The Annals of Statistics
1988, Vol. 16, No. 2, 7561-758

QUADRATIC LOSS OF ORDER RESTRICTED ESTIMATORS
FOR TREATMENT MEANS WITH A CONTROL!

By CHU-IN CHARLES LEE
Memorial University of Newfoundland

We consider an experiment which consists of & treatment groups and a
control group. Let the sample means Yy, Y;,..., Y, be independent normal
variates with expected values pgo, py,...,p, and with variances
o2/ny, 6%/n,,...,a%/n,. Let wy, wy,...,w, be positive weights and let
pE, p¥,..., n}t be the weighted least squares estimators subject to the con-
straints py < p;, i = 1,..., k. We establish that for large k, E(p¥ — po)? >
E(Yy — po)? when w;=n;, i=0,1,..., k. Under suitable conditions, we
show that E(u* — p,)? < E(Y, — ;)% i=0,1,..., k.

1. Introduction. We consider an experiment which consists of 2 treatment
groups and a control group. Let Y;;, j=1,2,...,n,; i=0,1,..., k, be indepen-
dent normal variates with means p; and with a common variance o2, where i = 0
refers to the control group. If we are interested in determining which p; is
significantly different from p,, Dunnett’s (1955) multiple range test may be
applied. There are certain applications’ in the literature which exhibit the
property that

(1.1) MOSM,-, i= 1,2,..., k,

such as the blood cell counts in Dunnett (1955). The case in which all of the
treatiment means are no larger than the control mean can be treated by changing
signs. The property (1.1) is known as the simple tree ordering [cf. Barlow,
Bartholomew, Bremner and Brunk (1972)]. A likelihood ratio test for (1.1)
against all alternatives can be found as a special case in Robertson and Wegman
(1978). In this article, we shall assume that the simple tree ordering (1.1) is our
prior knowledge. If we are interested in testing the hypothesis py=p, = -+ =
By, it is to our advantage to restrict the parameter space accordingly [cf.
Bartholomew (1961) and Robertson and Wright (1985)].

Let Y,, Y,,..., Y, be the sample means for the 2 + 1 groups. They are the
unrestricted maximum likelihood estimators for pg, gy, ..., t, they are unbiased
but they may fail to satisfy (1.1). We are interested in utilizing the prior
knowledge (1.1) to search for a better estimator with smaller mean square error
pointwise than the usual estimator (Y, Y3, ..., Y,). Let w,, w,, ..., w, be positive
weights and let p* = (ug, u¥,..., u¥) be the weighted least squares estimator,
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i.e., p* minimizes
k 53 2
Z (Y; - p‘t) wi:
i=0

subject to the restriction (1.1). The weighted least squares estimator p* is known
as the isotonic regression under the simple tree ordering [cf. Barlow,
Bartholomew, Bremner and Brunk (1972)]. For the special case when the natural
weights w;, =n;, i=0,1,..., k, are used, the isotonic regression p* is the
maximum likelihood estimator subject to the restriction (1.1) and the notation fi
will be used.

The purposes of this article are three-fold. First, we establish that for large %,

A =3 2
(1.2) E(fio— o) > E(% — po) -
Second, we establish that
= 2
(1.3) E(p§ — o)’ < E(% - po)

for large values of w, (as compared with w;,...,w,). Finally, we show that if
n; < ny, i > 1, then for any given positive weights wy, wy, ..., wy,

(1.4) E(pr - )’ <E(Y, - p)’,

where the condition n; < n, is necessary. It is quite common to have no less
observations on the control than on the treatments. Ever since Lee (1981)
showed that

(1.5) E(f; - p)’ < E(Y, - p)°

holds pointwise if (1.1) is replaced by p, < p, < :++ < p,, there has been
speculation that (1.5) might hold pointwise for all types of order restrictions. The
reverse inequality (1.2) under the simple tree ordering (1.1) is the first counterex-
ample in the literature. The inequality (1.3) indicates that the optimal weights
are not necessarily the natural weights n,;.

The isotonic regression p* can be computed by the minimum lower set
algorithm [cf. Brunk (1955)], the minimum violator algorithm [cf. Barlow,
Bartholomew, Bremner and Brunk (1972)] and the min-max algorithm [cf. Lee
(1983)]. The computation procedure is as follows. Let Y;) < Y, < -+ < Y, be
the order statistics of Y}, Y;,..., Y}, let w,, be the weights associated with Y;,
and let '

i i
A= L wyY) / 2w
Jj=0 j=0
‘where wg, = w, and 17(0) =Y,. We compute A, 4,,..., A, successively until

A, < Y,y r <k, or otherwise A,_, > ¥, in which case we let r = k. By the
max-min formula [cf. Barlow, Bartholomew, Bremner and Brunk (1972)], p§ = A,
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and it can be expressed by

16) e = min( T w¥,/ T w),

ieS ieS

where S is any subset of {0,1,..., k} containing the element 0. The isotonic
regression p* is obtained by settmg p¥ = max{p¥, Y}, i = , k. It is clear
that p} < Y, and p} > Y, i > 1. Since these inequalities are strict with positive
probabilities, the pu¥ are biased. By Theorem 1.4 of Barlow, Bartholomew,
Bremner and Brunk (1972), ):‘,,_0 p., w; = Tk o Yw, so the welghted sum is
preserved The isotonic regression p* is a continuous function of Y,,Y,,...,Y,

and it is consistent.

2. Counterexample. Knowing that (1.1) holds doés not guarantee the mean
square error reduction for the control group. Theorem 2.1 provides a counterex-
ample by illustrating the unboundedness of the bias of {i,.

THEOREM 2.1. If the means py, By, - . ., I, and the sample sizes ny, n,, ..., n,
are bounded, then for sufficiently large k,

E(fio — 1o)* > E(Y - #0)2-

ProoF. Without loss of generality, we may assume p, = 0. It will be shown
that

E(foliyy<q) » o ask— oo,

By (1.6), fi, is decreasing in % and symmetric in the % treatment populations.

Since a sample size must occur infinitely often in n,, n,,..., we may assume
n=n;,=ny,= ---.Also fi, is increasing in p,, py,..., 1, it suffices to assume
Py =pp= ' =pp=4p with p the upper bound of the treatment means. Let

Y(l) =min{Y,, Y,,...,Y,} and [i,= (n,Y, + nY(l))/(n0 + n). By (1.6) again,
fip < fly. It suffices to show that E(f I;; .q)® = o as k — oo. However,
17'(1) — —oo almost surely. Because fi,, is monotone in %, the monotone conver-
gence theorem completes the proof. O

It is of interest to find the smallest integer & satisfying (1.2). We consider the
case n, =ny,= -+ =ny=nand g, = py= -+ = p, = p. Since fi, is increas-
ing in p, under the extreme condition g, = p we found by simulation that the %
can be as small as 5 provided n, > 3.5n. When n, = n, the smallest & is 8 as
shown in Table 1 where p* = i when w;=1,i=0,1,..., k.

‘3. Mean square error at the control group. By (1.6), u§ is increasing in
wy. Therefore, the magnitude of the bias of p} is decreasing in w,. Theorem 3.1
demonstrates that by increasing the weight w, the squared error reduction can
be achieved. It does not require that p satisfy (1.1).
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TABLE 1
Simulated mean square errors E(p¥ — p;)? under 100,000 iterations when Y,,Y,...,Y, are
independent normal variates with the same means and a common variance 1 and w; = wy = -+ =
w, =1

wy=1 wo=k/3
k i=0 i>1 i=0 i>1
1 0.7500 0.7500 0.8139 0.8153
2 0.7308 0.7179 0.7805 0.7483
3 0.7662 0.7164 0.7662 0.7164
4 0.8191 0.7214 0.7540 0.6992
5 0.8817 0.7290 0.7520 0.6921
6 0.9387 0.7408 0.7483 0.6842
7 0.9982 0.7492 0.7458 0.6801
8 1.0553 0.7578 * 0.7445 0.6795
9 1.1086 0.7647 0.7434 0.6791
10 1.1695 0.7772 0.7424 0.6672
12 1.2632 0.7876 0.7306 0.6673
14 1.3610 0.7998 0.7289 0.6603
16 1.4509 0.8117 0.7340 0.6641
18 1.5300 0.8185 0.7315 0.6633
20 1.6072 0.8288 0.7352 0.6584
25 1.7769 0.8479 0.7324 0.6641

THEOREM 3.1. Let the means pq, iy, - .., by, the sample sizes ny, n,,..., n,
and the positive weights w,, ..., w, be fixed. There exists a positive real W such
that if wy > W, then

E(ud — po)* < E(% — o).

PrROOF. Without loss of generality, we may assume p, =0 and 02/ny,=1.
Let y, <y, < -+ <y, be observed values of 17(1), cees I—Qk), w;, be the weight
associated to y;, s, = XI_, w;), a, = Xi_, w;y/s, and b, =y, + s,(y, — a,)/w,
for r =1,..., k, and for convenience let s, =0, a, = a,, by= —o0 and b, ,, =
+ 00. Then,

pg = (wo?o + srar)/(wo +s,) if b, < 17;) <b.,,

for r = 0,1,..., k. Define a function f(¢) as u} as before with ¥, replaced by ¢
and f(b) =y, r=1,...,k Then f(¢) is a strictly increasing continuous con-
cave piecewise linear function with f(t) =t¢ if t <y, = b, and (wyt + s,¥,)/
(wy + 83) < (8) < (wot + 8,1)/(wp + 8y) if £ > .

Suppose that y, <0. There exists a positive real e —s,y,/w,<e¢e<
— 8,/ W,, such that f(e) = 0. Define a function g(t) by

glt)y=t ift<y

and
g8(t)=—-y(t—e)/(e—y) ift>y.
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Then f(¢)? < g(t)%. Let A(¢) = t2 — f(t)% Then
[7 A@)s(t) dt = {—2e8(3) + (3 - 32)e} /(e = )

+£2{y1¢(y1) + (1 - yf)(f(yl) -3 "’3’12}/(£ - y1)2
>3- 1y2/(e - 3)" - 2 /(e — 3,)"

> 1 = Jwg/(w, + 31) — yisp/(wp + sk)2,

where ¢(t) is the standard normal probability density function and ®(¢) is the
corresponding upper tail probability. The second term on the right side of the
first inequality is positive. The last inequality is due to the observation that
the functions y2/(t — y,)? and t2/(t — y,)? are decreasing and increasing, re-
spectively, for ¢ > 0 and the aforementioned two bounds for ¢ are then evaluated
respectively.

Suppose that y, > 0. It is trivial that the left-hand side of the preceding
inequality is positive. Therefore,

E(Y; - #8?) = E[E{A(%)1Y, ., V)]
> 41 — wd/(wy + m)*| P(Yy, < 0) — sZE(Y3) /(wy + 54)°
> mp(zl) < 0)(“’0 -W)/(w, + sk)z,

with W = s2E(Y3)/{mP(Y,, < 0)} and m = min{w,, ..., w,}. The proof is com-
plete. O

Theorem 3.1 indicates that the reduction of the mean square error E(u} — p,)?
occurs for large w,. In a simulation study (provided in Table 1) under the
same means, the same sample sizes and w; = 1, i = , k, we found that w, =
k/3 is a suitable choice to significantly reduce the squared error for p} where
E(Y, — po)? is set to equal 1.

4. Mean square errors at the treatment groups. Brunk (1965) showed
that for any given positive weights wy, w;, ..., wy,

k k k
Y (Vi-p)wz X (Y- p)w+ X (pr - p)w
i=0 i=0 i=0

provided that (1 1) holds. Thus the total weighted mean square error of the
isotonic regressmn Tk o E(p¥ — p;)’w; is strictly less than that of the usual
estimator T*_ ; E(Y; — p;)’w;. It follows that (1.4) holds for at least one i,
i=0,1,..., k. Under suitable conditions, we shall show that (1.4) holds for all i.
Theorems 4.1 and 4.2 do not require that p satisfy (1.1).

THEOREM 4.1. For a fixed index i, 1 <i <R, if p; > po and n; < n,, then
2 =53 2
E(pr - )" <E(Yi-p)
for any given positive weights wy, w,, .. ., Wy,
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PrOOF. By symmetry, it suffices to show the preceding inequality for i=k
when p, > poand n, < nj. Let X = (Y(l), Yx—1)), where Y < Y e <
Y; x—1) are the order statistics of Y,Y,,.. Yk s let Z = (Y, Yk) and let

A(Z) = (Yk - l"'k) - (pt - Hk) .
By conditional expectation, it suffices to show that
(4.1) E(A(Z)X=x)>0
for any given x = (xy,..., X;_;). |
Without loss of generality, we may assume p, = 0. Consider a point z =

(¥os ¥)- If ¥y < ¥,, then A(2) = 0. We shall pair all other points z; = (¥, ¥1)
and z, = ( Y2, ¥i2) in the following manner:

(4.2) Yor = Y1 = Yoz — V2> 0
and
(4.3) (Yor + Va1) — 215 = 21, — (Joo + Fpo) 2 0.

Let f(z) be the probability density function of the bivariate normal random
vector Z. We shall establish the inequality

(44) f(2)A(z)) + f(22)A(2,) = 0,

and that (4.4) holds strictly with positive probability. Consequently, (4.1) fol-
lows.

By (4.2) and (4.3), the conditions that u, > p, and n, < n, are sufficient for
the inequality

(4.5) (z,) < f(2,).

Let p} and p¥, be the values of the isotonic regression p* at the index 0
evaluated at 2z, and 2,, respectively. If ¥,, < p;, then p}, = pd < ¥, and by
(4.2) and (4.3),

(4.6) A(z,) > 0.

Suppose that ¥,, > u¥. Then A(z,) = 0 and hence (4.4) holds. Suppose that
Y1 < pd;. For any nonnegative integer ¢, t < &, by (1.6) we have that

¢ ¢
(woyoz + Z w(j)xj)/(w0+ Z w(j))

ig=1 J=1
t ‘ t t
=W + X WX ; wy+ Y Wiy | = wo( Yoo — Yoa) [ | wo + > Wy
j=1 j=1 j=1

= pd = (For — ¥o2)

> Y — (Yoo — Yoz)

= 5’[@2,

where by convention L’_; w;, = L%, w;x; = 0 if ¢ =0 and w;, is the weight
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associated with x;. Therefore, there is a nonnegative integer r, r < k — 1, such
that

r r
Bo2 = BiEs = (wo5'02 + W Yo + )y w(j)xj)/(wo +w+ Y w(j))'

j=1 Jj=1

By (1.6) and (4.2), for the same integer r we have that

,
wo+ w, + X w(j)) — B
j=1

r
B — BE < (wo5'01 + W+ X w(j)xj)/
j=1

= (wo + W) (I — 5’k2)/(wo +tw+ X w(j))
j=1
<V~ Yr2 )
and hence p¥ — ¥, < pfy — Yio. It follows from (4.2) and (4.3) that
(4.7) A(z,) + A(z,) > 0.
By (4.5)-(4.7), the inequality (4.4) holds strictly. This completes the proof. O

It is quite common to have no less observations on the control than on the
treatments. Under that condition the inequality (1.4) holds for all i, i = 1,..., &,
if (1.1) is satisfied. Furthermore, (1.4) holds for i = 0 as well if w, is sufficiently
large. The condition n; < n, is necessary for Theorem 4.1 as illustrated in the
example.

EXAMPLE. Let the sample means Y, and Y, be independent normal variates
with expected values p, and g, and with variances 0%/n, and ¢?/n,. Let p§ and
p¥* be the weighted least squares estimators for u, and p, with positive weights
w, and w, subject to the constraint p, < p,. Closed form expressions for the
mean square errors E(u¥ — p;)% i = 0,1, are available. When p, = p,,

E(ps - #0)2 = 02/”0 + 02“’1[("0 - n)w, - 2n1w0]/[2n0n1(w0 + w1)2]
and

E(pt - p1)? = 0%/n, + o2w,[(ny, — no)uw, — 2n0w1]/[2n0n1(w0 + w1)2] .
Therefore, if n,>n, and w, < (n,— n)w,/2n,, it follows that we have
E(p} — 1o)* > E(Y, — po)® Similarly, if n, > ny and wy > 2now,/(n, — no),
then E(p* — p,)?> > E(Y, — p,)®. The total weighted mean square error
reduction is 6227 (ng! + n7l)/(wy* + wi ).

If one allows w, to vary, then the inequality (1.3) does not hold even when
k =1 as illustrated in the preceding example. The condition n; < n, may be
relaxed according to Theorem 4.2.

"THEOREM 4.2. Let i =Xt nu,/T% on; For a fixed index i, 1 < i <k, if
W > ,E, then

E(f; - N'i)2 < E(?z - l‘i)2~
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PROOF. Let Y =T ,n,Y/Tk o n; Recall that j,= Y, if Y, > i, and j, =
fio < Y if Y, < fi,. Therefore,

E(?z - Mi)2 - E(ﬁi - P‘i)z = E(Y: - ﬁi)(_i +4;, - Zﬂi)I[l_/i<ﬁo]

= 2E(Y - 1) E(%: - o)z, <402 O,

where the last identity is due to the fact that lzf' is independent of l_/', — fio. This
completes the proof. O
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