, one may approximate & on [m/2,2M] by a Lebesgue-a.e.
continuous function % (e.g., a step function), such that

oM , 2 -
] , (h(t)—h(t)) dt<8 and  sup |h(t)< sup |h()|+ 1

m/2<t<2M m/2<t<2M

Hence, using the boundedness of exp(—d,, /vy [;" h(s)/sds) on [m, M] and the
boundedness of the derivative (5.6) away from 0, we obtain for sufficiently
large n,

/mM (h (cn (F;L(1- t/cn))‘”")) - h(t))z exp (-‘j—g /t s ds) dt

S
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<a ([ (e (B -1/ )
_h (cn (F;L(1- t/cn))’l/")))2 dt

[ (e (P = te) ™) = h(o))” at

M

+

I,
ea(F 5 (1=M/cy)) .

< const. (h(t) — A(t)

e (F 5 (1=m/c,)) "0

(E(t) - h(t))2 dt>
)2 dt

+4 /mM (;1 (cn (F;5(1- t/cn))‘””) - ﬁ(t))z dt+6

<const.8 +o0(1)+ 8

where the dominated convergence theorem has been used in the last step.
Summing up, we have shown that I5 becomes arbitrarily small as n — oo.
Thus (5.5) is verified and so is the first assertion.
Applying first the change of variables x = (¢/c, ) ¥ and then Fubini’s the-
orem, one gets

/Oo gn(x)fo(x)dx = n’d, / /1 M) g5 ey
1 0 t/c,

CxY0 S
i n1/2dn C, S h(S) e B
S () f e M- [ woae) o
Likewise,
[~ i@ fox)d
_ nd% Cp, c, h(s) 2
_cnvgfo </t Tds_h(t)> dt
! 1 on Cn ¢ h
(5.7) _ +;;( )(/0 Rt dt -2 [ hie) | gdsdt
0
Cp Cp . h(s) h(r)
—i—/o /0 min(s, ) . ds r dr)
1+o0(1) (©

2
= > h2(t)dt — _||hL| )
Yo 0 Yo
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Next we check that the Lindeberg condition
< 2
|, €8, = anzpfol) d

2 2
(5.8) _ndy o (e h(s) Lo )
cnygfo (/t - ds — h(t)

<L) fonn(s)/sds — h(t)| = 8yo/d,} ¥ 0

is satisfied for all 8 > 0. Since | [;" h(s)/sds — h(t)| is bounded on (0,1] by the
square integrable function ||2||? + supy_,; |2(¢)[(|log ¢| 4 1), one has

h(s)
fo (/ ds = ’““) {1 [ h(s)/sds — h(D)] = 8yo/d,} 4 O

From (5.1) and d,, — oo it follows that eventually {| [/ h(s)/sds — h(t)| =
8v0/dn} N[1, 00) C{[A(t)] = 8v0/(2d,)} N[1, 00). Consequently,

I (ft = ds—"(t)) L hsysds — h(o)| = dyo/d, }
<2 (/ —d8> L{n) = oyo/(2d,)p 4

2 [ RO L)) = sy0/(2d, )} U

1/2
f2<f1 (ft = dS) 4t [ Loy = syo/2d, )}dt>

+o(1)

¢ 1/2
< 2||A|? s2ds | 2d, o(1) — 0,
1 3o

where in the last two steps we have used the Cauchy-Schwarz and the Cheby-
chev inequality. Therefore, the conditions of Proposition A.8 of van der Vaart
(1988) are satisfied, which gives the approximation (2.2). O

PrOOF OF THEOREM 2.1. Check that, for A,,..., h, € #, analogously to
(5.7) and (5.8),

00 h.h
[ & (080 ofx) dz — By B

Yo
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and the multivariate Lindeberg condition

I Z EnOlisn, g2, (02 ol dx

== 1[ gnh (x)1 {lgnn, (2) = 5n1/2/m}f0(x)dx — 0

hold true for all § > 0. Hence the multivariate central limit theorem yields

|
n h.h
(5.9) & (nl/zzgn,hj(pri)) IP(’)L — 410, << o) k>>
i=1 1<j<m i Yo 1<j,k<m

where pr; denotes the projection on the ith coordinate. According to the fa-
mous Girsanov formula, one has

d@p ||h||2
1 log —— =
(5.10) og 40, (x) = fhd ,
where under @, the stochastic integral (f halac)hE » 1s a centered Gaussian

process with covariance function ({4, }_L))h,ﬁe - A combination of (2.2), (5.9)
and (5.10) proves the assertion. O

PROOF OF COROLLARY 2.1. Apply Strasser [(1985), Corollary 62.6 and The-
orem 43.5] to the convergence established in Theorem 2.1. O

PROOF OF COROLLARY 2.2. The assertion is an immediate consequence of
Corollary 2.1, since &#, C # and, for all vy, € (y; —&,7; + &) and h € #,
eventually ¥, ; . € 7 (y1, &, u). O

PROOF OF THEOREM 3.1. Let ¢ denote the standard normal density.
First recall that it suffices to consider functions 4, as defined in (3.3) such
that 7, > a;, (see discussion below Theorem 3.1). Using

2p?

2 e
(5.11) 17 ” = (p+1)(2p+1)

§2+1/P

and

Th+ah Tp — Qp
(Th+ah)€0( —Th) = (7 —ah)€0( —Th)
Ch Ch

[Drees (1999), proof of Theorem 1], one obtains by straightforward calculations

that
d 2mp,a, 1 2p+1 Th, T Qp,
—Ruyg(h) = ————— el — N E
&5 f(’]’hf — ahg) Chf 2[) Ch§ y

Consequently, the maximum is attained if ¢;, = 2p/(2p + 1), which in turn is
equivalent to (3.2). This equation has a unique solution as its left-hand side
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is a strictly increasing function of ¢ which converges to 0 as £ tends to a from
above and to infinity as ¢ tends to infinity.

According to Donoho [(1994), Theorem 1], the minimax affine estimator for
h(0) in the full model equals )A\hg(O) = yocthh§/||h§||; that is, h/(a) defined
in (3.4). (In fact, it is not difficult to verify the minimaxity of this estimator
directly using Anderson’s lemma.) Plugging (5.11) and Chy = 2p/(2p + 1) into
the formula for the risk R,¢(%;), one arrives at the last assertion. O

PROOF OF THEOREM 4.1. Since the arguments follow the lines of Drees
(1998a,b), we just give a sketch of the proof. Let n;, i € N, be i.i.d. standard ex-
ponential random variables (defined on some abstract probability space), S; :=
ZS‘:I M, 1 € N, the pertaining partial sums and Qn,kn,p =F1(1- Si, 1+1/1)s
0 <t < 1. According to Theorem 5.4.3 of Reiss (1989), the variational distance
between the distribution of @, ; under P} ; and the distribution of Qn B, F
vanishes uniformly as n tends to infinity:

n,h

|2 (Qur, | Pps) — Q/(Qn,kn,Fn,h)H — 0
(5.12) )
= |2 (91P2 1) = # (Tioel@nk, v,,))| — O

uniformly for & € #, N #™ with T),, defined in (4.2).
The arguments of Drees [(1998a), proof of Theorem 2.1] show that there
exists a standard Brownian motion W such that for all é € (0, 1/2),

Qn,kn,anh

sup sup tY0+1/2+5 —_—
F (1= ky/n)

heA,nx'™ t€(0,1]

n

_ <t—7(Fn,h) —y(F, h)t—(v(Fn,h)H) W(kknt)

+
S

ren [ a5kl ) = HO) d)‘

=o(k,;'?) as.

and thus a.s.,

oA
sup sup t70+1/2+5| Qn’kn’Fn‘h
hed, ™ t(0,1] | F, (1= ky/n)
(5.13) _ <tyo oty Wlkat)
n

1/
+d, ¢ [1 METs) ds)‘ — o(kp ).

t S
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Next check that the functional 7', is differentiable at 2z, : ¢+~ ¢~ in the
following sense. As A, — 0 the convergence

Tloc(zyo + )‘nyn) — Yo

(5.14) An

— Tiu()i= 2 [0 o+ D) ds

holds uniformly for all functions y,, with sup,.( 1)¢7*"/**?|,(#)| < 1 such that
2y, + A, ¥, is a nondecreasing function. This can be verified in a similar way
as the differentiability of the Hill functional in Example 3.1 of Drees (1998b)
using the representation

2y () L ya(t)
2y (D) + Ay (D)

- <1+ A, 0ya(t) — yn(1)>’

1+ 2,5,(1)
which implies

2y (D) + ()

log =
2y, (1) + A, 5,(1)

—yologt + A, (¢ y(t) — y(1)) + o(A,)

and

2, (1) + 40,0\ " .
(5.15) (2%(1)+Anyn(1)> =t (1 ~An (8 ¥(8) - y(l))) +0(Ay).

Since W, : t — —knY 2W(knt) is a standard Brownian motion, too, and T},

is scale invariant [i.e., T, (a2) = T,.(2) for a > 0], it follows from (5.13) and
(5.14) by the well-known 6—method that

|
| ~
sup ITloc(Qn,kn,F,,,h)
hG%méy(") |

- (70 + kr_zl/Z’YOTioc(Z*/o+l Wn)

B 1 h(gl/Ps)
! Y -_— 7
+dnTloc((t 0 /t - ds)te(m]

= o(k, V%) a.s.

(5.16)
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with
L (T1oe(2yy41 W)
1
. (% [ @+ o+ ey W, dt)
2 1
(5.17) =N (0, (’%1) fo (st) "1+ (p+ 1)s)

X (14 (p+ 1)t’)min(s, t)ds dt)
= (0,2(p+1)/(20+ 1))
[cf. Drees (1998b), Theorem 3.1] and

1 1/ 1
(5.18) T, ((M ft Mds>t . 1}) - % /0 (1— ) b (£Y04) dt,

S

where for the last equation we used integration by parts.
In view of ky"/* ~ £1/@)d, and y(F, ;) = o + d,(0), we conclude from
(5.12) and (5.16)—(5.18) that

sup sup | P5, {35 = ¥(F, ) = dyx| = A Gy, o) (—00, ]| — 0,
hgd'y;)m;f(n) xeR

SO

(5.19) sup P, {|§/}f° —Y(F,)| > dna} — sup A (uy, 02) [—a, al,
het,nw™ he,

where

2(p + g
(2p + 1)éle’

According to Anderson’s Lemma, the supremum on the right-hand side is
attained at that i € &, which maximizes | fol(l —tP)(h(&YPt) — h(0)) dt|. This
leads to the maximal risk

s (B [y dn o) 1maaf = (555 o) 1-aal

=21 fl(l —#)(h(Y7¢) — h(0))dt and of =
p Jo

which equals (3.5). O

PROOF OF THEOREM 4.2. First note that there exist constants 0 < m <
M < oo such that

(5.20) sup P} {m < k,n =2/t - M} — 1,

FeZ (y1,e,u)
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because 7, is uniformly consistent on F (y;, €, ©) and ¢ defined in (3.2) is a
continuous function of y, € (y; — ¢, y1 + €). Moreover, it is easily seen that the
following uniform analog to (5.13) holds for 6 € (0, 1/2):

Qn k., F
sup sup sup t’Yo+1/2+5 ’ ek bt S S
m<k,n=20/CrtD <M FeF (y1,e,u) t€(0,1] I FA = kufn)
(5.21)
(t—y(F) — F)t—(v(F)H)M + ¢ f ' ns) ds) I
k, t S

=o(nP/@rrDy g,

Next observe that y, = T,,(®, 3 ) where

1 —p/Tain(2)
a2 55)

z(t)
(1)

Define v, := Tmn(z,, + A,¥,) with z, , A, and y,, as in the proof of Theorem
4.1. Analogously to (5.15), one obtains

Tuin(z) := f log

ZYO(t) hl /\nyn(t) o — #PYo/Yn P P (+Yo
(270(1)+)\nyn(1)) = = Ay 8 (050 = y(1) + o)

uniformly for y, € (y; — &, y; + ¢€). Therefore, again one may verify by the

methods used in Drees [(1998b), Example 3.1] that (v, —v,)/A, — fol(t“/0 y(t)—
y(1))dt and

Tglob(zyo + Anyn)
1
=y + Anfo 0 y(t) — y(1) dt

+ n — —)\n_ tP(tYo t) — 1)) dt
! ( P PYo/vn+1 p+1 1/0/0 (#°y(8) — y(1))

+o(A,)

=+ 02 [ o= o+ D0 e+ o(h,)

=A Tloc(y) + O()\n)

uniformly for y, € (y; — &, v1 + &), that is, Ty, is uniformly Hadamard differ-
entiable at z, with the same derivative as T',.
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Due to (5.20) and the uniform approximation (5.21) of Qn k, F» ONE can
conclude the proof in the same way as the proof of Theorem 4.1. O
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