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Vardi (1985a) introduced an s-sample model for biased sampling, gave
conditions which guarantee the existence and uniqueness of the nonparamet-
ric maximum likelihood estimator G,, of the common underlying distribution
G and discussed numerical methods for calculating the estimator.

Here we examine the large sample behavior of the NPMLE G, including
results on uniform consistency of G,, convergence of Yn (G, — G) to a
Gaussian process and asymptotic efficiency of G, as an estimator of G. The
proofs are based upon recent results for empirical processes indexed by sets
and functions and convexity arguments. We also give a careful proof of
identifiability of the underlying distribution G under connectedness of a
certain graph G.

Examples and applications include length-biased sampling, stratified sam-
pling, “enriched” stratified sampling, “choice-based” sampling in economet-
rics and “case-control” studies in biostatistics.

A final section discusses design issues and further problems.

1. Introduction: Biased sampling models and Vardi’s nonparametric
MLE.

Biased sampling models. Let G be an unknown distribution function (df) of
a real-valued random variable Y. If iid observations Y}, ..., Y, are available, then
the classical nonparametric maximum likelihood estimator of G is simply the
empirical df n™'E2 1 _, (Y;) of the Y}’s.

In a biased sampling situation we do not observe Y;’s iid G, but instead we
observe X,,..., X, iid F where F is a distribution resulting from biased
sampling of G according to some known biasing or weight function w. If w is a
nonnegative function, then the “w-biased” distribution function F is

[Law(y)dG(y) _ = w(y)
J2w(y)dG(y) e W

‘

(1.1) F(x) =

dG(y)

for —o0 < x < oo with
W=W(G) = [w(y)dG(y).

The one-sample biased sampling problem is to estimate G on the basis of an iid

Received July 1985; revised January 1988.

AMS 1980 subject classifications. Primary 62G05, 60F05; secondary 62G30, 60G44.

Key words and phrases. Asymptotic theory, case-control studies, choice based sampling, empirical
processes, enriched stratified sampling, graphs, length-biased sampling, Neyman allocation, nonpara-
metric maximum likelihood, selection bias models, stratified sampling, Vardi’s estimator.

1069

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to

The Annals of Statistics. ®
www.jstor.org



1070 R. D.GILL, Y. VARDI AND J. A. WELLNER
sample X,,..., X, from F.

ExaMpLE 1.1 (Length-biased sampling). Suppose that G is a df on R*=
[0, o) with positive finite mean p = [’y dG(y) and let w = x for x > 0. Then
W = p and F in (1.1) becomes

B 1
(1.2) F(x) = ;fode(y) for x > 0.

This is the length-biased distribution corresponding to G and is well known as
the limiting distribution of the “total life” in renewal theory; see, e.g., Feller
[(1966), page 371]. In this case it follows easily from (1.2) that if G(0) = 0,

Sy~ dF(y)
J&y tdF(y)’

a relationship which was used by Cox (1969) to discuss estimation of G. We will
return to this example in Section 4.

G(x) =

Note that in the one-sample biased sampling model (1.1) we can really only
hope to estimate the conditional distribution

G*(x) = G((—o0,x] N [w > 0])/G([w > 0])
which reduces to G if w is strictly positive. This follows from the homogeneity
of degree 0 of F as a function of G: If F; = F in (1.1), then F,; = F; for any
c>0.
Vardi (1982, 1985a) generalized the one-sample biased sampling model (1.1) to
allow for s different biased samples as follows: Suppose that w, ..., w, are given

nonnegative weight functions and that G is an (unknown) df. The corresponding
biased distributions are

(13) F(x) = JEwi(y)dG(y) = w(y)

22 4G ()
for —co <x<owandi=1,...,s with

T () dG(y) e W,

W, = W,(G) = [w(y)dG(y) < oo.

In the s-sample biased sampling model, we observe s different independent
samples

(1.4) Xppoo Xpp iid F,  i=1,...,s.

wn,

The problem now is to use all of the n = n; + --- +n, observations in the s
independent samples to (efficiently) estimate the underlying df G. Or to put it
another way, we want to find a bias-corrected estimator which untangles
(corrects for) the biasing involved in the distributions F;.

A necessary and sufficient condition for existence of a unique nonparametric
maximum likelihood estimator G, of G in the s-sample biased sampling model
given by (1.3) and (1.4) was given by Vardi (1985a). For a definition of a
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nonparametric maximum likelihood estimator in this setting, see Vardi (1985a)
or, in general, Kiefer and Wolfowitz (1956); for further discussion see Gill (1988).
As will be seen, the asymptotic version of Vardi’s condition assures the identifi-
ability of G based on the biased distributions F,..., F..

Our main goal in this paper is to give a thorough treatment of the asymptotic
distribution theory of Vardi’s (1985a) nonparametric maximum likelihood esti-
mator G, under minimal assumptions. Since the results of Vardi (1985a) are
valid not only for real-valued random variables X as already introduced, but for
any X in a general sample space X (in particular for X = R*), we study G, as an
empirical measure using the asymptotic theory of empirical measures and
processes. This project was carried out independently by Gill and Wellner (1985)
for a general sample space X and by Vardi (1985b) in the case X = R!. The
present paper has resulted from combining those two earlier efforts. Simplifica-
tion of some of the earlier arguments in Gill and Wellner (1985) has resulted
from conversations with Ya’acov Ritov.

The paper is organized as follows: The remainder of this section is devoted to
identifiability issues and to a heuristic introduction to Vardi’s nonparametric
maximum likelihood estimator. The key identifiability Proposition 1.1 is basic.
The main results giving consistency and asymptotic normality are stated in
Section 2 and optimality of the estimator is established in Section 3. Examples
and applications are developed further in Section 4. The proofs for Section 2 are
deferred to Section 5. Finally some remaining problems are discussed briefly in
Section 6.

Identifiability. The first order of business is identifiability. To begin with, we
face the same difficulty as in the one-sample biased sampling model: We cannot
hope to estimate G off the set

1.5) X+ iL_—J1 [x: w;(x) > 0]

= [x: wy(x) > O forsome i = 1,..., s].

Hence we simplify notation by assuming throughout:
ASSUMPTION S (Support). X*= X.

If Assumption S fails, so that X* is‘a proper subset of X, then we must
replace G by G*= G(+ |X™").

However there is now a further difficulty: If the w,’s have disjoint supports,
then we can only estimate G; = G(* |X;) with X; = [x: w,(x) > 0]. Thus G itself
is not identifiable in general under Assumption S; see, e.g., Example 3a. For-
tunately, however, G is identifiable if a simple graph condition holds. To state
this condition, consider the graph G on the s vertices i =1,..., s defined as
follows: i < j if and only if

/1[wi>011[w,>01 dG > 0
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or equivalently if

fltw,>01wj dG/Ww; = fl[w,>01 dF; > 0.

To say that the graph G is connected just means that every pair of i, j is
connected by a path. Since connectedness of the graph G is the key condition of
this paper, we label it here as

AssUMPTION C (Connectedness). The graph G is connected.

ProrosiTION 1.1 (Identifiability of G). The distribution function G is
identifiable if and only if the graph G is connected ( Assumption C holds). That
is, the map from G to the collection of distributions F,,..., F, is one-to-one if
and only if G is connected.

Proposition 1.1 has a straightforward generalization to the case of a discon-
nected graph G.

ProposiTIiON 1.2. If X,,...,X, for some 1 < r < s are the unions of the
supports of the w;’s in the each of the r connected subgraphs of the graph G (so
the X,’s are disjoint a.s. G), then the identifiable parameters are the r condi-
tional distributions G; = G(* |X,).

We defer the proof of Proposition 1.1 to the end of this section. Proposition
1.1 is closely related to the results of Cosslett (1981) and Vardi (1985a). A
condition equivalent to the connectedness assumption C was apparently first
introduced and used by Cosslett (1981). Vardi (1985a) showed that if G is
connected, then with probability 1 a unique nonparametric maximum likelihood
estimator exists asymptotically as min n; = co. Vardi [(1985a), pages 196-197]
also conjectured that Assumption C (connectedness of the graph G) implies
identifiability. This conjecture was first proved by Gill and Wellner [(1985),
Proposition 2.2]. Ya’acov Ritov suggested an alternative proof of the complete
result to us at Oberwolfach in March 1987. We present Ritov’s proof in the
following text. .

The following two examples illustrate the s-sample biased sampling model
and the key connectedness assumption C.

EXAMPLE 1.2 (Ordinary and length-biased sampling). Suppose that G is a df
on R* with mean p = [°xdG(x) < o as in Example 1, but now suppose s = 2
and that wy(x) = 1 and wy(x) = x for x > 0. Thus the first sample is from G and
the second sample is from the length biased distribution corresponding to G.
This special case of the model (1.3) and (1.4) was studied by Vardi (1982); we will
consider it further in Section 4. Note that the key connectedness assumption C
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needed for identifiability is easily satisfied here since
[« 2] (o o]
L Liuy ) > 0l [y > 0] dG(x) = /(; dG(x) = G(0, ) > 0;
of course G is clearly identifiable in this model since F, = G.

Now we give both (a) a simple example which illustrates failure of the key
connectedness assumption C (and hence also identifiability of G) and (b) a
related example which repairs the difficulty.

EXAMPLE 1.3a (Stratified sampling). Suppose that for some s (> 3) the
collection of (measurable) sets {D,,..., D,} is a partition of the sample space
X =R:U;_D;=X=R'and D,n D;= & for i + j. If the weight functions in
the biased sampling model are w,(x) = 1p(x) fori=1,...,s, then

F(x) = G(xID,) = G((~,%] N D,)/G(D))

is just the conditional distribution given the event D,. This is just stratified
sampling from the strata D,,..., D,. It is clear that estimation of G itself is not
possible without knowledge of the stratum probabilities G(D,); we can estimate
relative (conditional) probabilities within each separate stratum, but we have no
way to relate the conditional probabilities without knowledge of the W, = G(D,).
Note that this special case of the biased sampling model corresponds to stratified
sampling in the survey (finite population) sampling literature: There the stan-
dard assumption is that the stratum sizes N, i = 1,..., s, are known [corre-
sponding to known G(D,)]; see, e.g., Cochran [(1963), page 87]. In terms of the
key connectedness assumption C, we have

fl[w,.>011[w,>01 dG = fDnD‘dG(x) =0

for all pairs i # j since {D,} is a partition. Thus Assumption C fails completely.
Of course this difficulty is easily remedied by simply sampling with some positive
sampling fraction from the entire distribution G as follows.

EXAMPLE 1.3b (“Enriched” stratified sampling). Suppose that D,,..., D, is
a partition of X = R! as in Example 1.3a, but now suppose we have iid samples
from the s + 1 distributions (F,..., F,,,) = (F,..., F,,G) corresponding to
the weight functions (wy, ..., w,,,) = (1p;...,1p,1). (Note that s + 1 now plays
the role of s.) With this sampling scheme we can use the (s + 1)st sample to
estimate the stratum probabilities G(D,), then combine appropriately to esti-
mate G. Note that we now have

Jltwior> ottun 0> 0 4G (%) = [15(x) dG(x) = G(D,) > 0

for i = 1,..., s so that assumption C holds: The graph G is connected via s + 1.

How to combine: A heuristic approach to Vardi’s nonparametric MLE. We
now give a naive approach to Vardi’s (1985a) nonparametric MLE G, of G. We
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first consider the case X = R! and then extend to a general X. We will not prove
that the estimator is the MLE; our approach here is instead completely heuris-
tic.

First, some notation: Let n = n; + - -+ +n_ denote the total sample size and
write A ,; = n;/n for the sampling fraction from F, for i = 1,..., s. We also set

(1'6) ITL = }‘anl + - +AnsF"9;
F, is the “average df.” Note that by (1.3) we have
= u = w(y)
Fn(x)= ani TdG(y)
i=1 — i
(1.7)
x| & Anw(y)
= —— | dG(y).
/w[El m } (%)
It follows immediately from (1.7) and assumption S that
x s Aw(y) o
8 G = ————— | dF .
(18) (%) /-wLE = W(7)

From (1.8) it is clear that we can easily estimate G if the W, = W;(G) are known
since the empirical df F), of all the observations “estimates” the average df F, of
(1.5). We write

1 s n; s
(1'9) 'Fn(x) = - z 1(—oo,x](Xij) = Z An.i'Fni(x)’
N1 =1 i=1
where
1 %
(1'10) IFni(x) = n_ Z 1(—eo,x](Xij)'

i j=1
Replacing F, on the right side of (1.8) by the empirical df yields a nondecreasing

function D, which has D,(o0) # 1 in general. To get an estimate of G (really a
“pseudoestimate” since the W,’s are unknown) we could use

Do(2) _ % olZimMu(wi(3))/ W] dF.(»)
Dy(0)  f= [ZiAn(wil( )/ W] T dF(y)

Now the question is: How can we estimate the W; = W,(G)’s? Once we have
estimates of the W,’s, we can use them on the right side of (1.11) to obtain an
honest estimate of G. First note that since W, = W,(G) = fw,(y) dG(y) (> 0
without loss of generality), it follows easily from (1.8) that W, ..., W, satisfy the
equations

(1.11) GY(x) =

- < fu(y)d6(5)

VVi Zj‘-l(xnjwj(y))/vvj
= Hni(vvly'--svvs)

(1.12)

dF,(y)
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fori=1,...,s, where

wi(y) -
(1.13) H,(u,,..., = an(y)
' '[21-1 nJ J(y))
for i = 1,..., s. Since the functions H,(u,,..., u,) can be estimated from the
data by simply replacing F, by the empirical df F,, (1.12) suggests that we define
estimates (W,;,..., W, ) of (W,,..., W,) as a solution (if it exists) of the system
of s equations

1 wi(y)
(114) 1= Wnifzjél( nj ]( )) le W) = H L (Wo,o o W)

fori=1,...,s, where

(1.15) M. f 5 w(y()y)) T )

We note immediately, however, that the functions H,(u,,..., u,) in (1.13) and
their empirical counterparts in (1.15) are homogeneous of degree 0 in u =
(uy,...,u,), le.,
H, (cuy,...,cu,) = H,(u;,...,u;) forall ¢ # 0.

Therefore (1.12) and (1.14) only determine W= (W,...,W,) and W, =
W,,,...,W,,), respectively, up to a constant multiple. Fortunately this is
enough s1nce the right side of (1.11) is also homogeneous of degree 0 in W.

We can therefore take the following tack: Let V,= W,/W, and V,,;, = W,,,/W,
fori=1,...,s sothat V, =V, = 1. Then solve the s — 1 equations

(1.16) 1=H,(V,,...,V 1), i=1,...,s—1,

nls* n,s—1»

for V,,,...,V, .. Then, lettlng GY(x; W'l, , W,) denote the right-hand side of
(1.11), the resultlng estimator G, of G is s1mply

G,(x) —Go(x Via Vo, s- 1’1)

(117) _ fiw[2f=lxni(wi(y))/vni]_ldIFn(y)

fo—ooo [Zf=lxni(wi( y))/\/m] ! dIFn( y)
In fact, as Vardi (1985a) shows, the equations (1.16) have a unique solution with
probability 1 as n — oo if the connectedness assumption C holds. Then G, of

(1.17) is the nonparametric MLE of G. Finally, note that with G, as in (1.17), we
can estimate W, = (W,,,...,W,,) by

= /w dG = vnllHl"'"(vnl" ° "\/n,s—ly 1)
ni i n=

(1.18) fa—oao[Zi=1Ani(wi(y))/vni]—ldIFn(y)
= V,W,, [by(1.16)]
with
1
(1.19) W, =

2o [Tt A i(wi(3)) Vo] M AF(y)

To build more feeling for the equations (1.6), we again consider Example 1.3b.
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ExAMPLE 1.3b (continued). In this example s + 1 plays the role of s and the
integrand in the definition of H,; in (1.15) becomes, at the point (u,..., u,,1),

19(8) £ Poss + (/)] 1)

(since the denominator equals [A, ., + (A,;/u;)] on D;), and hence the func-
tion H,; is given by
My 1) = (/) [Ag i + (A /)] FA(D)
= [ui}\n‘s+l + }‘n,i] —lan(Di)
fori=1,...,s. But
nF(D;) =n;+ n,F, (D),

or
IFn(D) A + }‘n s+1 n, s+1(D)

Hence in this case the equations (1.16) become
}\ '+ }\n s+l n, s+1(Di)
1 =
}\ + An s+1

fori=1,...,s,

which yields the intuitive result \/m» = ,,‘sH(D,v), i=1,...,s. After a little
calculation, (1.17) reduces in this special case to

F(D;N (—o0,x])
G F D,
n(x) Z n, s+1( ) n(Di) ’
which is just the estimator that should be expected on intuitive grounds or by
analogy with the familiar finite sampling model for stratified sampling. Note
that W, ., = G,(1) = 1 so that V,;, = W, for i = 1,..., s in this example.

The biased sampling model (1.3) and (1.4) and the preceding approach to the
nonparametric MLE for the case X = R! extends easily to a general sample
space X with o-field of subsets B. If G is an unknown distribution (i.e.,
probability measure) on (X,B), and w,,..., w, are nonnegative (measurable)
weight functions defined on X, then the corresponding biased distributions
(probability measures) F,,..., F, are given by

Jawi(y) dG(y)  , wi(y)

(1.20) 4= Jxwi(y) dG(y) =) W, dG(y)
EM forAeBandi=1 s
G(w,) yeens 83

here and frequently in the following, we use the functional or de Finetti notation
G(f) = [fdG to simplify expressions for integrals. Then in the general s-sample
biased sampling model we observe

(1.21) Xoyooos Xy ld F,,  i=1,...,5.

120
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[In (1.21) all the X;;’s take values in X; e.g, if X = R*, then the X;’s are
random vectors.]

To extend our development of the estimator (1.17), we introduce the empirical
measures

1 s n, 1 s v
(1.22) F.(A) = — Z Z Bx,j(A) = - Z lA(Xij)
Ny =1 n_1 =1
and
’ 1 n 1 n, .
(1.23) anl(A) = — Z SXLJ(A) = — Z ]‘A(‘XI,])’ 1= 1,..., S,
n; o n; i

for A € B. Now the argument in (1.6)—(1.8) holds in general with df’s replaced
by measures and the set (— oo, x] replaced by a general set A € B. Thus (1.11)
becomes

Dn(A) _ fA[Z§=1Am(w¢(y))/VVL] _1d|Fn(y)
D,(X) fx[zf=1>\ni(wi(y))/m] _ldIFn(y)

for A € B, while the argument in (1.12)-(1.17) works with df’s replaced by
measures throughout and yields, in place of (1.17), the estimator G, of the
measure G given by

G,(A) =GYA;V,,...,V 1)

(1.25) _ JalEdi(w(9) V] dF ()

Ix [Z?=1}‘ni(wi(y))/\/ni] - dF,(y)

for A € B. This is the estimator that we study in Section 2.

An equivalent more symmetric formulation of the definition of G, and W,
which avoids the V,;’s is as follows: Let G, and W, be a solution with all
W,; > 0 of the equations

Ja [Zf-lxni(wi(y))/wni] o dF,(y)
Jx [Ef=1}‘ni(wi(y))/wni] o dF,(y)
(1.27) 1=H,,(W,,....,W,,), i=1,..,s,

and

(1.24)  G%A) =

(1.26) G, (A)=

for A € B,

(W, .o, W) = (G (), ..., G (wy))
(1.28) = (fwldGn,...,fwsdGn).

Equation (1.28) can be viewed as a ‘“‘self-consistency” equation and will be
particularly useful in our formulation of the limit theory for W, in Section 2.
Here is a quick proof that (1.26)-(1.28) are equivalent to (1.16) and (1.25).
First suppose that (1.26)-(1.28) hold with all W,; > 0. Then by homogeneity of
degree 0 in W, of the right sides of (1.26) and (1.27), (1.25) and (1.16) hold with
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V,,=W,/W,, i=1,...,s—1 and V,, = 1. Now suppose (1.16) and (1.25)
hold and define W, as in (1.19):

-1

wly) | dr,,<y>}

(1.29) {IX[EM V.

i=1

Then by homogeneity of degree 0 of the right sides of (1. 16) and (1.25) in the
V,.’s, (1.26) and (1.27) hold with W,,; Wns\/,u for i =1,...,s — 1. But since
(1.16) holds for i = 1,...,s — 1 and ): _iAH (U, ... ) = 1, (1.16) also holds
for i = s. Hence (1.27) holds for i = s and for G, of (1.26) we have, by (1.29) and

(1.16),
n( w;; __n) = n(wi; yn)
=V,H,(V,,...,V, )W,

' Yn,s—1? ns
= \/niwns = Wni

fori=1,...,s, so (1.28) holds.
We now give a statement of Vardi’s (1985a) theorem. Define a directed graph
G* on s vertices {1,..., s} by

it—>j ifandonlyif [1;,.,dF,;>0
[w,>0] nj

Then call G* strongly connected if for any two vertices { and j there is a
directed path from i to j and from j to i. It is well known that G* is strongly
connected if and only if the matrix A = (a,;) with elements a,; = [1;, . dF,;
is irreducible [see, e.g., Berman and Plemmons (1979), pages 27-30].

THEOREM 1.1 (Vardi, 1985a). The equations (1.16) have a unique solution if
and only if G* is strongly connected. Then G, defined by (1.25) is the unique
nonparametric maximum likelihood estimate of G. Equivalently, G* is strongly
connected if and only if the system of equations (1.26)-(1.28) has a unique
solution.

If W= G(w;) = [w;dG < oo for all 1 <j<s, then by the strong law of
large numbers

1
fl[w,>0] dF,; 2. fl[wi>0]dF} = Wfl[w,>0]wjdG < ®.
J

This proves the following corollary relating connectedness of G to strong con-
nectedness of G*.

COROLLARY 1.1. If the graph G is connected and W,= G(w;) < oo for
1 < i <s, then with probability 1 for n > some N, the graph G* is strongly
connected and the conclusions of Theorem 1 hold.
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PrOOF OF PROPOSITION 1.1. From (1.8) it follows that

5 N\,W;
[Z mvéy)

i=1 i

() G(x) = [ ] dF(y)

— 0

_ [ alEa(N () /W] dF(y)
fo—oco [Zf=1(}‘mwz(y))/vvt] o di;t(y)

_ S a[Z (A () /Vi] T dR(y)
2w [T (M () V] T dE(y)

where V= W/W,, i=1,...,s, and it remains only to show that we can
determine the V’s as a function of the F}’s.

Consider the system of s — 1 equations suggested by (1.12) and the discussion
following it:

(b)

(1.30) H/(V,...,V, ,1)=1, i=1,...,s—1,
where
1 w;(y) =
c H,(uy,...,u) = — | = dF,(y).
() (u )= / (3, )

We reparametrize: Let exp(z;) = (A, ,/u;) and set
Kni(zl’ AR zs) = AniHni()\nle_Zl’ AR }‘nse_zs) - }‘ni’
i=1,...,s. Then (1.30) becomes
(d) K,(Z,...,Z,_,,log(A,;)) =0, i=1,...,s—1.
We want to prove that the system of s — 1 equations in (d) has a unique solution
if G is connected. We show that K, is the gradient of a convex function which is
strictly convex if G is connected. Hence if a solution exists (which we know is

true), it must be unique. .
First note that K ,(2) = vD,(z), where D,: R® - R! is given by

(e) D(z) = flog[Z ez‘w,-(y)] dF,(y) = X Az
i=1 i=1
Also, the Hessian of D,, D/, is given by

, [ efwl(¥)8;;  efw(y)ew (y))
O Ditey= [T - T ),
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where B(y) = ¥5.,e%w;(y). Hence for a € R° we have

a’™D)a = f{ Xi..ale®w(y) B [Zfsiaiez‘wi(y) ]2} dF,(y)

i e*w(y) i etw(y)
= [{Zatpi(y) - [Zap(»)]'} dFi()

e*w;(y) ]

[Whel’e pri(y)= “B(y)

= fvary[al] dF,(y) [where I~ p(y)]
(g) >0 forall a € R".

Thus to show that the system (d) has a unique solution, it suffices to show that
the upper left (s — 1) X (s — 1) submatrix of D/ (z) is positive definite. To do
this we argue that if the graph G is connected, then strict inequality holds in (g)
for all a # cl for some ¢ # 0.

Suppose that equality holds in (g). Since Var [a;] > 0 for all y, equality
implies that

(h) Var,(a;) =0 ae. (F-‘n)y;
that is, F(A) = 1 where
(i) A = {y:Var [a,] = 0}.

Let 1 <, j <s with i # j. We want to show that (h) implies a; = a; if the
graph G is connected. By connectedness of G there exists a path

@G) IS ole ol 00,=]
connecting i to j. Thus

(k) fl[w.v,,_1>0]1[wz,,>0] dG>0 fork=2,....m
Let

@ By = {y w, (yw,(y) >0}, k=2,

Then (k) implies G(Bk) >0, k=2,...,m, and hence F(Bk) > 0. Let By
ANB,, k=2,...,m Choose y € B}. Then Var,[a;] = 0and p;(y), p;(y) > O
which forces a; = a; = a;, since a must be constant for the coordmates with
pu(y) > 0. Now choose y e Bg. Then Var,[a;] = 0 and p,(y), p;(y) > 0, which
forces a;, = a, iy . Continuing in this way yields
a;=a, = - =@a, =a

12 U J°

Since the same argument holds for any pair i, j, it follows that (h) implies that
a = cl for some c if G is connected. Hence D,’ has rank s — 1 and the upper left
(s — 1) X (s — 1) submatrix is nonsingular for all z if G is connected. Hence the
solution V; = W,/W, of (d) is unique; see, e.g., Ortega and Rheinboldt (1970),

4.1.4, page 94, and 4.2.9, page 101. O

REMARK 1. 1. Suppose that D,(z) is defined by

(1.31) D.(z) = flog[ Ye 'wi(y)] drF,(y) - iknizi'

i=1
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Then the argument of the preceding proof shows that D,(z) is a convex function
of z.

In his discussion of existence and uniqueness of the nonparametric maximum
likelihood estimate under an empirical version of assumption C, Vardi (1985a)
also uses the reparametrization z; = log(A,;/u;) and convexity arguments. In
fact (the empirical counterpart of) (e) turns out to be the profile of a linear
function of several variables on a convex region (i.e., the maximum over some of
the arguments, considered as a function of the others). The reparametrization
puts him into a situation formally equivalent to calculating the MLE in an
exponential family.

2. Main results: Asymptotic theory for G,,.

Consistency. The first task is to establish consistency of the estimators G, of
G and W, of W given by (1.25) and (1.18), respectively. The key to our
consistency proofs is consistency of V,, and this in turn depends on the strict
convexity of D, under the connectedness assumption C [and the resulting
uniqueness of V as a solution of (1.30)] established in the proof of Proposition
1.1.

ProposITION 2.1 (Consistency of V,, and W,). Suppose that G is connected
(Assumption C holds) and W, = G(w;) = fw;dG < o0, i =1,...,s. Then the
equations (1.16) have (with probability 1 as n - o) the unique solution V, =
Vo --+5 V,, 1, 1) which satisfies

(2'1) yn a.s. Y= .W/WS asn — oo.
Furthermore, W,, of (1.18) satisfies
(2:2) W,=a: W asn— .

Now let C be a Vapnik—Chervonenkis class of subsets of X, let A, be a fixed
nonnegative G-integrable function [G(k,) = [h,dG < 0] and consider the col-
lection of functions

(2.3) H= {h]l, CeC).

The following theorem gives consistency of both G, and G° [from (1.24) when
the W,’s are known] as estimators of G uniformly over H.

THEOREM 2.1 (Consistency of G, and G?%). Suppose that G is connected
(Assumption C holds), that G(w;) = [w;dG < o, i=1,...,s, and that H is as
defined in (2.3) with G(h,) < . Then

(2.4) G, — Gllu = sup{|G6,(h) — G(h)|: he H} >, 0

asn — .
Theorem 2.1 has two straightforward corollaries.

COROLLARY 2.1. Suppose that X = R? and C is a Vapnik-Chervonenkis
class of subsets of X (e.g., the class of all lower left orthants, or of all
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rectangles, or the class of all half spaces). If G is connected and G(w,) < o,
i=1,...,s, then

I6, — Glic = sup{|G,(C) - G(C)|: Ce C} >, 0

asn — 0.

COROLLARY 2.2. Suppose that G(|h|) < o, that G is connected and that
G(w;) < oo fori=1,...,s. Then G, (h) >,, G(h) asn > oo.

Empirical processes and notation. It will be convenient to formulate the
asymptotic distribution theory for yn (V, — V), Vn (W, — W) and yn(G, - G)
in terms of the s-sample empirical process
(2.5) Xx=vn(F, - F,).

Here F,, is the empirical measure defined in (1.22) and
(2.6) F,= Y \F> YNF=F
i=1 i=1

since we assume that

A

Il
3|3

ni ->X;>0 fori=1,...,s.

Note that
(2.7) Xx= Y Nufn(F— F).
i=1

Hence if F is a Donsker class for all F, i=1,...,s, there is a special
construction of X* and a (sequence of) Gaussian process(es) on a common
probability space (£, A, P) as in Dudley and Philipp (1983), satisfying

(2.8) IX ¥ = X*lp = sup [X3(f) = X*(f)| »,0 asn— oo,
feF
where the mean zero Gaussian process X* has covariance function

Cov(X* (), X*(ka)) = £ M{Fi(hihy) = E(h)E(hy))

(2.9) _ = F(hyhy) = F(h)"\F(hy)
(2.10) = G(r7'hyhy) = G(R@")AG (hob)

and where @, = w,/W, i=1,...,s, and r(x)"! = X{_ A\.¥,(x). This follows
from the one-sample results of Dudley and Philipp (1983), or from other central
limit theorems for the empirical process in the one-sample case such as Pollard
(1982) or Ossiander (1987), by straightforward calculation.

The following additional notation will be used to state our limit theorems. We
write, as in (2.10),

w;(x)

13

(2.11) @,(x) =

i=1,...,s,x X,
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and
(2.12) r(x) = \ihw"x)] _ [glxiw,.(x)]—

i=1

Note that r is the (Radon-Nikodym) derivative dG/dF: [hdG = [ hrdF for
h € L(G). The following matrices and vectors occur frequently in the sequel.
First, let

(2.13) - A= frZQ@TdF= /rg@TdG (s X s)

[note that w,(x)r(x) < W,/A; implies that the integrals in (2.13) always exist]
and let

(2.14) M=X1-A4 (sxs),

where, for a vector u € R®, u denotes the s X s diagonal matrix with entries u;
on the diagonal, u = diag{u;}. As will be seen in the proof [see (5.11) and (5.12)],
AMA is the matrix D! (Z) of Section 1. Note that

My=1- [rar'dG=1- [BdG=1-1=0,

so M is singular. When the graph G is connected, it follows from the proof of
Proposition 1.1 that M has rank s — 1; see Lemma 5.1. We let M~ denote any
{1,2}-generalized inverse of M: ie, MM M =M and M MM ™= M~; see
Lemma 5.2 for the facts we need about generalized inverses and see Remark 5.1
for more on terminology and further references.

Asymptotic distributions. Now we can formulate our limit theorem for the
biased sampling empirical process

(2.15) z,=Vn(G,-G),

regarded as a process indexed by a collection of functions H ¢ L,(G): Thus for
heH,

z,(h) = [rdZ, = Vn [hd(G, - G).

(Note that Z, deserves this name because it plays the same role in the biased
sampling context as does the usual empirical process in the context of random
sampling.) At the end of the section we will give a corresponding theorem for the
process

(2.16) z%=/n (G- G)

based on the estimator G? in (1.24); recall that this estimator can be used only if
the W;’s are known.

The appropriate (sequences of) limiting Gaussian processes Z and Z° are
described as follows: For A such that A/r € L,(G), define Vh € Ly(G) by

(2.17) Vh(x) = r(x)h(x) + G(rd"h)M~@(x)r(x) forx e X.
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Then define the process Z: H — R! by
(2.18) Z(h) = X*(V(h - G(h))),

where X* is the mean zero Gaussian process given in (2.8) and (2.9). The
representation (2.17) and (2.18) of Z is valid for any {1,2}-generalized inverse
M~ of M; see Lemma 5.2. Note that the second term in (2.17) gives the
contribution to the limit process Z from estimation of the W;’s. The process Z
has covariance function

K(hl’ hy) = COV[Z(h1)»Z(h2)]
(2.19) = G(r[h, — G(h)][hy — G(h,)])
+G([h, = G(h)] AT )M G([ 2y - G(hy)]ri0).

The covariance formula (2.19) will be proved in Section 5.

THEOREM 2.2 (CLT for Z,). Suppose that the graph G is connected, that
G(w)) < o, i=1,...,s, and H is a collection of functions with envelope
function h, (|h| < h, for all h € H) such that (2.8) holds for the class of
functions F = {hr: h € H} and G(h%r) = F(h%r?) < oo. Then, for the same
special construction of (2.8),

(2.20) IZ, - Z||lg= sup|Z,(k) —Z(h)|>,0 asn— o,
heH

where Z is the (sequence of ) mean zero Gaussian process(es) (2.18) with
covariance function (2.19).

REMARK 2.1. We have ignored measurability problems in our statement of
Theorem 2.2. The theorem is true as stated if H is a countable collection, but for
an uncountable collection H the supremum in (2.20) may not be measurable.
This can be handled via measurable covering functions as in Dudley and Philipp
(1983).

There are many sufficient conditions which imply that (2.8) holds for F =
{hr: h € H}; see, e.g., Dudley and Philipp (1983), Pollard (1984) or Ossiander
(1987). The important special case of H = {1,: C € C}, where C is a Vapnik-
Chervonenkis class of subsets of X, which follows as a consequence of Pollard’s
(1982) Theorem 9, is singled out in the following corollary.

COROLLARY 2.3. Suppose that X = R? and H is the collection of all indica-
tor functions of lower left orthants, or of all rectangles, or of all balls, or the
class of all half spaces. If G(r) = F(r?) < oo, the graph G is connected, and
G(w;) < o fori=1,...,s, then Z, satisfies (2.20).

The proof of Theorem 2.2 involves first establishing asymptotic normality of
Vn (W, — W), but the cleanest expressions for the limiting random vector and
its limiting covariance matrix result from the self-consistency equations
(1.26)—(1.28) and Theorem 2.2 itself.
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PROPOSITION 2.2 (Asymptotic normality of W,,). If G is connected, then
(2.21) Vn(W, - W) -, K~X*(rd) + WZ,

(2.22) = X*(r(w - W)) + G(r(w - W)@a")M~X*(r)
(2.23) = N,(0, 2),
where

(220 2=G(r(w-W)(w-w)")

+G(r(w - W)a" )M~ G(ri(w - W)").

In (2.21), K-= WA M~ and Z, is a random variable which can be specified in
terms of X* later; see Remark 2.4. In (2.24), M~ is any {1,2}-generalized
inverse of M; see Lemma 5.2. Since M is symmetric we take M~ symmetric too.

REMARK 2.2. Note that the integrability hypothesis of Theorem 2.2 is
automatically satisfied for w;: Just as in the definition of the matrix A,

G(w?r) = F(w?r?) < (W/\;)’ < 0
since (A w;(x)/W)r(x) < 1.

REMARK 2.3. Note that the random variable in (2.22), the second way of
expressing the limiting form of yn (W, — W), is just Z(w), and that the formula
(2.19) for its variance—covariance matrix is just K(w,w?) with K as defined in
(2.19). These formulas result from Theorem 2.2 together with the self-consistency
equations (1.26)—(1.28).

Asymptotic normality of Vn (V,, — V) can also be easily derived, even though
this is usually not of primary interest and requires some additional notation. To
state the result, we set

(2.25) K=M\W! (s X s),
(2.26) K,=J™KJ (s—1xs-—1),
where ¢/ is the s X s — 1 matrix

(2.27) J= (13-153-1) " (sxs—1).

Thus K, = J TKJ gives the upper left s — 1 X s — 1 submatrix of K (for any
§ X s matrix K) and u, = J Ty gives the first s — 1 coordinates of u € R®. We
also set

(2.28) C = Cov[X*(r@),X*(r@)] = A — AMA (s xs)
and
(2.29) C,=J7CJ (s—1xs-1).



1086 R. D.GILL, Y. VARDI AND J. A. WELLNER

PROPOSITION 2.3 (Asymptotic normality of V,). If G is connected and
G(w)<oo,i=1,...,s, then

IV (Y, — V) =, WK ITXH(r)

2.30
(2.30) = N,_,(0, K;‘Cg(KEI)T/"Vsz)'

Now consider estimation of the biased distributions Fj,..., F,. Since we know
the nonparametric maximum likelihood estimate G, of G, the nonparametric
MLE F,; of an F, is given by
fhuchSn qsn(huh)

(2.31) Fril ) = [w,dG, G, (w)

forheH,i=1,...,s. Welet
(2.32) Y, =Vn(F,,—F) fori=1,...,s
and set

Y, = (Ynl""’vns)T’

regarded as a vector of processes indexed by a collection of functions H C Ly(F).
The appropriate (sequence of) limiting Gaussian processes Y is described as
follows: Define Y: H —» R® by

(2.33)  Y(h) = X*(hrib) — [G(hg)é“ - G(h@@T)]M—x*(@).

THEOREM 2.3 (CLT for Y,). Suppose that the graph G is connected, that
G(w) < o0, i=1,...,s, and H is a collection of functions with envelope h,
such that (2.8) holds for F = Us_ {hrw;: h € H) and F(h?%) < co. Then for the
same special construction of (2.8),

(2.34) max ||Y,; = Yy »,0 asn— o,
l1<i<s
where Y is the (sequence of ) vectors of mean zero Gaussian processes (2.33).

REMARK 2.4. The two different expressions (2.26) and (2.27) for the limiting
form of yn (W, — W) are both of use. The first form (2.26) is the easiest to
prove; it will be used in our proof of Theorem 2.2. The second form (2.27)
connects the limit of yn(W, — W) with the self-consistency equations
(1.26)—(1.28) and our result for the process Z, given in Theorem 2.2. It also
yields the simplest expression (2.29) for the covariance matrix Z; see Remark 2.3.

REMARK 2.5. Note that when G is connected, the asymptotic normal distri-
bution of Vn (W, — W) is singular if and only if there exist constants c,, ..., ¢,
such that

s
(2.35) Y c,w; = constant a.e.G.

i=1
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For example, if w, = 1, then the limit distribution of yn (W,, — W) is singular,
but of course (2.35) can happen in other ways and the limit normal distribution
is nonsingular whenever (2.35) fails.

REMARK 2.6. It is possible to express both the operator V in (2.22) and the
covariance (2.24) of the limiting process Z in a less symmetric way which avoids
introduction of the generalized inverse M~. Because the resulting formulas are
considerably more complicated, and because of our feeling that the generalized
inverse M~ presents no real difficulty, we have not given them here. See the
examples and applications in Section 4 and the facts about generalized inverses
summarized in Lemma 5.2.

REMARK 2.7. The asymptotic covariance of the biased sampling process Z ,
defined in (2.15) can be easily estimated. The sample analogue of (2.19) (with G
and A replaced throughout—i.e., also in M, @ and r—by G, and X ;) is easily
shown to converge in probability or even a.s. to (2.19) as n — oo under natural
conditions. In fact, the covariance estimator is also obtained by formal likelihood
calculations [inversion of the (n — 1) X (n — 1) matrix of second derivatives of
the log likelihood] continuing the derivation of G, itself as a maximum likeli-
hood estimator in the model where G is discrete, with mass at the actual
observations only.

Results for G2 and Z9. We conclude this section with a brief statement of
some corresponding results for the estimator G2 which can be used when the
W,’s are known (whether the graph G is connected or not).

THEOREM 2.4 (Consistenéy of GY). Suppose that G(w;) = [w;dG < oo, i =
1,..., s, and that H is as defined in (2.3) with G(h,) < . Then (whether G is
connected or not)

(2.36) I67 = Glly = sup{|G(2) ~ G(h)|: ke H} >, 0

asn — oo.
Now consider the process Z? defined in (2.21). The appropriate (sequences of)

limiting Gaussian process(es) are described as follows: For A such that h/r €
Ly(G), define V°h € Ly(G) by

(2.37) VOh(x) = r(x)h(x).
Then define the process(es) Z% H — R! by
(238)  Z%(k) = X*(V(h - G(R))) = X*(r(h - G(R))),

where X* is the mean zero Gaussian process given in (2.8) and (2.9). The process
Z° has covariance function

K°(hy, hy) = Cov[Z°(h,),Z2°(h,)]
(2.39) = G(r[hl - G(hl)] [hz - G(hz)])
=G([h, = G(h)]r@")AG([hy — G(h,)]rib).
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This covariance formula follows directly from the definition (2.38) and the
covariance formula (2.10) for X*.

THEOREM 2.5 (CLT for Z%). Suppose that G(w) < o, i=1,...,s, and
that H is a collection of functions with envelope function h, (|h| < h, for all
h € H) such that (2.8) holds for the class of functions F = {hr: h € H} and
G(h%r) = F(h%r?) < oo. Then for the same special construction of (2.8), whether
the graph G is connected or not,

(240) |z} - Z% g = sup|ZYh) - 2%h)| >,0 asn > o,
heH

where Z° is the (sequence of ) mean zero Gaussian process(es) (2.38) with
covariance function K° given by (2.39).

3. Optimality of the nonparametric MLE G,. It is well known that the
usual empirical df is an optimal estimator of the underlying df in the usual iid
sampling situation; results of this type are due to Dvoretzky, Kiefer and
Wolfowitz (1956), Kiefer and Wolfowitz (1959), Beran (1977), Levit (1978) and
Millar (1979). For more recent results concerning the optimality of empirical
measures more generally, see Millar (1985).

Despite recent progress on the optimality of nonparametric maximum likeli-
hood estimates [see, e.g., Gill (1988), Bickel, Klaassen, Ritov and Wellner (1989)
or van der Vaart (1988)], there does not yet exist a complete theory guaranteeing
that they are in fact efficient estimates in general. Therefore our goal in this
section is to give a convolution theorem for regular estimates of G which shows
that Vardi’s nonparametric maximum likelihood estimator for the biased sam-
pling problem is, in fact, optimal. Our calculations follow the approach of Begun,
Hall, Huang, and Wellner (1983).

Suppose that G has density g with respect to the (sigma-finite) measure » on
X. We say that G, is a regular estimator of G if, under P,=PF, with
Vn(gl/? — /%) - B in Ly(»), it follows that

(8.1) Vn(G,- G) = s,

where the distribution of S does not depend on S.
Now let V: Ly(G) = Ly(G) be defined by (2.33), i.e.,

(32) Vh(x) = r(x)h(x) + (rh, B )M~ i(x)r(x)

for x € X, where ( , ); denotes the usual inner product in Ly(G). Also let K be
the covariance function

K(hy, hy) = (h, — G(hy), V(hz - G(hz))>c
(3.3) = G(r[hl - G(hl)][h2 - G(h2)])
+G([hy = G(h)]r2")M*G([hy — G(hy)] r)

as in (2.28) with M~ a {1,2}-generalized inverse of M and let Z be a mean zero
Gaussian process with covariance function K. By Section 2 we know that Z can
be related to X* by (2.24) and (2.26).
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THEOREM 3.1 (Convolution theorem for regular estimates of G). Suppose
that the graph G is connected, that r and 1/r are bounded functions of x € X
and A,;, > X;>0 for i=1,...,s. Then the limit process S for any regular
estimator of G in the biased sampling model (1.21) can be represented as

(3.4) S=,Z+W,

where Z has the covariance function K given in (3.3) and the process W is
independent of the process Z.

REMARK 3.1. Since the nonparametric MLE G, given in (1.25) has limit
process Z by Theorem 2.2, the assertion (3.4) of Theorem 3.1 is that for a given,
fixed biased sampling problem as in (1.21), any regular estimator G of G has a
limit process S which is “at least as dispersed as” the limit process Z of G,
the sense of (3.4). This assumes that the number of samples s > 1, the biasing
functions w;, ..., w, and the sampling fractions A,,..., A are all fixed and given.
If we have control of one or more of these elements of the problem, then we can
consider designing the biased sampling in order to optimize some given criteria.
(We will return briefly to questions of this kind in Section 6.) Theorem 3.1 says
that once these design elements have been fixed, then the nonparametric MLE
G, is (asymptotically) optimal.

Proor oF THEOREM 3.1. Since G < v with density g, we can write
wg
(a) f = wg ’

W U
with

13

W, = fwigd" = G(w;) = (w;, 1)g.

We also let

(b) r= (gl}‘iwi) = (_T@)_l
and

(c) f= E)x fi=r g

i=1

It is easily verified that each f; is Hellinger differentiable with respect to g with
derivative

(d) AB= fl/‘é’(gfg/2 fwiﬁgl/"’dv), i=1,...,s,

so that

B -
(e) ATAB = — —gwfpf g V2dy, i=1,...,s,
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and hence
U= Y A ATAB
i=1
= Z Ai‘.'iﬁ - Z Al""’bigl/2<lbigl/2’ B)v
i=1 i=1
(®) = 118 - BTAGVX g, BY,.

The operator U maps L%(») to L%(») (since r~! is bounded) and is the s-sample
analogue of the (one-sample) information operator A7A of Begun, Hall, Huang
and Wellner (1983). It is often convenient to work instead with U* mapping
L%(G) to L*G) defined by
U*B* = g~'2U(g"/?8*) for B* € L%(G).
Thus
(2) U*B* = roi* — BTN, B

To carry out the calculations of Begun, Hall, Huang and Wellner (1983) we need
to calculate the inverse operator U~! of U, or, equivalently, the inverse operator
U* ! of the operator U*. This would be trivial without the second term in (g); to
account for the second term, we must express (@, 8*) in terms of U*B*. To do
this we take inner products across (g) with the vector of functions @r to obtain

(i, rU*B*), = (I (W, rdTHcA )(w B*)a
= (A7 = (@, T )@, B*)o

(h) = MX(@, B*)e,
where
&) M=)~ (@, ")

Thus, by (5.17) of Lemma 5.2, (h) can be inverted to yield
@) N, B*)g = M~ (@, rU*B*)g — a,

where the constant a = a(B*) is still to be determined. Substitution of (j) into
(g) yields

() rUB* = B* ~ r™M (b, rUB*) —
which implies
(1 U 1% = 1B* + r ™ (@, ") + a
= VB* + a,
where

(m) VB* = rB* + ris™™ (@, rB* ).
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Now we want U*~'8* 1 1in L?(G); therefore
a=a(f*) = —(VB* 1)

and
U*~1B* = VB* — (VB*, 1),

(n) = VB* — G(VB*).
Thus it follows that

K(hy, hy) = (g/%(h, — G(h,)), U 'g"*(hy — G(hy))),
=<h - G(hl),U*_l(h2 - G(h2))>c
= (hy = G(1,), V(hy = G(hy)) = G(V(hy — G(R,))))g
(o) = (hy = G(,), V(hy = G(h3)))gs

where V is given in (m) and M is given in (i). The proof is completed by an
application of (the s-sample version of) Theorem 4.1 of Begun, Hall, Huang and
Wellner (1983). O

4. Examples and applications. The following examples illustrate the re-
sults obtained in Sections 1-3. As mentioned in Section 3, when considering
examples it is useful to keep in mind the distinction between situations in which
we have some control over the design elements of the biased sampling (choice of
s, choice of A;’s, choice of w,’s), and those situations in which the design is fixed
and given. While the examples here are presented from the latter perspective, we
may often, in fact, be interested in the former perspective (e.g., stratified
sampling); see Problem 6.1 in Section 6 for a bit of this.

ExAMPLE 4.1 (Example 1.2 continued; ordinary and length-biased sampling).
Let X = R*= (0, ) and suppose 0 < p = [xdG(x) < 0. Let w,(x) = 1 so that
the first sample is from G itself and let w,(x) = x so that the second sample is
from the “length-biased” distribution Fy(x) = ‘lfo 'ydG(y). Thus the graph G
1s easily seen to be connected (as discussed in Example 1.2). Furthermore

= (1,n)" and letting A, = A € (0,1), A\, =1 — A =],

r(x) = (A +7\;)_1.

Hence
1/A — F(r?) - _( ) AK/A  -K
M= — = _
—-F(r*m,) 1/x - F(r*w?) -K AK/A
since MA = 0, where
(4.1) K = F(r’m,) = G(rw,) = f o }\ T — L dG(x).
Also define

(4.2) K(x) = jo “o,r dG = G(1g )
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and note that

(4.9) G(1g0.07) = 3 (6(x) ~ XK (x)).

Then with Z(t) = Z(1y, ,)), K(s, t) = E[Z(s)Z(t)] and using the {1,2}-inverse
(see Lemma 5.2)

A4_=(A/XK' o)
0 o0

of M, it follows from (2.28) that
K(s,t) = G(r(1p o — G(5))(1p,q — G(2)))

A
+G(r(15,4 - G(s)))X_KG("(lto, a= G(2)))

(4.4) 1
= +{G(s A 8) = G(s)G(1))

_EK{K(s At)  K(s) K(¢) }

A K K K

in agreement with equation (3.6) of Vardi (1982).
Moreover, by tedious but straightforward calculation from Proposition 2.2 the
limit rv in (2.22) is

0 0
] = | xe( ]
Vel B bV
and the covariance matrix 2 = (o;;) in (2.24) is all zeros except for
2
x p(1-K)
= * = —_——
(4.5) Opp = Var[X (}‘Kr)] 0K

which agrees with (3.3) of Vardi (1982). An interesting robustness feature of this
application of Proposition 2.2 is that only p = [x dG(x) < co0 was assumed and
not [x?2dG(x) < . [Note that K = G(ri,) is always finite and in fact 0 <
K < 1if G is not degenerate at 0 or y; this is easily seen from the fact that
0 < G(r(x — p)?) = u®(1 — K)/AAN.] Thus, in combined ordinary and length-
biased sampling the nonparametric maximum likelihood estimator fi, =
W,, = [xdG,(x) of the mean p = W = [xdG(x) of G is asymptotically normal
with asymptotic variance as in (4.5) even if [x2dG(x) = c0.

EXAMPLE 4.2 (s = 1; biasing with only one stratum). For a general sample
space X suppose that s =1 and that w, = w satisfies both G(w) < © and
W_, = G(w™") < 0. Then the graph G is trivially connected and, letting
W=Gw), r=W/w=d"", F(r)=GX") may be equal to 1 or <1 (if
assumption S fails) depending on w and G. Let G*= G(-N X*)/G(X*). Since
M =0 and ri@ =1 (an extension of) Proposition 2.2 [to this case of F(r) < 1]



BIASED SAMPLING MODELS 1093

yields
n (W, = W) =y = X*(r/F*(r))W
(4.6) w2
= N|O0, ﬁ(_r)—“(W'IW_ 1)].

Furthermore, the process Z* of Theorem 2.2 reduces to

) Z5(k) = X*(r(h = G*(1)/F(1))

= X*(r(h — G(h))), when F(r) =1,
with covariance function
K(hy, hy) = G*(r(h, = G*(hy))(hy ~ G*(h,)))/F(r)
= G(r(h, = G(h))(hy — G(h2))) [when F(r) = 1]

G(hhy/w)  G(h)G(hy/w
(49) =W_1W{{ (Wﬂ/ ) G( )Wi / )}
+{G(h1h2) - G(h‘/x_)lG(hQ) }}

These formulas agree with the results of Vardi [(1985a), Section 7(ii)] in the case
F(r) = 1. The further special case w = x (which is also the special case A = 0 in
Example 1) was considered by Cox (1969).

ExaMPLE 4.3 (Truncated sampling or restricted measurement). This is a
further special case of Example 4.2. For a general sample space X suppose that
s = 1 and that w,(x) = 1,(x) where C € B, C # X and G(C) < 1. Then X*= C,
W, = G(C) < 1, r(x) = G(C)1,(x) and G*= G/G(C) is simply the conditional
distribution G(+ |C). Thus
G(ANC)

G(C)

and the estimator G, of G* is simply F,. Note that W, = G(C) is not
identifiable in this situation.

G*(A) = =F(A) forAeBNC,

ExXAMPLE 4.4 (Choice-based sampling in econometrics; case-control studies in
biostatistics). Suppose that X = (Y, Z) where Y takes valuesin {1,..., M} and
Z = H with density h with respect to p is a covariate vector with values in
Z c some RP. The basic (unbiased or prospective) model G has density

(4.9) 8(y, 2) = py(y|2)h(2)
so that

(4.10) G({y} xA) = Lpo(yIZ)dH(Z)
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for y=1,..., M and A € B(RP?), where py(y|z) = R,(Y y|Z = z) is a para-
metric (ﬁmte-dlmensmnal) model. A frequent choice is the logistic regression
model

exp( a, + ,ByTz)
Zl;{_lexp(ay, + sz)

(4.11) po(y2) =

with 0 = (a, 8) € R(P+DY,

The biased (or retrospective) sampling model F is obtained from G via the
weight functions w;(x) = w,(y) = 15(y) where D; C {1,..., M} for i = 1,.

This again yields a semiparametric submodel since only dlstrlbutlons G of the
form (4.10) are considered.

One case of particular interest is that of “pure choice-based sampling” in the
terminology of Cosslett (1981). In this sampling scheme, the strata D, are taken
to be just D, = {i}, i = 1,..., s = M. In this case the graph G of Section 1 is not
connected: In fact G(ww,;) =0 for all i #; and hence there is no unique
nonparametric MLE G, of G for this sampling scheme. Manski and Lerman
(1977) avoid this difficulty of pure choice-based sampling by assuming that the
‘“aggregate shares”

G(y) = G({(») x2) = [p(y2) dH(2), y=1,..., M,

are known. Note that for this biasing system we can view F as a biased
distribution derived from H with new biasing (weight) functions w#(z, 0) =
pe(¥2), ¥ , M, depending on the unknown parameter §. Then W‘t =
G(y), typlcally the graph G* for these w*’s will be connected and, if 6 is known
the methods of the preceding sections yield estimates of H together with the
asymptotic behavior of the estimates.

This same pure choice-based sampling design is also frequently used in
case-control studies in biostatistics where the y’s often denote different disease
categories. In the biostatistics applications interest centers on odds ratios which
can be estimated from purely choice-based sampling in spite of the fact that G
itself cannot be estimated; see, e.g., Prentice and Pyke (1979), who examine the
case of (4.11), and Breslow and Day (1980). If the “pure choice-based” design is
enriched by taking s = M + 1, A); + 1 = 0 and choosing w,,, ,(x) = Lo, ()
then the graph G is connected and the nonparametric MLE G, of G exists (a.s.
for n > some N,) and is unique. See Example 4.5.

For general D,’s the biased distribution F has density

15(¥)pe(¥12)R(2)
IEY_15(y)pe(y'12')h(2") dp(2’)

and the connectedness assumption C for existence of a unique solution is
precisely Cosslett’s (1981) Assumption 10:

{ = i} { y i}
(4.13) ieB ieB°
for every proper subset B of {1,..., s};

(4.12) i(y, 2,i) = A

see Vardi [(1985a), Sections 2 and 8].
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For known 6, efficient estimates of H and their asymptotic behavior via the
preceding sections can be obtained as follows: The marginal distribution of (Z, I)
is

{21;{_ 11),( y')Po(y'lz)}h(z)
f{zy- 1p,(5") Po( y'lz')}h(Z') du(z’)

wh(2)h(z)
. ' fwi(2') dH(2')’
where the new biasing functions w#(z) = w¥(2; 6) depend on 6. Thus if 8 is
known, the methods of Vardi (1985a) and the preceding sections apply to yield
efficient estimates of H, which can in turn be used to construct efficient
estimates of #. This method is implicit in Cosslett [(1981), Section 4] and will be

discussed in more detail in Bickel, Klaassen, Ritov and Wellner (1989). See also
Morgenthaler and Vardi (1986) for a nonparametric discussion of this problem.

f(Z, l) = >‘i
(4.14)

A

ExAMPLE 4.5 (Example 1.3b continued; enriched stratified sampling). Let X
be a general sample space and suppose that D,,..., D, form a (measurable)
partition of X: D;N D;= @ for i #j and U;_,D; = X. Let wy(x) = 1p(x) for
i=1,...,s and suppose that w, ,(x) = 1. Thus the stratified sample from
D,,..., D, is enriched by sampling from all of X with sampling fraction A,,, > 0;
this terminology is that of Cosslett (1981).

For this sampling scheme the graph G is connected as discussed in Example
1.3b [assuming without loss of generality that G(D,) > 0,i=1,...,s], F(r)=1
and we have

W,= G(D,), i=1,...,s,
s

1
rx)= 2 Asi1 T A/G(D;) o),

i=1

so that the upper left s X s submatrix of F(r2@wT) is diagonal with elements

— 1

F(riv?) = .

) = Xy,

Hence the upper left s X s submatrix of M is diagonal with elements
1 1 >‘s+ lG(Dz)
A AsiG(D) + N A (A, G(D) +A,)°
for i=1,...,s, and a {1,2}-inverse M~ of M is given by the diagonal matrix
with the last row and column containing all zeros and having diagonal elements
M;'; see Lemma 5.2. Thus, K= WA ™M~ is also diagonal with the last row
and column all zero and diagonal entries

M, =

1
(4.15) Ki = 57— {AG(D) + 0} = a;

s+1 >‘s+1 '
for i = 1,..., s. Similarly,
G("ﬁ’i) = G(Di)/ai



1096 R. D. GILL, Y. VARDI AND J. A. WELLNER

and hence M~ G(r@) = (A /A i15---5 Ag/Asi1,0). Therefore

so1, A
1+ @™ G(riv))Wr = (1 + : —|rw
( ) ng G(Dz) >\s+1
L w ! w
= r-irw= \
As+l - )\s+1_

which is constant in x, and hence the limiting random vector in Proposition 2.2
becomes K~ X*(rid), the last element of which is 0 by the form of K, and where
the first s elements of X*(ri) have an s X s covariance matrix

C =a - (a,aG(D))A(a, aG(D))"

—a(a - (12MLp)")a,

where p = G(D) = (G(D,),..., G(D,))T. Thus by Proposition 2.2 and straight-
forward calculation using (4.15) and (4.16), it follows that

(¢(p) - G(Q)G(Q)T))-

Alternatively, from the discussion of this example in Section 1 (Example 1.3b),
we have V,, = W, = F, SH(D) for i =1,..., s, and hence, since F,  , = G,

nt

V1 (6,(D) - G(D)) = Vn(F, ,.,(D) - F,,,(D))

\/‘ 7yt (Fp oen(D) = F, (D))

S N( A—(G(Q) G(D)G(D) ))

(4.16)

(62) - G(D)) =, M0, 5=

s+1

s+1

in complete agreement. Note that this is just the covariance matrix for the usual
(multinomial) estimate of G(D) from a random sample of size nA ., from all of
X. In other words, sampling within the strata D, does not help in estimating the
strata probabilities G(D).

EXAMPLE 4.6 (Stratified or truncated regression). This interesting and rich
family of semiparametric submodels of the general biased sampling model begins
with ordinary linear regression with unknown error distribution G, as the basic
(unbiased) model: Suppose that X = (Y, Z) = G, where Y = 07Z + ¢ with e = G,
with density g, with respect to Lebesgue measure and Z = H independent of ¢
with density A with respect to u. Thus G has density

8(y,2) = go(y — 072)h(2).
The biased sampling model is typically determined by weight functions

wi(x) = w(y) =1p(y), i , 8, where the D,’s are disjoint subintervals of
R!. The case of s=1 and D —( 0, Yol Wthh is also a special case of
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Example 3, has been considered by Bhattacharya, Chernoff and Yang (1983).
Jewell (1985) considers the case s =2 and D, = (—o0, %], D, = (¥, ) in
which the connectedness assumption C fails, so a unique completely nonparamet-
ric estimator of G does not exist in view of Vardi’s Theorem 1.1. Nevertheless
the parameters 6, G, and H are identifiable in this model and for known 8 the
methods of Vardi (1985a) can be applied iteratively by first regarding G, as
known and absorbing it into the biasing functions and estimating H, and then by
treating H as known and absorbing it into the biasing functions and estimating
G, and so forth. This type of semiparametric submodel of the biased sampling
model will be treated by Bickel, Klaassen, Ritov and Wellner (1989).

5. Proofs.

Notation and basic lemmas. We now introduce the additional notation used
in the proofs of the results stated in Section 2. If w = (w, ..., w,)7 is the vector
of biasing functions and

ueR”*={ueR:u;>0,i=1,...,s},
let

(6.1) #(w)=u'w, @)= Vo), )= (o).

Thus @, r and r, of Section 2 are given by

[l
e

62) @=aW)=W'w, r=a), rn=a)"

Also, F = X!_\,F. and F, = ¥3_ A ,F, are related to G by

(5.3) dF = (N'@) dG = r~'dG

and

(5.4) dF, = (N%@) dG = ;' dG

or

(5.5) G(A) = j r(x) dF(x) forA € B

A

and

(5.6) G(A) = j r(x) dF,(x) for A € B.
YA

We also define

~
~~
IS
N
IS
~~
IS
p
QL
M
1
e
=
|&
p
—~
IS
o
?/

/
(5.7) H,(u) = [r(u)d(u)dF, = F((r2)(w)),
/
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and similarly,

D(z) - fiog] Zez»wm aF(y) - L his

Li=1
[ s

(5.8) D,(z) = [log Zez'wi(y) dF,(y) - g?\nizp

[ s T s
D,.(2) = flog ;ez‘wi(y) dF(y) = X Nz

. | i=1
Note that H(u) and H,(u) are homogeneous of degree 0in u: H(cu) = H(u) for
all ¢ > 0. Also note that HW) = H(W) =1 and in fact H(cW) =1 for all
¢ > 0 by homogeneity.

The derivative matrix v H” of the matrix of functions H(u) defined in (5.7)
plays an important role in the arguments which follow. By straightforward
differentiation under the integral sign (easily justified by monotone convergence)

(VH)(w) = (2H"(w)"
—{H(@)A ™ - F(r¥(w)@(u)s () ru".
Hence for u = ¢cW with ¢ > 0, since H(cW) = 1,

VH(cW) = —c‘l{}\ - (rzwa)}ég"l

(5.9)

(5.10) = —c MAW!

= —-¢c 'K
with A, M and K as in (2.13), (2.14) and (2.15).
Of course VH is closely related to (the limit of) the matrix D/’ of (f) of the
Proof of Proposition 1.1. To make the connection, we let D”(z) denote D,’(z)
with A, replaced by A; and F, replaced by F: Thus

e*w,(y)6;; e*w,(y)erw,(y _
D"(z2);;= f{ B((y)) ‘- (Bz)( ) il )}dF(y),
where B(y) = e“w(y) and z; = log(A,;/u,), i ..., 8. By easy calcula-
tion it follows that
(5.11) D'(2) = -M(vH@))g,
and, in particular, with Z; = log(A,/V)),
(5.12) D"(2) =Mr "' - }é =AM\ =D".

The following lemma is therefore a consequence of our proof of Proposition 1.1.

LEMMA 5.1. If the graph G is connected, then the matrix M defined in (5.9)
and (2.14) has rank s — 1. In fact, every principal proper submatrix of M is
nonsingular and the same holds for (VH)(u). In particular, if the ith row and
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column are deleted, the resulting (s — 1) X (s — 1) matrix is of full rank.

Note that
(5.13) (vH(u)) -u =0,
(5.14) MM =0, KW=0,
and
(5.15) D"1=0.

Since M- is not of full rank, it does not have an inverse and we must use a
generalized inverse. The following lemma summarizes the facts about generalized
inverses of M which we will need, using the terminology of Berman and
Plemmons (1979). For connections with terminology of Rao (1973) or Rao and
Mitra (1971), see Remark 5.1.

LEmMMA 5.2. (i) If the graph G is connected, then the matrix M has a
{1,2}-generalized inverse M~; thus M~ satisfies

(5.16) MM-M=M and M~MM-=M-.
(ii) For any such {1,2}-inverse M-,
(5.17) y=Mx implies x=M"y+c\ forsomec,

where \ is the unique eigenvector of M with eigenvalue 0.

(iii) If, in addition, M~ is the {1,2,3,4} or Moore-Penrose generalized
inverse of M [which satisfies (5.16) and MM~= (MM ™)', MM = (M~M)T],
then

(5.18) MM~=1 - 667,

where § = A/|A|.
(iv) a”M~b is independent of the choice of generalized inverse M~ for all
a, b € Range(M) = {x: Nx = 0}.

REMARK 5.1. A (1}-inverse of M in the terminology of Berman and
Plemmons (1979) is a matrix M~ satisfying MM~M = M. This is a g-inverse in
the terminology of Rao and Mitra (1971) or Rao (1973). A {1,2}-inverse of M in
the terminology of Berman and Plemmons (1979) also satisfies M~ MM = M~;
this is what Rao and Mitra (1971) and Rao (1973) call a reflexive g-inverse. See
Rao [(1973), pages 24-27] and Rao and Mitra [(1971), Lemma 2.2.4, Theorem
2.2.1 and Lemma 2.5.1].

ProoF oF LEMMA 5.2. (i) By Lemma 5.1, deleting any row and column, in
particular the last row and column, from M yields an (s — 1) X (s — 1) matrix
M,, of rank s — 1. Thus a {1,2}-inverse M~ of M is given by

-1
(a) M- (Mt 0),
0 0
see, e.g., Seber [(1977), page 76] and Berman and Plemmons [(1979), page 117].
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(iii) Since M is symmetric, another way to get a {1, 2}-inverse M~ satisfying
(5.16) is to use the decomposition M = PdPT where the columns of P are the
normalized eigenvectors of M and d is the diagonal matrix of the eigenvalues
d,>dy,> -+ >d,_,>d,=0of M. Then

(b) M= Pd‘PT
where d~ is the diagonal matrix with d&;; = 1/d; for i=1,...,s—1 and
(_l ~ = 01is in fact the Moore—Penrose (or {1, 2,3, 4}) generalized inverse of M; see
Berman and Plemmons [(1979), page 117]. The proof of (5.18) proceeds by direct
computation using M = PdPT and (b).

(ii) Now for any {1,2}-inverse M~ [an inverse satisfying (5.16)], M~M is the
projector on R(M™) along N(M); see Berman and Plemmons [(1979), page 118].
Thus if x = x, + cA and y = Mx, it follows that M~y = M"Mx = x, = x — cA
and hence (5.17) holds.

(iv) Suppose that a, b € Range(M) so that @ = Mx and b = My for some
%, y- Then it follows immediately from (5.16) that

a™"b = x"™MM~My = x"My,
which is clearly independent of the choice of M~. O

Consistency proofs. Our consistency proofs depend on the uniqueness of V,,
and V as solutions of the systems of equations (1.16) and (1.30) together with
convexity of D, and D as established in the Proof of Proposition 1.1. With D,(z)
as defined in (1.31) and (5.8), set

D,(z) = D,(2) - D,(Z)
(5.19) { ,_le Zw(x) } s
= l len X) — Ani zi - Zi
‘[ ¢e%w(x) (=) i§1 ( )
and similarly
(5.20) D(z) = D(z) - D(2),
where Z = (Zl, v Zy), Z;=1log(A;/V;). Note that a minimizer of D (z2) is a
minimizer of D (z) and conversely, and since D,(2) is a convex function of z, so
is D Subtraction of the term D,(Z) yields a function D which converges a.s. to

the correspondmg population function D(z) under no addltlonal hypotheses on
the w;’s.

LEMMA 5.3. The function f)n(g) defined in (5.19) satisfies

(5.21) D,(2) =, D(z) asn— o

for each fixed z € R®. Since D(z) is convex, it follows that

(5.22) sup |D,(2) = D(2)| =,,.0 asn— o
zeC

for any compact subset C C R°®.
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Proor. Let
- Li-e”w(x)
(a) q(z,x) = IOg{W}

denote the function in the integral in (5.19). Since ¢(z, x) is a bounded function
of x, it follows from the strong law of large numbers and A,; = A; that

B.(2) = [alz,%) dF,(x) = L hn(zi=2)

= glxnij(g’x)d":nj(x)— Zs:)\m'(zi_zi)

i=1

s s
~us. L [alz, ) dFy(x) - LA (2 - Z)
Jj=1 i=1

= D(z).
Thus (5.21) holds.
But D,(z) is a convex function of z by Remark 1.1; recall the Proof of
Proposition 1.1. Therefore D,(z) is also a convex function of z. Thus (5.22)
follows from (5.21) and the convexity by Theorem 10.8 of Rockafellar (1970). O

PRrROOF OF PROPOSITION 2.1. If the graph G is connected, then by Proposi-
tion 1.1, V= W/W, is the unique solution of (1.30). Hence Z = (Z,,..., Z,)
given by Z; = log(A,/V;) is the unique minimizer of D(z), and hence also of
D(2), subject to 2z, = log(\,). Now let Z , denote a minimizer of D,(z) and hence
also a minimizer of D,(2) subject to z, = log(A,,,). Then for any compact set C
with Z € C°, the interior of C, it follows from Lemma 5.3 and the definition of
D(z) and Z that

inf B,(2) -,

zedC s

inf D(z) >0
z€9C
while
D,(Z) ... D(Z) = 0.

Since D,(2) is convex, it follows that Z,, € C for n > some N, with probability
1, and since-C can be made arbitrarily small, this implies [as in Appendix II of
Andersen and Gill (1982)] that 2, —»,, Z. But Z,=(Z,,,...,Z,,_;,108A,,,)
with Z,; = log(A,,/V,;), where V, = (V,,...,V,,) is the solution of (1.16)
(which exists and is unique for n > some n_, with probability 1) by an easy
calculation. Hence V, »,, V= W/W,, i.e, (2.1) holds.

Now (2.1) implies that W, given by (1.19) converges a.s. to

1 W,
fx[zfq}‘i(wi(y)/vi)]_1df(y) JxrdF
by (5.5) and assumption S. Hence
wni = Vniwns as. Vtvv; = W’l asn — oo,
fori=1,...,s,s0(2.2) holds. O

8



1102 R. D.GILL, Y. VARDI AND J. A. WELLNER

PROOF OF THEOREMS 2.1 AND 2.4. For a fixed function A we write

(a) |F(Ar(V,)) — F(hr)]|
<|Fa(A(ra(Vy) = 7))| +[F(r) — F(hr)|
rn(vn) =,
|- 1| |F(kr)| +|F,(hr) — F(hr)|

—,:0 asn- o0

for any fixed function A with F(hr) = G(h) < oo by the strong law of large
numbers, and by continuity and boundedness of r(u)/r (as a function of x)
together with V, —, . V by Proposition 2.1. Thus by Pollard’s Glivenko—Cantelli
theorem [see Dudley (1984), Theorems 11.1.2 and 11.1.6] or H as in (2.3),

(b)  sup [F,(hr(V,)) — F(hr)|
heH

1a(Va)
<

-1

sup |F,(hr)| + sup |F,(hr) — F(hr)|
o h€eH heH

1(V,)

-1

F.(k.r) + sup |[F,(hr) — F(hr)|
heH

=,,0-F(h,r)+0=0.
But
Fo(hr(V,))  F(hr)
IFn(rn(\—/Q)) F(r)
[Fo(2r(V,)) = F(hr)|  |F(hr)| [Fu(r(V,)) = F(r)|
Fa(7a(V,)) F(r) Fo(ra(V,)) 7

so (2.4) follows from (a) with A = 1 and (b).

The proof of consistency of G stated in (2.36) is similar, but does not use
Proposition 2.1 since G depends only on the W;’s and not the W,,’s; we
therefore omit it. O

1G.(h) - G(R)| =

Asymptotic normality proofs. The first step in our proofs is to expand
H,V,) or H,(W,) about V or W, respectively.

PrROOF OF PROPOSITION 2.3. Let 1 =(1,...,1)T € R** and recall the defini-
tion (2.17) of the s X s — 1 matrix J. Since

JTL=J"H,(V,) = JTH,(V)
(a) =JNH (V) + VH, (V)(V, - V)},
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where V * lies on the line segment between V, and V (with a different V,* for
each of the s — 1 equations), it follows that

(b) —JTIH(VFWn(Y, - V) =Vrn(H (V) - H,(V)) = X 3(r).

Hence, letting n — oo and writing Z, = lim yn (V,, — V), it follows from con-
tinuity of VH(u) and (2.1) that

(c) 7 X*(rv) = —vH(V)Z, = VVsK#JTZV
or, since K, ' exists by Lemma 5.1,

JTLy = WKy IIXH(rid)
(d) = N,_,(0, K3 'C( K31) "/ W2),

by a straightforward covariance calculation and by the definition of the matrices
C and C, given in (2.28) and (2.29). This completes the proof of (2.30). O

PRrooOF OF PRroPOSITION 2.2. To prove (2.21), we again expand, but now we
work with the equations (1.27) involving all s coordinates. Since

1=H,(W,) = H,(W)
(a) = H,(W) + VH, (W) (W, - W),

where W, * lies on the line segment between W, and W (actually there is a
different W * for each of the s equations), it follows that

(b) - VH,(W})Vn (W, - W) = Vn(H,(W) - H(W)) = X *(r@)

and hence, letting n — oo and writing Z , = lim ,¥n (W, — W), it follows from
continuity of VH(u) and (2.2) that

() X*(ri) = ~VH(W)Zy = MAW-'Z,,
or, by (5.17) in Lemma 5.2,
Zy= WA M X*(r) + WAT'Z,\
(d) =K X*(rv) + 2, W.

This completes the proof of (2.21). We postpone identification of Z , as given in
(2.22) since this step requires the convergence of Z, which will be established in
Theorem 2.2. In proving Theorem 2.2. we will use only (2.21) and not (2.22). O

_ ProOF OF THEOREMS 2.2 AND 2.5. First consider Z ,(h) for fixed A with
F(h%r?) = G(h*r) < . Since Z (1) = 0, we may assume without loss of gener-
ality that G(h) = [hdG = 0. Also, note that by (1.19), W,, =V, W, and
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Assumption S, F(r(W,)) = E(r,) = F(r) = 1. Hence
(a) Z,(h) =Vn(G,(h) - G(h))
. { F(hr(W,) ﬁﬁ(hr,xw»}
Fo(r(W,))  F(r,(W))
= Vn {F,(hr,(W,)) — F,(hr,(W))}
= Vn {F,(hr(W)) - F,(hr,(W))}
+VnF,[A(r(W,) - r(W))]

X+ B ) 5 o = )|

WW,,;
(b) = X ¥(hr,) + F,(hr,r(W,)2" )W, Vn (W, — W)
(c) -, X*(hr) + F(hr*@" AW 'Zy
[by (2.8), (2.2) and Theorem 2.1]
(d) = X*(hr) + G(Rra" AW 'Zy,.

But by (2.21) of Proposition 2.2 and K = MAW ™! so that K= WA~ M~, the
second term in (d) equals T -

G(h@T)):\vzv-l{v:w:\-lM-x*(@) + v_vza}
= G(hraT)M-X*(riv) + G(hraT)AZ,

(e) = G(hra" )M~ X*(ri),
since G(hroT)A = G(hrr=') = G(h) = 0. Combining (d) and (e) yields
(f) Z,(h) >, X*(hr) + G(hrdT )M~ X*(rid)

= X*(rh + G(hra" )M )
= X*(Vh) = 2*(h)
with VA as defined in (2.17).
It remains only to establish that the convergence in (b) holds uniformly in

h € H. By comparison of (b) and (c) and by the asymptotic normality of
Vn (W, — W) established in Proposition 2.2, it clearly suffices to show

(g) sup |X *(hr,) — X*(hr)| -,0
heH

and
(h) sup In:n(hrnrn(Wn)QT)z_\nwr:l - F(hrZQT)Aw_II ~r 0.
heH - o

Now, since |[W, — W|| —,, 0 by Proposition 2.1 and F(h2r?) < oo, (h) follows
from a Glivenko—Cantelli theorem for F, as in the Proof of Theorem 2.1.
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To prove (g), note that the left side is bounded by .
(@) sup |X ¥(hr,) — X *(hr,)| + sup |X*(hr,) = X*(hr)|
heH heH

=1+ II
Then, since

II = sup |X*(h(r, - 1))|,
heH
where
() | A (7, - ")"Lz(F) <

uniformly in A € H, II -, 0 by uniform continuity of X*. To handle I, note
that

F( hﬁrz)l/2 -0

T,
n
<1
r oo

I < sup |X*(hr,) — X*(hr,)|
heH

r
< sup X,’:‘(hr(—" - 1))' + sup |X*(hr) — X*(hr)|
heH r heH
r
+ sup X*(hr(l - —"))’
keH r
T
<|2 -1 sup Ixz(h) 1% () = X1
r oo heH
rn
+"— — 1| sup |X*(hr)|
r o heH
(k) -,0 asn— o

by our hypothesis that (2.8) holds for F = {hr: h € H}. Hence (g) holds and this
completes the proof of (2.30).

The proof of (2.40) is similar and we omit it.

Now we establish the covariance formula (2.19). First suppose that G(h,) =
G(h,) = 0. Now from the covariance of X* given in (2.10) and the definition of
V in (2.17), it follows that

1) Cov(Z(h,),Z(h,)) = G(r V(h,)V(hy))
~G(@"V(;))AG(@V(hy)).
But
G(@V(h;)) = (@, h;)g + (@, r@T YoM~ G(h;rib)
(m) = (I + (@, r@")eM")G(h;rid).

Now if M~ is the Moore—Penrose generalized inverse M* of M, it follows from
(5.18) of Lemma 5.3 that MM*=1 — 687, where § is the (only) normalized
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eigenvector of M with eigenvalue 0. Since MA = 0, it follows that
(n) MM*= (A" — (i, r@" ) )M*= T — ANT/ATA
and hence, with M~ taken to be M* in the definition (2.17) of V,
G(@V(h;)) = (A'M*+ ANT/NA)G(hrb)
(0) =A"M*G(h;ri)
since N'G(h;r@) = G(h;rr~ ) = G(h;) = 0. Also,
G(r W(h,)V(hy)) = G((h, + G(hyr@T)M*@T)V(h,))
(p) = G(hV(hy)) + G(hra™)M* G(@V(hy)).
Thus
Cov(Z(h,), Z(hs)) = G(hV(hy)) + G(rd"h ) M* G(&V(h,))
~G(hr@")M*AAG(2V(Ry))
(a) = G(hV(hy)).
Now for arbitrary A, since Z(1) = 0,
Z(h) = Z(h - G(h)) = X*(V(h — G(h))),
so from (q) it follows that
Cov(Z(hy),Z(hy)) = (hy — G(hy), V(hy — G(hy)))g,

and hence (2.19) holds with M~ taken to be the Moore-Penrose inverse M*. But
now note that

a;= G((h; — G(h;))rv) € Range(M) = {x: N'x = 0}

for i = 1,2 and hence by Lemma 5.2(iv), the second term in (2.19) is the same for
any {1,2}-generalized inverse M. Thus (2.19) holds. O

ProoOF OF (2.22) oF PrRoPOSITION 2.2 (Identification of Z,). From the self-
consistency equation (1.28) we have W, = G,(w), and since W = G(w) by
definition, it follows that

Vn(W, - W) = Z (w),

where max, _; _ |lwir|l, < max,_;_ (W,/A;) < oo. Thus, on the one hand by
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Theorem 2.2
Vn (W, - W) >, Z(w)
(2) = X*(r(w - W) + G((w - W)ra")M~X*(ri),
which proves (2.22). On the other hand, by (2.21),
(b) (W, - W) -, K-X*(r@) + 2, W.

Thus the expressions on the right sides in (a) and (b) must be equal, and upon
multiplying across by ATE‘I and using X' W~ 'W = 1, this yields

X*(r(r~t=1)) + G(r(r ' = 1)@7 )M~ X*(rib)
= UM X*(rd) +Z,
or, since X*(1) = 0,
-X*(r) + (17 - G(raT))M~X*(r2) = 1TM~X*(r) + Z,,,
so that
z,=(=Xx*r) + {1" - G(ra") ) M~X*(ri)) - "M ~X*(r)
©  =(=X*(r) - G(ra" )M X*(r@)).
Substitution of (c) into (b) yields yet another limiting form for yn (W, — W). O
Proor oF THEOREM 2.3. From the definitions (2.31) and (2.32) we can write,
for fixed h € H,
(a) Y,(h) = Vn(F,(h) - F(h))
= Vn(6,(wh) — G(w;h))/W,; + G(wh)(1/W,; — 1/W))
= Vn(G,(@;h) — G(@;h))
+G (k)W Wn (W, — W) + 0,(1)
= Z (k) — G(@;h) W, Wn (W,; — W) + 0,(1)
= X*(r(@;h — G(@;h)))
+G(raT(@h — G(@;h)))M~X*(rib)
(b) - G(@;h) W H{X*(r(w; - W)
+G(r(w; — W)BT )M X*(r2)} + 0,(1)

by Theorems 2.2 and Proposition 2.2 since |k| < h, and F(h?) < co implies
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F(h2@?r?) < \;2F(h2) < co. Therefore
() Y, (h)=X*(r(@h - G(h)))

+G(r(@h — G(@h))@")M~X*(rid)

-G ()W H{X*(r(w - W))

+G(r(w - W)@")M~X*(r@)} + 0,(1)
= x*(hri) + |{G(hraa”) - G(he)G(raw") M- G(ha)|
X X*(ri) + 0,(1)

= X*(hr@) + |G(hranT) M~ G(h@){I + AM~}|X*(ri)

+0,(1)
AN
= X*(hri) + | G(hraoa™ ) M- G(hg){):\‘lM‘+ W} X*(rd)
+0,(1)

[as in (k)-(1) of the proof of the covariance formula (2.19)]
= X*(hr@) - {G(h@)A"" — G(hrm@™)}M~X*(r) + 0,(1)
(d) =Y(h) + 0,(1) [asdefined in (2.33)].

Hence (2.34) holds for a fixed A € H. The proof of uniformity of convergence for
h € H is similar to the proof of uniformity in Theorem 2.2 O

6. Further problems. Here we give a brief discussion of some further
problems related to biased sampling.

PROBLEM 6.1 (Design questions). As mentioned briefly in Sections 3 and 4, if
we have some control over the choice of the number of samples s, the sampling
fractions A or the biasing functions w,, we may want to choose them to optimize
some criteria such as the variance of an estimate.

Here are two simple examples of problems of this type which we have already
solved.

First suppose that s =1, X = R! and that we want to estimate the mean
p = [*.xdG(x) of G. What is the optimal biasing function w? It follows easily
from the covariance K calculated in Example 4.2 with h(x) = x [so G(h) = u],
that

Vn(f, = p) = Vn[G,(h) — G(R)] >, N(0,03),
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where

(6.1) 02 = f w(x) dG(x) f

) (x — p)*dG(x).
By the Cauchy—-Schwarz inequality, the optimal biasing function w, is wy(x) =
|x — p|, and

(62) 2> 02 = { f_°°w|x — dG(x)}2.

(This is related to “importance sampling”; see, e.g., Rubenstein [(1981) page
122].) Note that w, depends on G only through p and this raises the further
interesting possibility of a two-step procedure using a preliminary estimate i, of
p and then biased sampling with the (estimated optimal) biasing function
Wy(x) = |x — fiy|. Of course the preceding argument generalizes immediately to
estimation of G(h) = [hdG: The biasing function w which minimizes the
asymptotic variance of the nonparametric maximum likelihood estimate is

won(x) =|h(x) — G(R)| =|h(x) — Eg(h)|.

Note that the comparison between ordinary sampling and length-biased
sampling for estimation of the mean p of G can go either way: From Example
4.2 it follows that the asymptotic relative efficiency of length-biased sampling
with respect to random sampling for estimation of p is, with E = E,

E(X*) - E(X/p)’-1
p[pE(1/X)-1]  E(w/X)-1’

which varies from 0 to oo as G varies [0 for exponential G; oo for G with density
g(x) = c.ac“"l[1 /2,00(%)]- Recall from Example 4.1 that combined ordinary and
length-biased sampling avoids the troubles of each [ E(X?) = o0 and E1/X) =
oo, respectively] and yields an estimator of p under only the assumption
p = [xdG(x) < 0.

Here is another slightly more complicated example. First, consider estimation
of the mean p of G on X = R! based on stratified sampling as in Example 1.3a.
For this to be possible, it is necessary to assume that the stratum probabilities
W,=G(D;) =p,, i=1,...,s, are known. Under this assumption G° of (1.11)
and (1.24) is an estimator of G. Then it follows easily from (2.39) that the
asymptotic variance of the estimator (i% = [ydGY(y) of p = [ydG(y) is

(6.3) e,(length-biased, ordinary) =

(6.4) ERANED) ’;"v (¥ID) = ¥ %o,

i=1 " i=1

where Y ~ G. This is minimized as a function of the sampling fractions A =
(Apy--o5A) by

.0
(65) ap= P
L5-1P)9

This is the well-known “ Neyman allocation”; see, e.g., Cochran [(1963), page 97].
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The resulting minimum value of Vg is

2
S
(6.6) V;)Q(ypt) = ( ) Pi"i) .
i=1
Now consider the same problem, optimal choice of the sampling fractions A,
i=1,...,s, for estimation of the mean of G, in the context of enriched stratified

sampling as in Examples 1.3b and 4.5 where now the W, = G(D,) = p; are
unknown. It follows easily from the covariance formula (2.19) that the asymp-
totic variance of the estimator fi, = [ydG,(y) of p = [ydG(y) is

V2= V3(}p)
5 p; b; 2
©7 El{ T Ay (hpy (P + B 22 }

z{ p; o2 4 p; Bf}

i 1+ >‘i/(>‘s+1pi) ' Asir

with 62 = Var(Y|D;) and B; = E(X — p|D)). It is easily shown that V*(}) is
minimized by

(6.8) APt = —i—(a,. ~ min o‘), i=1,...,s,
Ej_lpjdj 1<j<s 4
and
(6.9) popt ! i
. = — min o,.
s+l Ef_lpldl lSiSsal
Then
s 2 Yy .B2
1= pl 12
(6-10) V2(7_\°pt) = ( Zpiai) {1 + _1—_—}
i=1 mn, ; . 40;

This is of course closely related to the Neyman allocation in the case of known
strata probabilities, and the cost of not knowing the strata probabilities W, = p;
is the factor in brackets in (6.10).

Clearly there are a great variety of related optimization problems which are of
interest and potential importance. Again note that Theorem 3.1 asserts that the
nonparametric maximum likelihood estimator G, is optimal once the design has
been fixed.

PROBLEM 6.2 (s =s, — c0). Regression problems with biased (stratified)
sampling on the dependent variable as in Example 4.6 and Jewell (1985) can be
reformulated in terms of our present model with s = s, depending on n and
s, = o as n — oo. A treatment of biased sampling regression models along
these lines is given by Bickel and Ritov (1987).

PROBLEM 6.3 (Biasing functions dependent on unknown parameters). As
seen in Example 4.4, Problem 6.1 and Vardi [(1985a), page 198], situations in
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which the biasing functions w; depend on an unknown parameter arise fre-
quently. A thorough treatment of these situations would be of interest.

PROBLEM 6.4 (Biasing and censoring). Vardi [(1985a), page 195] suggests how
to use an EM algorithm to estimate G from s samples involving both biasing
and censoring. The large-sample behavior of the resulting estimator is still
unknown.

Acknowledgments. We owe thanks to Peter Bickel and Ya’acov Ritov for
conversations which lead to improvements and simplifications of our proofs.
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