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Let © denote the parameter space of a statistical model and let )" be
the domain of variation of the parameter of interest. Various differential-
geometric structures on {2 are considered, including the expected information
metric and the a-connections studied by Chentsov and Amari, as well as the
observed information metric and the observed a-connections introduced by
Barndorff-Nielsen. Under certain conditions these geometric objects on £ can
be transferred in a canonical purely differential-geometric way to J¢". The
transferred objects are related to structures on X" obtained from derivatives
of pseudolikelihood functions such as the profile likelihood, the modified
profile likelihood and the marginal likelihood based on an L-sufficient statis-
tic (cf. Rémon) when such a statistic exists. For composite transformation
models it is shown that the modified profile likelihood is very close to the
Laplace approximation to a certain integral representation of the marginal
likelihood.

1. Introduction. Consider a parametric statistical model (%, p(x; w), Q)
and let k be a parameter of interest with range space ). We shall denote the
mapping sending w € @ to k € X by 7. In certain circumstances inference on «
may appropriately be drawn separately, based on a marginal likelihood function
or some other type of pseudolikelihood function, such as profile likelihood.

The original model induces various geometrical objects on the parameter
space {2 considered as a differentiable manifold, such as the expected information
metric and the a-connections studied by Chentsov (1972) and Amari (1982a, b,
1985, 1987) [see also Amari and Kumon (1983)] and the observed information
metric and the observed a-connections introduced in Barndorff-Nielsen (1987).
From that model and the associated geometrical structures it is in certain
circumstances possible to derive, by various routes, more or less analogous
geometrical structures on the interest parameter space J¢". Our objective in this
paper is to explore when such derivations are feasible and to compare the
resulting geometrical structures from the viewpoint of statistics.

We shall be concerned mainly with cases where there exists an L-sufficient
statistic for k. A statistic u on the sample space Z is said to be (minimal)
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L-sufficient for « if (i) the profile likelihood L(x) = sup,, L(w) for k generates
the same o-algebra on £ as u and (ii) the distribution of u depends on w
through k only. Three main classes of instances where an L-sufficient statistic
exists are (a) models with cuts, (b) exponential models with 7-parallel foliations,
including many reproductive exponential models and (c) composite transforma-
tion models.

Section 2 summarizes relevant material on profile and marginal likelihoods
and on statistical differential geometry. Section 3 is of a purely differential-
geometric nature and discusses the conditions under which a submersion 7 of a
manifold € to a manifold ) of lower dimension is accompanied by a natural
transfer of geometrical objects on @, such as tensors and connections, to similar
objects on . We show that if a Riemannian metric and an affine connection
transfer to ¢, then the transfer of the covariant derivative of the metric tensor
is equal to the covariant derivative, under the transferred connection, of the
transferred metric. A similar property holds for the torsion tensor. It follows, in
particular, that the Riemannian connection transfers to a Riemannian connec-
tion on X¢". Further, preservation of sectional curvatures by such a transfer is
related to the existence of orthogonal parameters.

In Section 4 we show that the existence of an L-sufficient statistic for x
ensures that observed statistical geometries on the parameter space £ can be
transferred to ). These transferred geometries are equal to observed geometries
on X based on the profile likelihood L(k) for k. L-sufficiency for all sample sizes
ensures transfer of expected geometries. Section 5 provides some discussion of
the special cases (a), (b) and (c) already mentioned, as well as of an extended
class of generalized linear models. In particular, for full exponential models the
existence of a r-parallel foliation is equivalent to the property of geometries
transferring onto an associated subspace of canonical parameters. A more de-
tailed and comprehensive study of the case of composite transformation models
is carried out in Sections 6, 7 and 8.

In Section 6 we study the asymptotic_relation, in the repeated sampling
situation, between the profile likelihood L(k), the modified profile likelihood
L(x) and the marginal likelihood L(x) = L(x; u) for k, based on the maximal
invariant u of a composite transformation model. In particular, it is shown that
in some important classes of cases, L(x) is equlvalent to the Laplace approxima-
tion of a certain integral representation of L(x). The results form the basis for
an asymptotic comparison of profile and marginal geometries on the range space
X of k. Such a comparison is carried out in Section 7, where we also compare
profile geometrical objects on ¢ to the corresponding objects obtained by
geometric transfer from € and to objects obtained from a “profile” version of
discrimination information. Finally, some examples are considered in Section 8.

2. Background material on profile likelihood and statistical geome-
tries.

2.1. Profile likelihood, modified profile likelihood and marginal likelihood.
The likelihood function of the statistical model (&, p(x; w), ) is denoted by
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L(w), or by L(w; x) when we wish to stress its dependence on the observation on
which it is based. Let / =In L and let j and i denote observed and expected
information, i.e.,
. :U(w)
He) = - dwdw

and i(w) = E_j(w). The inverse matrices of j and i are called observed and
expected formation, respectively. The parameter w is assumed to be of the form
w = (k, ¢), where k is the parameter of interest, and

_ I:j,;n jl‘\l/]
indicates the corresponding block partition of j, with similar notations for the
partitions of i, j~! and i~ %
The profile likelihood for the interest parameter « is defined by
(2.1) L(x) = supL(w),

w|x

i.e., it is the supremum over w for fixed « of the likelihood function L(w). Since
w = (k, y) we may in general write

(2.2) L(x) = L(x, ),
where y, is the maximum likelihood estimate of ¥ when « is considered as
known.

When the amount of information in the data x on the parameter ¢ is large,
the profile likelihood L(k) may be used as a pseudolikelihood function for k. In
cases where the amount of information on ¢ is considerable, though not suffi-
cient to warrant such use of L(k), it is in broad generality possible to adjust for
the lack of information by multiplying L(x) by a certain factor. The resulting
pseudolikelihood is termed the modified profile likelihood for k and is defined by

ou . . | A
alpa‘i;(x’\l'rc;’e,‘llra) |j‘p‘p("’¢rc)

where @ is an ancillary statistic such that (&, {, @) is minimal sufficient. The
rationale for and properties of this modlﬁed profile likelihood are discussed in
Barndorff-Nielsen (1983, 1985).

Now suppose that there exists an L-sufficient statistic u for k (cf. Section 1).
The corresponding marginal likelihood L(k) for k is then defined as the likeli-
hood function for « based on the marginal distribution of u, i.e., L(x) = L(k; u).

In Section 2.2 we review the statistical geometries based on L(w). Similar
geometries can be constructed using i(x) In Section 4 we consider geometries
based on the pseudolikelihoods L(x) and L(x)

1/2 ~

L(x),

(2.3) L(x) =

2.2. Statistical geometries. Following a suggestion of Lauritzen (1987) we
shall speak of a differentiable manifold equipped with a pair (¢, S), where ¢
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is a metric tensor and S is a skewness tensor, as a statistical manifold. Here,
by a skewness tensor we mean a symmetric covariant tensor of rank 3. Further-
more, we shall refer to such a pair (¢,S) as a kit. With each statistical
manifold is associated a one-parameter family of affine connections—the
®
a-connections—given by {I' — 2aS*: — 0 < a < + o}, where I' denotes the
Riemannian connection determined by ¢ and the (1, 2)-tensor S* is defined by
¢(S$(Xy Y),Z)=8X,Y,2).

The parameter space  of a parametric statistical model (%, p(x; w), 2) can
be usefully set up as a statistical manifold in two ways, at least. We denote the
dimension of the parameter w by d and we indicate the coordinates as w =
(o, @2, ..., w?%). Furthermore, with ! = I(w) as the log likelihood function, we
write [; = d1/9w’, I;; = 3%1/9w' dw’, etc.

The expected kit (i, D) consists of the expected (or Fisher) information metric
given by

i(w) = —[EL,]
and of the expected skewness tensor whose (i, j, k)-entry is
Dijk("") = Ew(Tijk)’
where
Tip=—{ln+ L+ Lpli + Ui}

The associated connections are the a-connections v of Chentsov (1972) and
Amari (1982a, b, 1987). To make this obvious we note that the tensor D may be
reexpressed as

Dijk = E«»{ liljlk}

as may be seen by differentiating the equation EI, = 0 twice.

Now, let & be the maximum likelihood estimator of w and let a be an
auxiliary statistic such that (&, a) is sufficient for w. In applications a will be
ancillary, i.e., in addition to (&, a) being sufficient a is distribution constant,
either exactly or to a sufficient degree of approximation. By the sufficiency of
(&, a) we may think of the log-likelihood function /, in its dependence on the
data x, as being a function of (&, a) and this we indicate by writing I(w; &, a).
Let 9, = 3/d«' and 8, = 3/3&', and write

l, ;=984 Lijw= 0,081,

etc. Furthermore, for any symbol indicating a function of w and (&, a) we use a
slash ( / ) through the symbol to indicate the substitution & — w, turning the
function into a function of w and a. Thus
l= l(w; w, a), lij = lij(w; w,a), lij;k = lij; k(‘*’§ w,a),
etc. For any fixed value of a the observed kit (f,T) is given by j = j(w; w, @),
where j = j(w; &, a) is the observed information
U
) = — = — l .
= =050 = "Wl
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and by the observed skewness
Tijk = - {lijk + Iij;k + ljk;i + lki;j}'

The proof that this is a tensor, given in Barndorff-Nielsen (1987), rests on the
relation
li; J= llz j

which is obtained from the likelihood equation /(&; &, @) = 0 by differentiation
and substitution of w for &. The a-connections associated with (j,7') are
denoted by 55 Note that, though this is suppressed in the notation, the kit
(4, T) and the connections 7; depend on the value of a which is considered fixed,
in accordance with the conditionality principle.

For some applications of the expected and observed kits (i, D) and (f, T'), see
Amari (1982a,b, 1987), Amari and Kumon (1983), Lauritzen (1987) and
Barndorff-Nielsen (1986, 1987).

3. Transfer of geometries. In this section we consider a purely
differential-geometric construction which we shall later apply in our statistical
context. Let #: @ — X" be a differentiable function from one smooth manifold to
another. We shall suppose that « is a submersion, i.e., at each point w of Q the
tangent map 7, of m maps the tangent space T, onto the tangent space
T, (. or in terms of local coordinates ', ..., w?*? on @ and «',..., k? on X,
the Jacobian matrix [ dk’/dw’] has rank p. It follows [see, e.g., Lang (1972), page
28 or Boothby (1975), pages 47 and 79] that each fibre 7~ !(x) is a g-dimensional
submanifold of Q. Further, if ¥ denotes one of these fibres, then small portions
of Q look like small portions of #X ¥ and = can be identified locally with
projection of XX ¥ onto ). In our statistical context Q will be the parameter
space while 2" and ¥ will be the manifolds of the interest and incidental
parameters, respectively. We shall consider ways in which geometric objects such
as Riemannian metrics, tensors and affine connections on £ can be transferred to
corresponding geometric objects on ¢,

This transfer of geometry along a submersion should be contrasted with the
usual inheritance of geometry by submanifolds. If i: ® — Q is the inclusion map
of the submanifold ® in € (or, more generally, if ¢« is an immersion), then a
Riemannian metric ¢ on  gives rise to a Riemannian metric *¢ on © defined
by *¢(X,Y) = ¢(t4(X), 14(Y)) for X,Y € TO,, or in terms of local coordi-
nates 6',...,07 on ® and W...,wP”"? on , *¢ has components
(0w'/307)¢, (dw’/30°) (using the summation convention). More generally, ¢
induces a linear map *: Z,%(Q) — Z,%0) of “covariant” tensor fields of order s.
Furthermore, given a Riemannian metric ¢ on {2, the corresponding orthogonal
projection of T'Q,,, onto T'®, enables tensor fields on £ to give rise to corre-
sponding tensor fields on ©. Thus ¢ induces a linear map *: Z,"(Q) - Z.7(0) of
(r, s)-tensor fields, i.e., tensor fields of “contravariant” order r and “covariant”
order s. Similarly, affine connections on Q give rise to affine connections on ©
by means of the Gauss decomposition which is described for Riemannian
connections in Kobayashi and Nomizu [(1969), Chapter VII]. The statistical
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F1c. 1. Illustration of the concepts of submersion = of one differentiable manifold Q into another
X', and of lifting a tangent vector X of X" to a horizontal tangent vector X of Q.

importance of this construction is its use in defining the curvature terms in the
formulas of Efron (1975), Reeds (1975), Skovgaard (1984) and Amari (1982a, b).
For a submersion #: @ — X", a Riemannian metric ¢ on Q gives rise to a
useful decomposition of each tangent space of Q. In the tangent space TQ, to Q
at w, the vertical subspace V,, is defined by V, = {X € TQ_: 7 (X) = 0}. Thus,
in terms of local coordinates 4/1 ,¥? on the manifold ¥ a]ready considered, V,
can be identified with the span of {8/ dy: i=1,..., q)}. Using the Rlemanman
metric ¢ on Q, we define the horizontal subspace Hw as the orthogonal comple-
ment of V, in TQ,. Thus ¢ decomposes TQ, as the orthogonal direct sum

(3.1) T, =V, 0 H,

and this decomposition varies smoothly with w. So ) given any tangent vector X
to X at_m(w) we can define the horizontal lift X of X at w as the unique
element X of H, satisfying 7,(X) = X. See Figure 1. A mapping which ascribes
to each point w of @ a complementary subspace H, to V, in T, is called an
(Ehresmann) connection on the submersion 7. See Hermann [(1975), pages
71-86] for an equivalent definition. Any such connection can be used to con-
struct lifts to TQ,_, of vectors in TX,., and so may give rise to transfer of
tensors from Q to X as will be descrlbed For simplicity we shall consider only
those connections on 7 defined as before, by a Riemannian metric.

Horizontal lifts can now be used to transfer geometry along 7 to ). An
inner-product 7,4 on 7%, is defined by

(32) 7 $(X,Y) = o(X, ),
where X, Y are the horizontal lifts at « of X,Y in TX, oy
l: ¢m¢ ¢mﬁ :l

be the partitioned matrix of the expression for ¢ in terms of the local coordinates

Let
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kL., kP, ¢ ..., 47 on Q. Then it is readily shown that the corresponding
matrix for 7 ¢ is
(3‘3) ¢m¢~\b = ¢m¢ - ¢x¢¢¢_¢l¢¢x'

In general, the inner-product 7 ¢ depends on the point « to which the vectors
X and Y are lifted. In the case when 7, ¢ depends only on m(w) we obtain a
well-defined Riemannian metric on /.

DEFINITION 3.1. If 7,6 = 7,6 whenever m(w,) = 7(w,), then ¢ transfers to
X" and the transfer m¢ of ¢ is defined by

m¢(k) =70 foranyw € 7 (k).

If ¢ transfers to ), then 7 is a Riemannian submersion from (£, ¢) to
(X, m¢) [see O’Neill (1966)].

One can also consider transfer of tensor fields from £ to . For A in J,7(Q)
and w in Q, the corresponding tensor 7 A at 7(w) is defined by

(3.4) (1,A)(X,,..., X,) = (®7)(A(X,,..., X,)),

where X; € T, ,,, X, is the horizontal lift to w of X, fori = 1,..., s and ®m,:
®TQ, - ®TX,,, isthe r-fold tensor product of the tangent map of =.
For example, if A is a (0, 3)-tensor field on £, then calculation shows that

m(w)

T, A=A — [3]4’.‘\1,%,_\01‘44/“ + [3](¢mp¢\;¢l)2A¢¢x - (¢x¢¢‘;¢1)3A¢Wy

where the notation is similar to that explained after equation (4.3). This case
together with that of (3.3) are the ones of primary interest in this paper.

DEFINITION 3.2. If 7, A = 7, A whenever 7(w,) = m(w,), then A transfers
to X" and the transfer m A of A is defined by

mA(k) =m,A forany w € 7 (k).

Note that if 7 A is defined it is an (r, s)-tensor field on X"

The transfer takes a particularly simple form if the local coordinates ¢ are
orthogonal to k. Here is a case of some statistical interest.

THEOREM 3.1. Let ¢ be a Riemannian metric and S a (0, 3)-tensor on .
Suppose that the local coordinates k and  are orthogonal, i.e., ¢, (w) =0 for
w € Q. Suppose also that ¢ (w) and S,, (w) depend only on n(w). Then ¢ and S
transfer to X" and

mé(k) = d(@),  mMS(x) = Spu(@) forw e m (k).

The proof is immediate.
There is an alternative construction of the transfer which is of interest. It is
based on the following identification of tangent vectors of £ with cotangent
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vectors of by means of the Riemannian metric ¢. A tangent vector X to Q at
w can be identified with the cotangent vector (one-form) X" defined by

X(Y) =¢(X,Y), YeTQ,.
Thus there is an invertible linear mapping b: T,;(Q), —» T%(®),,. In terms of local
coordinates, the tangent vector with components al is mapped by b into the
cotangent vector with components ¢,;a’, i.e., the mapping b is the traditional
“lowermg of indices.” The inverse of p is #: T,(2), - THRQ).,, correspondmg to

“raising of indices” in local coordinates. More generally, ¢ gives rise to the
invertible linear transformation b: 7Ty *°(Q), — T/(R),, defined by

X, ® - -®X.0Y.® ---0Y)WZ ® . -..0Z
1 r 1 s 1 s
(e pfse-on

for X,,..., X,, Y,Z,...,Z,€ TQ,. In local coordinates the (r + s, 0)-
tensor with components a.'l i is mapped by b to the (r, s)-tensor with
components ¢, - ¢ a" " A%, Note that as w varies in Q the transforma-

tions h: Ty *%(Q), - T, (Q), combine to give an invertible linear mapping b:
T3 Q) = Z,7(2) of tensor fields. The inverse of b is denoted by #. Note also
that any positive-definite symmetric (2, 0)-tensor field is dual to a Riemannian
metric and so gives rise to raising and lowering operators. Now the tangent map
74 of 7 induces a linear mapping “in the direction of #,” =,: Ty (Q), —
Ty (X ) () [For example, if © is the parameter space of a statistical model and
m:  —> X is the mapping to the parameter of interest, then =,: T2(Q), —
T2 (1” ),,(w) sends the formation matrix of & to that of £.] In coordinate terms,
a’ ' is mapped to

dwh dw'r

drh drkr
[Note that, unless = is injective, 7, does not give rise to a corresponding linear

mapping J5(2) - Jy(X") of tensor fields.] We can now define a linear mapping
from T;(Q), to T](X'),,,, by means of the diagram

T/(2), —- TIH(Q),

by ok,

r b r S‘l
T/ (A ) o) T4 (H ) mw)
where b is defined using the (2,0)-tensor 7 ,(¢(w)¥). It can be shown that this
mapping is in fact =, as defined by (3.4). For example, following the matrix of

the Riemannian metric around the preceding diagram in the case r = 0, s = 2,
we have

pr— ¢!

ey = (67 ) (7).

as in (3.3).
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Horizontal lifts can be used to transfer affine connections as well as tensors.
Given an affine connection v on { we can define 7, v by

(3.5) (7)Y = 7 (vzY(0)),

where X,Y are vector fields in a neighbourhood of x and X,Y are their
horizontal lifts to a neighbourhood of w € 7~ (k). If the right-hand side of (3.5)
depends on w only through «, then v transfers to X and the transfer mv = 7, v
is an affine connection on J¢'. Simple calculations prove the following result
which is useful in the statistical context.

THEOREM 3.2. Let ¢ and Vv be, respectively, a Riemannian metric and an
affine connection on .

() If v transfers to A", then so does its torsion tensor and we have
Tor(m,v ) = «(Torv),

where Tor denotes the torsion tensor of a connection.
(i) If ¢ and v transfer to X, then

(mv)(m9) =7(V9).

(iii) If v is the Riemannian (Levi-Civita) connection of ¢ and ¢ transfers,
then v also transfers and m ¥ is the Riemannian connection of m¢.

The general relationship between the Riemannian curvature tensor R(m,v ) of
7,V and the transfer m R(V) of the curvature tensor of V¥ is not simple. In the
case where Vv is a Riemannian connection, formulas analogous to the
Gauss—Codazzi equations of an immersion are given by O’Neill (1966). Moreover,
these formulas yield the following result.

THEOREM 3.3. Let vV be a Riemannian connection which transfers to X'.
Then the sectional curvatures of m~ are greater than or equal to the corre-
sponding sectional curvatures of V. Also the following are equivalent:

(i) equality of sectional curvatures;
(i) R(mv)=mR(V)
(iii) the local coordinates «,y can be chosen to be orthogonal.

From the statistical viewpoint, the differential-geometric objects of interest
are statistical manifolds as defined in Section 2, i.e., a statistical manifold is a
triple (2, ¢, S), where Q is a smooth manifold, ¢ is a Riemannian metric and S
isa symmetrlc (0, 3)-tensor on ©. The kit (¢, S) then determines a one-parameter
family v of torsion-free affine connections on by

V(;b = a8, a€R.
If the kit is defined as the expected geometry of a statistical model, then the
connections V are those introduced by Amari (1982a); cf. Section 2.

In the rest of this paper we shall consider the following statistical manifolds
determined by a statistical model with parameter space ©: (i) the expected
statistical manifold (£, i, D) and (ii) the observed statistical manifold (£, j, T').
Given a manifold ¢ of subparameters of Q we shall investigate in the following



1018 0. E. BARNDORFF-NIELSEN AND P. E. JUPP

sections statistical conditions under which (i, D) and (j,T') transfer to . It
follows from Theorem 3.2 that if (i, D) transfers, then so do the a-connections
v and

('n,é )(w,i) = amD.
Similarly, if (f, 7') transfers, then so do y°7( and

(m¥ )(mf) = amT.

We shall also compare these geometrically transferred statistical manifolds on ¢
with some others determined by purely statistical considerations.

4. Profile geometries, L-sufficiency and the transfer. The expected and
observed statistical manifolds determined by a statistical model (%, p(x; w), Q)
are defined in terms of the likelihood L(w) = L(w; x). Thus to define corre-
sponding statistical manifolds on the manifold ¢ of interest parameters, it is
natural to consider the profile likelihood for the interest parameter k. This is
defined by (2.1).

Geometrical quantities on ¢ can be constructed using /= log L. The ob-
served profile information on k is the matrix
. 32l(x)

7(x) dk dk

and the inverse of this is the observed profile formation. The observed profile
skewness T is defined by

a7 N al  al N a4 al N ayu ol

dk’ Ik’ I* k'’ Ik dxk’ dk* it dk* akt Ik’ |’
Note that, in general, the observed profile objects j and T are not tensors. On
the other hand, the observed objects f and 7' defined later in this section are
tensors. As noted by Richards (1961) and Patefield (1977), the observed profile
formation is equal to the corresponding part of the (full) observed formation, in
symbols
(4.1) J) =k, ),
where j** is the kk-part of the observed formation j~! and \l:,‘ is defined by (2.2).
Alternatively, (4.1) may be expressed as

Tijk(") =

, a2 3y, 8% .\ o\ .
(4'2) ](K)= _(m-‘_[z] aK a‘PaK +( 3K ) 3_‘1/2)("’ I‘)'

Similarly, it can be shown that

% (9% g, 9 a.\> 9%
—— —_— —_— +

PP (3&3 tBIg e [3]( P ) 397 ox

3. \> 8% A
Ik ) 3_413)("’4]‘)’

(4.3)

+
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where in this compressed notation, e.g., [3](343,‘/ k) 3% /3¢y dx?) has compo-
nents
ay, a3 3y, a3 3y, a3

( dk )‘.,aqf Ik’ di* * ( dk )j,a¢’ ak* k't * ( dk )kra¢' ki’ ’
Define &.: = @ by &(k) = (k, 43,‘). Then the tangent map &,.. of &, can be
used to lift tangent vectors from X to Q. Indeed, we can regard (d/dx’) +
(34,/9x),(3/3y") as the “horizontal lift” at (x, §,) of 9/dx’. (Note that this
construction does not make use of any connection on « or of any metric tensor on
Q.) Then we can summarize (4.2) and (4.3) as follows: For r = 2,3, the rth
derivative of the profile log-likelihood is equal to the rth derivative of the full
log-likelihood at the partial maximum likelihood estimate acting on horizontal
lifts. This property does not hold for r = 4.

The “infinite-sample” analogue of log-likelihood, the expected log-likelihood,
is closely related to the discrimination information (or Kullback-Leibler dis-
tance)

I(oy, @) = [ log{—ﬁ%—:—;}p(x; o)) dp(%).

The function I determines the expected kit (i, D) by

4.4 . 9°I(w, )
( * ) t(w) B dw' dw’ W' w
and
3w, 0) (0, )
(4.5) D(w) = [awaw’aw' T 90 dwdw w,,,w,’

where in this compressed notation, e.g., 33I(w, &’ /0w dw’ Jw’ indicates a three-
dimensional array with components 33I(w, »")/ dw'dw"’ dw’®. This suggests the
definition of the profile discrimination information I by
(4.6) I(k, x;) = inf  I(w;,w,).
(wy, wg)l(ky5 K2)

It is shown in Theorem 7.2 that for composite transformation models the I
analogues of (4.4) and (4.5) equal the transfer (i, D) of (i, D).

In order to define geometries (i.e., statistical manifolds) on X" based on profile
likelihood, it is useful to have the concept of L-sufficiency.

DEFINITION 4.1. A statistic u: & —> % is L-sufficient for « if both

al :
(4.7) a(lﬂ; x) depends on the observation x only through u
and
(4.8) the distribution of u depends only k.

If (4.7) holds, then u is weakly L-sufficient for k.
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Weak L-sufficiency was introduced by Rémon (1984) under the name of
L-sufficiency. The preceding definition of L-sufficiency fits into the nomenclature
of sufficiency established in Barndorff-Nielsen (1978a). Indeed, Rémon showed
that L-sufficiency is a generalization both of S-sufficiency and of G-sufficiency.
Whether an L-sufficient statistic can always be said to contain the entire
available information on the interest parameter is a matter for further investiga-
tion, but we shall not pursue this question in the present paper.

Given an L-sufficient statistic for k we can define the expected profile
statistical manifold (¢, ¢, D). This is determined by the expected profile infor-
mation

L] —

and the expected profile skewness tensor D with components

al of al .
Dijk = Ew axi -V 5_;; - Vj W — Vg ’ wEm (K)’

where » = E_(31/3k). Note that (4.8) ensures that #(x) and D(x) depend only
on k.

Profile likelihood gives rise also to observed geometries on X". Let u: > %
be minimal weakly L-sufficient for k and let b: # » B be an auxiliary statistic
such that (b, k): # > B X X is bijective. Then by analogy with the definition of
observed kits (cf. Section 2), we define the observed profile kit as the pair (f, T)
consisting of the observed profile metric J and the observed profile skewness

tensor T given by
sz = J

and
Ton= _(iijk +lnt D+ iki;j)-

Thus, given the observed value of the auxiliary b we obtain a statistical manifold
structure (f, 7) on . In the presence of weak L-sufficiency these observed
profile geometries are the transfers of observed geometries on .

THEOREM 4.1. If u: - % is weakly L-sufficient for k and a: Z— A,
b: ¥ —» B are such that ‘

() (a,d®): F—> A X Q is bijective and sufficient for w,
(ii) (b, R): ¥ » B X X is bijective,
(iii) b(u) depends on x only through a,

then (j,T) transfers and =(j,T) = (J, T).
ProoF. Differentiation of J; = 0 gives

Jij+17.,=0.
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Using (4.2) we obtain
iij(K) = ( ij lirlrslsj)(x’ j )’

where [/™] denotes the inverse of the yy-part of [/;;] and so, as this expression
depends on 4/ only through u, j transfers and

J (&) = (mg)(x).

Also, differentiation with respect to & of

., .
MRALY
lmc aK l\]m KK
[which is a version of (4.2)] and
3,
lmp + EC—I‘N =0

together with some manipulation leads to

3y,
Lx;x = lmc;x + 3K ([2]1\[«;" + mc;np)

A2 A3
ay, Y,
+(_3}‘) (Fpvie + [2144) + (W) bovi v
Using this and (4.3) we find that 7' transfers and

T = W!T- m]

This theorem leads to the conjecture that if u is an L-sufficient statistic, then
(i, D) transfers. At present we do not know whether or not this holds in general.
The inverse Gaussian example discussed after Theorem 5.2 shows that we do not
always have =D = D, in contrast to the preceding results for the observed kit.
As indicated briefly in the following text and described in greater detail in
Theorem 7.2, for composite transformation models (i, D) does indeed transfer to
X'. The most general results we have on L-sufficiency and the transfer of
expected geometry involve repeated sampling. We shall use a subscript n to
denote quantities based on a random ‘sample of size n from the distribution
parameterized by w. For example ]; and T, denote observed profile information
and skewness for such a sample. The next theorem shows that if the transferred
expected geometry exists, then it is the large-sample limit of the average
observed profile geometry.

THEOREM 4.2. If (i, D) transfers to X°, then with probability 1,
n~NJu(k), T(x)) = m (i, D)(x)

asn— 0.
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ProOF. For random samples of size rn from the distribution parameterized
by w we have from (4.2),

(k) = (27 V) e = (7Y (7 5) (75 o) (v, 6
- (imc - ix¢i‘p¢i¢x)(w) = W!i(K)y
where ¥ = 7(w). Similarly, (4.3) yields

n_lfn(n)
_ 3. \" 39, \" .
=n 1{ Ec—) T\P'PK + (Ec—) T\P‘N/ (K,tll,‘)}

> (Do + [8]( = gi) Dy + [81(=yi**) Dy + (—iyi**) Dy ) ()
= o,D(«x). a

.
T+ 8190, + [3]

We shall now, further, show that if there is L-sufficiency for all sample sizes
then the expected geometry given by (i, D) transfers to J¢".

THEOREM 4.3. Suppose that for all sample sizes n there exists a statistic u,:
X" - ¥, which is L-sufficient for . Then (i, D) transfers to X'.

ProoF. The equation
n~12 %% = n'%(& — w){i(w) + 0,(1)}
leads to the well-known result
i(0) = { im nv,(3))’
and to
D(e) = lim nE,[(5 - 0]}’

where h denotes “lowering of indices” as described in Section 3 and E_[(& — w)?]
denotes the three-dimensional array whose (i, j, k)-entry is E_[(& — w){(& —
©)’(& — w)*]. Using the alternative construction of the transfer given in Section
3 we see that mi and =D are given by

(4.9) mi(x) = { lim nV,(2))",
b
(4.10) mD(k) = { lim n2E, [ (% — K)a]} ,
provided that the right-hand sides depend only on «. L-sufficiency of u, ensures

by (4.7) that & depends on (x,,..., x,) only through u,(x,,..., x,) and by (4.8)
that the distribution of £ depends only on k. Thus (i, D) is defined. O
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In particular, for a composite transformation model with acting group G the
maximal invariants u,: " - £"/G are L-sufficient for the maximal invariant
parameter k and so (i, D) transfers to #'= Q/G.

The transferred expected geometry (i, D) has been defined in purely dif-
ferential-geometric terms. We do not have a general purely statistical description
of it—apart from that given by (4.9) and (4.10). However, it is shown in Theorem
7.2 that for composite transformation models (i, D) yields the same statistical
manifold on Q/G as that derived from I, which is also the large-
sample limit of the marginal geometry.

We have in this section considered four types of kits on the interest parameter
manifold X°, namely the transferred kits =,(i, D) and =,(/,T) and the profile
kits (z, D) and ( f: T ), and we have discussed the relevance of the concept of
L-sufficiency in the present context. Suppose a minimal L-sufficient statistic u
for k exists and let 15() be the marginal log-likelihood function for k based on u,
i.e., the log-likelihood function of the marginal model for u. In general, on ¥ one
would ideally wish to work with the geometrical structures determined by the
expected kit and the observed kit given in terms of the marginal model for u; we
shall denote those kits by (Z, D) and ( ], T), respectively. However, these margi-
nal structures are often intractable both analytically and numerically; then the
transferred structures and the profile structures come into the picture as possible
approximations to the marginal structures. From this viewpoint it would be
natural also to study modified profile geometries, defined in analogy with the
profile geometries but from the modified profile likelihood L(k) [introduced in
Barndorff-Nielsen (1983)] rather than from L(«). In considerable generality it is,
in fact, possible to define modified profile kits (f, j)) and ( ], j‘ ) and these will as
a rule approximate (z, D) and ( f: f ) to a higher degree of accuracy than the
transferred or profile kits; cf. Barndorff-Nielsen (1983, 1985). In Section 7 the
relations between these various kits are studied in some detail for composite
transformation models; cf. also Section 5.4. To help the overview the kits are set
out in Table 1.

Note that if u is any statistic satisfying (4.8), then, since margining does not
increase expected information, we have

(4.11) mi >,
i.e., mi — i is positive semidefinite.
TABLE 1

Kit = (metric tensor, skewness tensor) specifications, each (when well defined) turning the interest
Dparameter manifold into a statistical manifold.

Modified
Transferred Profile Profile Marginal
Observed (mf,mT) D gD D

Expected (mi, mD) @, D) @i, D) @, D)




1024 0. E. BARNDORFF-NIELSEN AND P. E. JUPP

Kits and their transfers occur also in the wider framework of contrast
functions. Let p be any smooth contrast function, i.e., p: € X @ - R satisfies
p(w, w) = 0 with equality if and only if w = . Then, as shown by Eguchi
(1983), p defines a kit (i*, D°) by

0% (w, w’
i‘”(w) = ___(__._.__)_
dw' e’ |
and
% (w, 9% (w, o
poey < [22(09) _ B(0e)]
dwdw dw’ do'dwidw |,
A “profile” version g of p is defined by
(e, k)= inf p(w,w’).
(w, w)|(k, k")
In general, 5 is a smooth contrast function on ¢ and so gives rise to a kit

(%, DP).

It is possible in this context to define a form of sufficiency which ensures that
(i°, D®) transfers to " and that the transferred kit is equal to (i, D?). We omit
the details.

5. Some special cases. We now illustrate the general theory discussed in
the foregoing sections by considering four special cases. Each case concerns a
general class of models, these classes being:

1. models with cuts, including exponential models with #-parallel foliations;

2. exponential models with r-parallel foliations, including reproductive exponen-
tial models;

3. extended generalized linear models;

4. composite transformation models.

5.1. Cuts. Perhaps the simplest examples of L-sufficient statistics are cuts.
Recall [Barndorff-Nielsen (1978a)] that u: & — % is a cut if @ = "X ¥ and

W, 5 x) = Ux; w) + U(y; xlu)

with the marginal likelihood I(x; u) depending on w only through x and the
conditional likelihood I(y; x|u) depending on w only through y. In this case we
have (971/dk")(k, ¥; x) = (a’i/c?x’)(x; u) and so for the expected geometry
on {:

(1) «, ¢ are ol:thogonal. B

(i) mi=i=i=i,mD=D=D=D,,.
There is a similar result for observed geometries. Using Theorem 4.1 we have
that if u is a cut, then:

(i) &, ¢ are orthogonal for j.

@) mj=J=7=Jo T =T =T = T
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For full steep exponential models there is an intimate connection between cuts
and the existence of transferred geometries. The precise statement is given in
Theorem 5.1.

Consider a full exponential model on a sample space # and with minimal
exponential representation

(5.1) p(x;0) = a(8)b(x)e” ",

where 6 and ¢ = #(x) are vectors of dimension k. We denote the domain of
variation for the canonical parameter § by ©® and the closed convex hull of the
marginal distribution of the canonical statistic ¢ by C. Furthermore, for § € int ©
(the interior of ©) we let = 7(8) = E,t, i.e., 7 is the mean value parameter,
and we use the notation  for the set of mean values 7(int ). The model is
assumed to be steep which is equivalent to = int C; cf. Barndorff-Nielsen
(1978a), Theorem 9.2. This is the case, in particular, if the canonical parameter
domain © of (5.1) is open.

Let (¢, t,) be a partition of ¢ and let (8,, 6,) and (7, 7,) be the corresponding
partitions of 6 and 7. We denote the common dimension of ¢, 6, and , by d.
For 1 €. we may express 7 as a function of the mixed parameter (8,, 7,). If this
expression is of the form

(5~2) ™= _T2h(01) + k(al)

for some (k — d) X d matrix function A and some 1 X d vector function &,
then, for reasons given in Barndorff-Nielsen and Bleesild (1983b), the model (5.1)
is said to have a §-parallel foliation. We now characterize those models (5.1) for
which the geometries on  transfer by 7,.

THEOREM 5.1. The following are equivalent:
@) t, is a cut.
(ii) The model has a 6-parallel foliation of the form (5.2).
(iii) The expected and observed geometries on I (which coincide) transfer to
().
If any of the preceding hold, then
mi(r,) = 23,

'”!Dijk(T2) = Eagzégzggl"‘pqr7
where Z,, is the variance matrix of t, and 2%, and p pqr denote the components
of 23, and the third central moment of t,, respectively.

Proor. This follows from Theorems 4.1 and 4.2 of Barndorff-Nielsen and
Blaesild (1983b). Transfer of D is ensured by their equation (4.6). O

5.2. Exponential models with t-parallel foliations. A more interesting class
of exponential models for which geometries transfer is provided by the exponen-
tial models with 7-parallel foliations. These are the models (5.1) for which we can
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write

(5.3) 0, = —0,h(7,) + k(1)

for some d X (k& — d) matrix function A and some 1 X (k& — d) vector function
k. As shown in Barndorff-Nielsen and Blzesild (1983b), there exist a 1 X d vector
function H(7,) and real functions K(7,) and M(0,) such that h(r,) =
dH"*(7,)/d7, and k(t,) = dK(7,)/d7, and such that (5.1) can be rewritten as

p(x; 60, 1)
(54) = b(x)exp(-M(6,))exp(9, - {t, — (t; — ©)h"(7,) — H(n,)}
(= 1) - k("'z) + K("’z))-
We shall be concerned with those cases where in addition to (5.3) we have that
t, follows an exponential model with (H(t,), ¢,) as canonical statistic and 6 as
the corresponding canonical parameter, in symbols
(5'5) t2 - EM((H(t2):t2)’0)‘

This holds in particular if ¢,(x) = x.
Examples of models satisfying (5.3) and (5.5) and discussions of related issues
may be found in Barndorff-Nielsen and Blsesild (1983b, ¢, 1988a, b).

THEOREM 5.2. For the exponential model (5.1) the following are equivalent:

(i) The expected and observed geometries on int ® (which coincide) transfer
to 0,(int ©).
(i) Condition (5.3) is satisfied.
(iii) There is a continuous 1 X d vector function H(t,) such that t, — H(t,) is
weakly L-sufficient for 6,.

If any of these hold, then
(mi)(8,) =2, - 25252y

where = = Vyt, the variance matrix of t. If in addition (5.5) is satisfied, then
— H(t,) is L-sufficient for 0,.

Proor. Equivalence of (i) and (ii) is a consequence of Theorem 5.2 and
Lemma 3.3 of Barndorff-Nielsen and Bleesild (1983b) and of Theorem 3.1 and
formula (5.4). That (ii) implies (iii) follows from formula (5.4). For the converse,
note that (5.1) implies that

1(01; x) = log b(x) + 0, -t + 7(015 tz)

for some function y. If ¢, — H(t,) is weakly L-sufficient for 8,, then it follows
that

al
ﬁ; =t - H(tz) - m(6,)

and so

~

1(6,;x) =logb(x) + 6, - {tl - H(t2)} - M(6,) + K(¢,)
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for suitable functions m, M and K. Substituting this equation in (6,; x) =
"l(6; x), where #(x) = 7(8), and differentiating with respect to 7, we obtain (5.3).
Finally, if both (5.3) and (5.5) hold, then it is a conclusion of Barndorff-Nielsen
and Blasild (1983c) that the distribution of ¢, — H(t,) depends only on 4,. O

In connection with assertion (iii) it should be noted that ¢, — H(¢,) is
generally neither S-sufficient nor G-sufficient. For instance, if x,,...,x, is a
sample from the inverse Gaussian distribution

(56) ' p(x’ K, }\) = (2.”)_1/2Ke'€>\x—3/2e—{xzx_1+}\2x)/2’

then the assumptions of Theorem 5.2 are satisfied and 2(x; ' — ') is L-suffi-
cient, but not S- or G-sufficient, with respect to k.

5.3. An extended class of generalized linear models. Model functions of the
form

(5.7) p(x; k,¢) = b(x; k)exp{a(x)p(x; ¥)}

provide an extension of the class of generalized linear models and have been
considered by Barndorff-Nielsen (1983) and by Jergensen (1983, 1986, 1987). A
feature of these models is that k and ¢ are orthogonal under the expected
information .
If b(x; k) in (5.7) factorises so that

(5.8) p(x; k,¥) = a(x)c(x)exp{a(x)p(x; ¥)},

where a(x) and ¢(x) are functions, respectively, of x alone and of « alone, then
[if a(x) has constant sign] it can be shown that u(x) = @(x; ¢) is weakly
L-sufficient for k. It follows from Theorem 4.1 that, for suitable auxiliary
statistics, observed geometries transfer to J#". Although it is not known whether
or not u is always L-sufficient for k, a calculation shows that, for models given
by (5.8), i,, and D, depend on w only through k. Thus the expected kit

KK KKK

transfers and
W!i = imc’ '”!D = Dnmc‘

5.4. Composite transformation models. A composite transformation model is
a parameterized statistical model # = (&, p, ) in which a group G acts on &
so that € is mapped into itself by the induced action of G on the set of all
probability measures on &£

We adopt here the definitions and terminology of composite transformation
models as discussed in Barndorff-Nielsen, Blaesild, Jensen and Jergensen (1982)
and Barndorff-Nielsen (1983, 1987); the reader is referred to these papers for
details and additional results.

The group G acts on both the sample space 2" and the parameter space . We
suppose that k is a maximal invariant under the latter action and that the model
function has the property that

(59) p(x; ",g‘l/) =X(g’x)p(g—lx;"’4’)
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for every g € G and some function x(g, x). Note that x(g, x) is the multiplier
of i, in the terminology of Barndorff-Nielsen (1987). All actions, mappings, etc.,
occurring in the following are assumed to be sufficiently smooth to justify the
differentiations, etc., performed. A model satisfying (5.9) is said to be a composite
transformation model with index parameter k. The submodels obtained by fixing
k are (pure) transformation models.

In most cases of interest the model has the following additional structure,
after minimal sufficient reduction. There exists a left factorization G = HK of
the group G, i.e., there are two subsets H and K of G such that K is a subgroup
of G and such that each element g of G can be factorized uniquely as g = hk
where h € H and %k € K. The two associated mappings sending g to A and g to
k will be denoted by n and {. Moreover, it is possible to select on each orbit Gx
of & an orbit representative u € Gx such that K is the isotropy group of v, i.e.,
K = G,= {g € G: gu = u)}. Further, the domain of variation for (x,y) is a
product set, and the domain ¥ of ¢ contains a point {, such that K is also the
isotropy group of ¢, K = G, . Then, in effect, we may make the identifications
¥ = H=G/K and y, = e = K, where e indicates the unit element of G (and
also of K). Accordingly, the natural action of G on G/K = {gK: g € G}, ie,
the action given by

G xXG/K - G/K,
(g',8K) — g'gK,
may be viewed as an action of G on ¥. We shall denote this latter action by 7. It
is identical to the action of G on ¥ induced from the action of G on & by ¢, the
maximum likelihood estimator of . If the measure p on % is invariant, then
the mapping ¢ also induces an invariant measure » on ¥ from p. Finally, the
subgroup K is compact.
The composite transformation models to be considered in this paper possess
all of the abovementioned properties.
To see that for a composite transformation model (5.9) the maximal invariant
u is L-sufficient for k, one may argue as follows. From (5.9) we find for any
g<G,

(5.10) I(x,8¢;x) = Uk, ¥;87'x) +logx(g, x)
and hence

(k; x) = supl(x, ¥; )

Ve

supl(x, gy; x)
VI

supl(x, y; g7'x) + log x(&, x)
Yk

=I(x; g7 %) + log x(g, x),

from which (4.7) follows; that (4.8) is fulfilled is well known. [For x(g,x) =1
this result was proved by Rémon (1984).]
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For very many composite transformation models the action of the group
ensures that geometries on { transfer nicely to the orbit parameter space
A= Q/G. This follows from the results of Section 4 together with the L-
sufficiency of the maximal invariant u. [For any open submodel of a composite
transformation model the geometry transfers. A simple example, considered from
a different viewpoint by Rémon (1984), is that of the submodel of the set of
N(p, 0?) distributions with u > 0, where the parameter of interest is 62 and the
data consist of a sample x,,..., x,, from N(g, 02).]

The transferred geometry of composite transformation models is considered at
greater length in Section 7.

We conclude the present discussion with a look at coefficients of variation for
location-scale models.

ExaMPLE 5.1. Let f be a known probability density function on R and
consider the corresponding location-scale model for samples x,,..., x, of size n.
Then we have

p(x;p,0) =0”‘i=Ir_l[lf(

Under the action of the multiplicative group of nonnegative real numbers, i.e.,
under changes of scale, this is a composite transformation model with invariant
(interest) parameter k = ¢ u and group parameter ¢ = ¢! (say). The con-
figuration of the sample (x,,..., x,) is

x 1 ﬁ xn - ﬁ')

a=(a1,...,an)=( 5 T 3

Using Example 6.1 of Barndorff-Nielsen (1987) together with the tensorial
nature of j and 7 we obtain the following results for the observed geometries
conditional on the ancillary a:

il ) = '),

xi“ﬂ)

i ¥) = 47 X (a, + g (),

e 9) =92 n+ ¥ (a, + )% (a) |,

i=1
where g(x) = —log f(x) and where g”(x)'is assumed to be positive, i.e., f is log
concave. Thus, using (3.3), we have
mj = ig,,(a ) — {Zi(a; + K)g”(ai)}2
! i=1 ' n+Xr(a;+x)’g"(a;)’

We also have
_ 6nk(1 + V(a)){n'Tr (0, + k)g"(a))
(1 +n7158 (a; + %)’g"(a) )

mT
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where V(a) = n™'L2 (a;, — @)%"(a;) and d = n"'Y" ,a,8"(a;). The maximal
invariant can be taken as u, where u(x,,...,x,) = (s %,..., s x,), s denot-
ing the sample variance. Defining the statistic b by b(u(x)) = a, we see that the
conditions of Theorem 4.1 are satisfied. It follows that m(j, T) = (j, 7). This
equation holds for general composite transformation models as shown in Theo-
rem 7.1.

Similarly, for the transferred expected geometries we have

. m}
b= Mo~ 1+m,’
D E({ml +g(2)[1+my—m(z+ n)]}3)
: 1+ m,)® ’

where
m,=E((z+«)"g"(z)) forr=0,1,2

and where E indicates mean value over z with z having probability density
function f.

6. The relation between marginal likelihood and modified profile likeli-
hood for composite transformation models. In this section we consider
composite transformation models with properties as described in Section 5.4. We
shall assume that the dominating measure p is invariant, so that x(g,x) =1in
(5.9). Then the marginal likelihood for the index parameter k based on the
maximal invariant statistic u may be expressed as

(6.1) L(k) = fL(x, h; x)A(R) " dv(h),

where » is an invariant measure on H =¥ = G/K and A is the modular
function of G [cf. Barndorff-Nielsen (1983), Theorem 5.1].

For later use we wish to assess the relation between this marginal likelihood
on the one hand and the profile likelihood and modified profile likelihood for «
on the other, when the original likelihood L(x, h) = L(«, h; x) is based on a
sample y,,..., ¥, of size n from a composite transformation model with model
function py(y; k, h). In this case x = (y,,..., ¥,) and

n
p(x;k, k) = I_'Ilpo(yi; K, h).

Any version of the likelihood function for (k, h) based on x may be inserted
on the right-hand side of (6.1). To determine the behaviour of the integral (6.1) it
is convenient to take

p(x; x, h)
L(k,h) = ————,
(r, b) p(x; Ko, ho)

where, in the present context, (k,, /,) denotes the actual (or “true”) value of the
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parameter (k, ). With [ = In L, formula (6.1) may then be rewritten as
(6.2) L(k) = [emnhtxo ki DACR) " dy(h),

where

po(yi; K, h)
I(ky, ho; 6, h) = —— ) log———.
oo z§1 Po( 3 ko, o)

For n —» oo we have, with probability 1,
(6.3) I(kg, ho; k, h) > I(ky, hy, k, h),
where I(kq, hg; k, h) is the discrimination (or Kullback-Leibler) information

po(y; k, h)
I("O’ ho; K, h) = _flo Ozy Ko )Po(y: Ko 0) dl-"o(y)
’ ’ 0

1o denoting the dominating measure for the probability functions py(-; k, k). In
view of the convergence (6.3) we may expect Laplace’s method to be applicable
for the asymptotic evaluation of (6.2). Before this method can be applied, it is,
however, necessary to reexpress (6.2) as an integral with respect to Lebesgue
measure A on H, rather than the invariant measure ». Denote the maximum
likelihood estimator of A when « is fixed by A, and let u, = AZx be the
corresponding maximal invariant. Then, after rescaling » by multiplication by a
constant, we have, by formulas (4.12) and (4.13) of Barndorff-Nielsen (1983),

dv(h) =\ junls, B B )| jun(r, € w,)| "7 dA(R)
so that

L&) = [L(k, b 2)ACR) " nalre, Bs hu) [ i, €5 )| dA(R).

By formal application of the multivariate version of Laplace’s formula [cf. Glynn
(1980)], we now obtain

(6.4) L(k) ~ @m)*n=28(h,) | jualk, e; w)| "2 L(x),

and, furthermore, we may expect the relative error of this asymptotic formula
to be O(n™?!); cf. Barndorff-Nielsen and Cox (1979) and Barndorff-Nielsen
(1983). Let

(6.5) R(x) = A(h,) " |jun(x, €3 1,)|

and r(x) = In R(«). Then, taking logarithms in (6.4) and dropping an additive
term depending on n only, we find that, in considerable generality,

(6.6) l(x) = f(x) +r(x) + Op(n‘l) A

with (x) of order O,(n) and r(x) of order O,(1).

As we will show, the quantity R(x) is—except for a multiplicative term
depending on the observations only—equal up to a factor of 1 + O,(n~'/ 2) to
the adjustment factor which, when applied to L(«), yields the modlﬁed profile
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likelihood i(:c) as defined, for general models, by (2.3). That is, we have

(6.7) (k) = {(k) + r(x) + O,(n~2),
and hence, by (6.6),
(6.8) I(x) = i(x) + O,(n"?).

Formulated otherwise, (6.7) states that, in the present case of repeated sampling
from a composite transformation model, the modified profile likelihood for the
index parameter k is equal up to a factor of 1 + Op(n‘l/ 2) to the approximation
to the marginal likelihood for k obtained by applying Laplace’s method to the
integral representation (6.1).

In some important classes of cases, stronger versions of (6.7) and (6.8) hold. If
h, = h orif G acts freely on €, then we have

(6.9) (k) = I(x) + r(x)
and so
(6.10) I(x) = (k) + O,(n71).

(It may be added that G acting freely on € is equivalent to K consisting only of
the identity element.) Equation (6.10) holds also if ¥k and & are orthogonal (i.e.,
i,, = 0). This too will be shown.

For any action y of the group G on a space % we let o (y) denote the
Jacobian of the transformation y(g) of #, evaluated at y € #. To derive (6.9)
and (6.7), let 8 and ¢ denote, respectively, the action of G on itself from the left
and from the right, ie., 8(g)g = g¢ and &(g)g = gg~!. Comparing (2.3) with
(6.5) and using formula (4.13) of Barndorff-Nielsen (1983), bearing in mind that
Y = h, we find that (6.9) is equivalent [up to addition to one side of (6.9) of a
function of the observations alone] to

A

|jhh(‘c’ hn)
(6.11) a2
Yy

(K’ i;'m 'e’ i;" a) A(’;’x)_lJi(iL,‘)(e)_IA(ﬁ)'JS(ﬁ)(e)’

where the action y has been defined in Section 5.4. Similarly, (6.7) is equivalent
to (6.11) holding except for an error of order O (n~'/?).
Now, the log-likelihood function may be written as

I(x, h; &, A, a) =1k, e; &, n(hh), a),
where 7 is defined in Section 5.4. On differentiating this we find

A~

jhh('c’ hx)

In(h~'h) 9% e an(h-h)"
=_{ ahT },,H,;‘aﬁaﬁ("’e"""(ﬁ" i')’“){ ah },,_,,A,“
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and
3%
T Ok [ s,

an(hh) 321 e an(h'h)"
={ ohT }Maﬁaﬁ(“’e’”’"(h“ ﬁ)’“){_aﬁ__}hﬁaﬁ

Thus (6.11) is equivalent to

}lwiu

To prove the validity of (6.12), either exactly (for the cases indicated) or up to
an error of Op(n‘l/ %), we need the following two lemmas.

an(h'h)"
dh

on(hoh)”

S M(h) " () T AR) dya(e)-

612 {

LEMMA 6.1. Let G = HK be a left factorization of the group G. For any
fixed element h’ of H we have

an(h™h)
ah

an(h'~'h)

(6.13) Py

Rk h—h

PRrROOF. Define a: H—> G, B: H—> H and «: G—> G by a(h) = h'"'A,
B(h) =n(h™'A") and «(g) =g ! Then the following diagram of mappings
commutes:

G—G
[
B
H— H
The “chain rule” of differentiation yields a corresponding commutative dia-
gram of differential mappings between tangent spaces:

TG,,-1,, — TGyp-1y,

Iat 1"]:

Ba
THh — 'THn(h—lhn)

If h="h, then ty: TG, -1, > TGp-1;, is —1, where I denotes the identity

mapping. Formula (6.13) can now be read off from the diagram of derivatives. O

LEMMA 6.2. Let G = HK be a left factorization of G. Then Jy;(e) = Jy(e)
for any h € H.

ProoF. First note that if 2 and A’ are any two elements of H, then
(6.14) n(W'h) = y(R)h.
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Next let g = hk denote an arbitrary element of G. Writing g symbolically as
(h, k) and employing the mappings 7 and { defined by

n:g—h, $ig—k
(cf. Section 5.4), we have, for any ' € H,
8(h')g = (W) (h, k) = (n(h'h), {(h'hk))

and hence the differential of 6(A’) at g is
In(n'h)T

oh
g (Whk)" 35 (Rhk)"

dh ok
from which we find, using (6.14) and {(2'k) = &,
(k)"

ok fre

= Jy’(h’)(e)' O

D§(k)(g) =

JS(h’)(e) = 'I;'(h’)( e)

Formula (6.13) and Lemma 6.2 together show that (6.12) holds exactly pro-
vided & = A,. When A and A, are not identical, (6.12) is still correct to order
O,(n~'/?) as may be seen by expanding h, in k around g, the first term in this
expansion being A. In case the parameters A and « are orthogonal, i.e., i =0,
we have that A, — A is of order O,(n~") rather than O,(n~'/?) and consequently
(6.12) is then valid to order O,(n™1).

Now suppose that G acts freely on ©. Then H =G and so we have
n(h~'h) = h~'h and

an(h A .
In(hh) _ n(B)
(6.15) FY3
= Jyn-1my(€)/Iscye).
We next need the facts that

oh~!
(6.16) "‘ﬁ = Js(h)(e)/Js(h)(e)
and ‘
(6.17) A(h) = Je(h-l)(e)/fjs(h)(e)-

[See, for instance, Fraser (1979), page 148.] Using the chain rule of differentiation
together with formulas (6.15), (6.16) and (6.17) we obtain

In(h"h) | _|9u(A7'h) || d:a(e)
ok | oA og
= A(h_lﬁ)Js(h“ﬁ)(e)/JS(h)(e)'

g—h 1k
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Formula (6.12) now follows from Lemma 6.2 in conjunction with (6.15) and the
fact that the modular function is a multiplier, i.e., A(AR") = A(R)A(R).

We have now established (6.7) and (6.8) and we have shown the validity of
(6.10) subject to either 4 and « being orthogonal (which is the case, in particular,
if fz,‘ = k) or G acting freely on Q. )

Using (6.6) we can relate the marginal maximum likelihood estimate £ of « to
the maximum likelihood estimate & from the full likelihood. In considerable
generality, we have

K=kR+an'+ 0,(n"?)

for some coefficient a, = a,(k,, h,). Differentiating (6.6) with respect to x and
inserting £ for k, we obtain

0 = (DI)(%) + (Dr)(%) + 0,(nY)

= —ja,nt + (Dr)(R) + O,(n"1/2)

—Jhay + (Dr)(R) + O,(n"1/2),

where j, = n~Y = n Y D)%) is the observed profile information on k per
observation. Thus, by Theorem 4.2, we may take

ay(x, k) = {mig(x)} "'Dr(x)

with i, denoting the expected information per observation.

7. Geometries of distributional-shape manifolds. In composite transfor-
mation models it is often appropriate to think of the index parameter k as
determining distributional shape while the group parameter y may be consid-
ered as a generalized location parameter. We are interested here in various
statistical geometries on the manifold )¢, the range space of the parameter «,
and we shall refer to ¥ as the manifold of distributional shapes.

As indicated in Table 1, there are several ways in which the distributional-
shape manifold can be set up as a statistical manifold, i.e., can be equipped with
a kit. [Recall from Section 2.2 that a kit is a pair (¢, S) consisting of a metric
tensor ¢ and a skewness tensor S.] The kits in Table 1 are defined in Section 4.

That (i, D) = (mi, mD) is well defined is a consequence of Theorem 4.3 and
of the fact that the property of being, a composite transformation model is
preserved under repeated sampling.

Sufficient conditions for m,(f, T) = (=, mT) to be well defined are contained
in Theorem 7.1, which also relates m,( f, T) to the profile object ( 7.

The profile kits ( j; T) and (Z, D) are defined for general parametric models,
whether of the composite transformation type or not, provided there is an
L-sufficient statistic for the parameter «; cf. Section 4.

The definitions of the modified profile kits ( ], i‘) and (i, D) are analogous to
those of the profile kits (f, 7) and (Z, D). The proof that ( ], i‘) is a kit is similar
to that for (j,7) and uses the fact that j and 7 are obtained by evaluating
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higher mixed derivatives of iat points where ii = 0. That ({, b) is well defined
for models with cuts, exponential models with 7-parallel foliations and composite
transformation models follows from Barndorff-Nielsen (1985).

The marginal kits ( ], T) and (Z, D) are simply the observed and expected kits,
defined like (7, 7) and (i, D) but from the marginal model for u.

We emphasize again that throughout the following the statistical model
(%, p, Q) is assumed to be a composite transformation model as described in
Section 5.4.

THEOREM 7.1. Let a be a G-invariant statistic such that (&, a): - Q@ X A
is bijective and sufficient for w and let b be the statistic defined by a(x) = b(u(x)),
where u is the orbit representative. With (, T) and (J, T) defined on the basis
of the ancillaries a and b, respectively, we have that j and T transfer to ¢, by =,
and that

(7.1) (1 T) = (1.F).

ProoF. Due to the L-sufficiency of u (cf. Section 5.4), the theorem is a
corollary of Theorem 4.1. O

We have not found any general conditions which would ensure that, in
analogy with (7.1), m(i, D) = (i, D). However, a related result may be estab-
lished on the basis of the concept of profile discrimination information, as
defined in (4.6).

The following theorem is a “profile” version of the result that the discrimina-
tion information I determines both the expected information i and the expected
skewness tensor D on 2 [by (4.4) and (4.5)].

THEOREM 7.2. For a composite transformation model with a quasiinvariant
dominating measure we have

. 3% (x, )
(7.2) W,l(lc) = T(‘)K'_ -
and
3%k, k) 3%(k, ")
(7.3) mD(x) = [ax k' 9k’ Ok’ Ik Ak .

PROOF. Choose w in 7~ '(k). For «’ near k define . by
I(w,(x’, zﬁ,‘)) = mjnl(w,(n', v)).
It follows from (5.10) that I(gw, gw’) = I(w, ') and so
Ik, k') = 1w, (', 40))-

A simple analogue of the proof of Theorem 4.2, using the distribution corre-
sponding to w instead of the empirical distribution, gives the required results. O
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More generally, in suitable cases, kits obtained from contrast functions (as
indicated at the end of Section 4) transfer to 2, as in (7.2) and (7.3).

From the inferential point of view one should ideally work with the geome-
tries ( i, f ) and (z, D) when « is the parameter of interest. Often, however, these
quantities are analytically and numerically intractable and approximations are
needed. Under wide conditions the corresponding profile and modified profile
geometries, as set out in Table 1, afford such approximations, with modified
profile likelihood yielding accuracy of higher order than profile likelihood; cf.
Section 6. We shall not attempt a detailed comparison here, but we wish to make
a couple of observations.

Suppose, as in Section 6, that the composite transformation model considered
is for a sample y,,..., ¥, of size n from an underlying composite transformation
model which is indicated by lower index 0. From Theorem 4.2, we find that as
n — oo, with probability 1,

n7Y - mi,
or, otherwise expressed,
n~Yj-mi)-o0.
Furthermore, by differentiating (6.6) twice and three times we obtain
J=7+0,1)
and
T =T+ 0,(1).
Consequently, we find that, with probability 1,
n~Yi(xk) - mi(x)) > 0
and
n=Y(D(x) — mD(x)) - 0.

8. Examples concerning composite transformation models. We now
illustrate the results of Section 7 by comparing some of the diverse kits for a
variety of examples.

ExAMPLE 8.1. Normal model under scale. The univariate normal model with
probability density function

p(x;1,0) = (2m) %0 Yexp( ~ (x — n)*/20%)
and with parameter space {(p, ) € R%: o > 0} is a composite transformation
model under the multiplicative (scale) action of G = R* on = R. The coeffi-
cient of variation k = 0~ 'u is an invariant parameter and the incidental parame-
ter can be taken as ¢ = 6. Then by direct calculation or from the result for
general location-scale models given in Section 5.4 we have

i =1, ey = =¥, Iy =¥ %2+ «?),
D,.=0, D,,=-2¢"Y, D,,=4v"%, Dy, = —2¢"%4+ 3«?)

KKK K



1038 0. E. BARNDORFF-NIELSEN AND P. E. JUPP
and so
mi=2(2+ x?) ",
-3
mD = —8k(3 + k2)(2 + k?) .

ExXAMPLE 8.2. Inverse Gaussian model under scale. The inverse Gaussian
model N~ (¥, ¥) has sample space (0, o) and model function

‘/— exp(\/—)x exp{— -;—(xx‘1 + x[/x)},

where x > 0 and ¢ > 0. It is a composite transformation model under the
multiplicative action of R* on (0, 0). On the submodel with ¢ > 0 we can use
the invariant parameter k = /x¢ and the incidental parameter p = \xy'.
Calculation yields

81  pxx¥) =

b= 367% A =TT g, = 7M1+ 2¢)
so that
mi=x"(1+2x)7}
We find also that
D, = —«7% D, = - u‘lx‘2,
D, =-p%'(1+x), D, =-p"°
and so

mD = —xk3(1 + 2k) "3(8k3 + 6x2 + 3k).

EXAMPLE 8.3. von Mises—Fisher model. Consider the (d — 1)-dimensional
von Mises—Fisher distribution

(8.2) p(x;k,¥) = ag(x)exp(ry - x),
where x and ¢ are unit vectors in R¢, k > 0 and

aq(k) = "d/z—l/{(ZW)dﬂId/z—l(")}-

The sample space is S, the unit sphere in R% The action of the rotation
group SO(d) on S¢-! gives this model the structure of a composite transforma-
tion model. After removing the origin [which is the fixed-point set of the action
of SO(d) on the parameter space] from R we have a submersion (x, ¢) — k of
Q = R?\ {0} onto = R*. Simple calculations show that the parameters x and
Y are orthogonal and

2

"110 lOmc = d 2 10g ad( )
d3
D DOm:n - d 310g ad(")
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Let r denote the resultant length of a random sample of size n from (8.2). Then
i(x) = nlogay(k) + kr
and calculation shows that
(z, D) = =,(i, D) + 0(1).
Since the logarithm of the modified profile likelihood is
(1-d)
2

i(x) = i(x) + log(kr),

we have
(i, B) = (i, b).
The marginal log-likelihood of «x based on r is
I(x; r) = nlog ay(x) — log ay(rx)
so that
n i - mi) = —nE(r?4’(xr)),

n YD -mD) = n~ Y —E(r*A®(xr)) + 3nA(x)E(r?A’(xr))

+3nA'(k)E(r{A(xr) — 1}) + 3E(r3{A(xr) — 1}A'(xr))},
where A(k) = —(d/dk)log a (k). It follows from standard theory of exponential

families that A’(x) > 0, and so 7 < =i, in agreement with (4.11).

EXAMPLE 8.4. Hyperboloid model. The hyperboloid model of exponential
order 3 may be defined as the joint distribution of two random variables u and v
with probability density function

p(u, v; x, 9, A) = (27) " *Ae* sinh u exp(—A{cosh x cosh u
(83) —sinh x sinh u cos(v — ¢)}),

where 0 < u, 0 < v < 27 and where the parameter w = (x, ¢, A) satisfies 0 <
x <00, 0<¢p <27 and 0 <A < 0. This can be viewed [Barndorff-Nielsen
(1978b) and Jensen (1981)] as a model for observations on the positive unit
hyperboloid in R® with properties similar to those of the von Mises—Fisher
distribution on the unit sphere. For a sample (u,, v,),...,(u,, v,) from (8.3) the
maximum likelihood estimator (X, , A) is minimal sufficient and A =
((r/n) — 1)71, where

r= {( Y cosh ui)2 - (Zsinh u;cos vi)2 — (X sinh u;sin v,.)2}
is the analogue of the resultant length of von Mises—Fisher observations. The
statistic r’ = r — n follows the gamma distribution

An—l
I'(n-1) d

1/2

m.—2e—Ar’
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and the joint distribution of ¥ and ¢ conditional on r (or, equivalently,
conditional on A) is that of the hyperboloid model (8.3) but with A replaced by
rA. For fixed A, (8.3) is a transformation model, the group action being that of
the special pseudoorthogonal group SO (2, 1). [For proofs and details, see Jensen
(1981).]

The model for (r, %, ) can be considered as a composite transformation
model with index parameter k = (x, A), relative to the obvious action of SO(2).
The profile, modified profile and marginal log-likelihoods of & are

(8.4) (k) = n{ln A + A} — rAcosh(g — x),
(8.5) I(k) = I(x) + In(rA sinh £ sinh ),
I(x) = U; %, 7)
(8.6) = (k) — rAsinh g sinh x + log I,(rA sinh £ sinh x)

= I(x) + log{I,/1}}.

In the latter expression and the text to follow, I, indicates one of the Bessel
functions, in the standard notation. Furthermore, I is the leading term of the
asymptotic expansion of I (x) for x — co.

Expected and observed geometries on § are identical since (8.3) is a full
exponential model. From

I(x,9,A) = i(x,\) + rAsinh % sinh x{cos($ — @) — 1}
we find Jf“p = 0 and, using (7.1) and r = n(A~! + 1) and writing A for A7 + 1,
('”zf)xx = nAX, ("!j)xx =0, (mf)an = nA 72
and
(T = 30AK, (1T ) r = O,

(W!T)xk)\ = Oy (W!T))\)\)\ == n7\"3.
On the other hand, as the modified profile likelihood Z( «) depends on (%, ¢, A)
through (%, A) only and since (%, X) is minimally L-sufficient for k, modified
profile geometries on ¥ are defined from (8.5) by
T = AN + Isinh =2,  J,=0, ju=(n+1)A2
and '

_ . -3 —
ixxx = 3nAN + cosh x sinh™°y, Txxx =0,

Txm =0, ixxx = —(n—-1)A72

These latter geometries approximate the marginal geometries induced by (X, r)
to order O(n~') since the asymptotic expansion of I(x)/Ij(x) descends in
powers of x. This also follows from (6.10).

We may further use the hyperboloid model to illustrate the induction of
geometries from profile likelihood or modified profile likelihood in the presence of
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an ancillary statistic. For this purpose, suppose A is known and take x as the
index parameter. Then

i(x) = —r\cosh(% — x),

which depends on the observations through (x, r) only. Now, r is exactly
ancillary and treating {(x) as if it were a genuine log-likelihood function with
associated ancillary r we find ixxx ixx x = 0, so that the induced skewness
tensor T is 0. It is easily checked that nT =

Note that in the present case the observed and expected skewness tensors as
determined from the conditional model for § given r are complicated expressions

involving the Bessel function I, and its first three derivatives.
ExaMPLE 8.5. Hyperbolic distribution. The hyperbolic distribution

p(x; ¢, m,p,8) = {20V1 + 72K ()}
(8.7) Xexp{—{[m 1+(x—p,)2 _W(x—p,)]}

6 8

has been found to fit empirical distributions from a wide variety of contexts.
Examples are given in Barndorff-Nielsen and Blaesild (1981, 1983a) and
Barndorff-Nielsen, Blaesild, Jensen and Serensen (1985). It is of some practical
interest to be able to compare the “shapes” of the various hyperbolic distribu-
tions which occur, irrespective of the origin and scale used for each set of
observations. In other words, it is useful to study the shape manifold of the
composite transformation model (8.7).

This hyperbolic shape manifold can be parameterized by the invariant param-
eters (§, 7) or by the parameters (£, x) defined by £¢=(1 + {)""/2 and x =
¢7(1 + w?)~'/2 The domain of variation of (£, x) is an isosceles triangle and this
shape triangle has proved useful in the comparison of hyperbolic shapes; see
Barndorff-Nielsen, Bleesild, Jensen and Serensen (1985) and Barndorff-Nielsen
and Christiansen (1985, 1988). For more detailed comparisons of shapes, it would
be useful to have some knowledge of the various geometries on the shape
triangle. Expressions in closed form for (i, D), (z, D) and (i, D) seem, however,
not to be available and considerable numerical calculations are required to
obtain such knowledge.

A number of further examples are discussed in a report available from the
authors.
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