QUADRATIC LOSS OF ORDER RESTRICTED ESTIMATORS FOR TREATMENT MEANS WITH A CONTROL¹

By Chu-In Charles Lee

Memorial University of Newfoundland

We consider an experiment which consists of k treatment groups and a control group. Let the sample means $\overline{Y}_0, \overline{Y}_1, \ldots, \overline{Y}_k$ be independent normal variates with expected values $\mu_0, \mu_1, \ldots, \mu_k$ and with variances $\sigma^2/n_0, \sigma^2/n_1, \ldots, \sigma^2/n_k$. Let w_0, w_1, \ldots, w_k be positive weights and let $\mu_0^*, \mu_1^*, \ldots, \mu_k^*$ be the weighted least squares estimators subject to the constraints $\mu_0 \leq \mu_i, \ i=1,\ldots,k$. We establish that for large k, $E(\mu_0^*-\mu_0)^2 > E(\overline{Y}_0-\mu_0)^2$ when $w_i=n_i, \ i=0,1,\ldots,k$. Under suitable conditions, we show that $E(\mu_i^*-\mu_i)^2 < E(\overline{Y}_i-\mu_i)^2, \ i=0,1,\ldots,k$.

1. Introduction. We consider an experiment which consists of k treatment groups and a control group. Let Y_{ij} , $j=1,2,\ldots,n_i$, $i=0,1,\ldots,k$, be independent normal variates with means μ_i and with a common variance σ^2 , where i=0 refers to the control group. If we are interested in determining which μ_i is significantly different from μ_0 , Dunnett's (1955) multiple range test may be applied. There are certain applications in the literature which exhibit the property that

$$\mu_0 \le \mu_i, \qquad i = 1, 2, \dots, k,$$

such as the blood cell counts in Dunnett (1955). The case in which all of the treatment means are no larger than the control mean can be treated by changing signs. The property (1.1) is known as the simple tree ordering [cf. Barlow, Bartholomew, Bremner and Brunk (1972)]. A likelihood ratio test for (1.1) against all alternatives can be found as a special case in Robertson and Wegman (1978). In this article, we shall assume that the simple tree ordering (1.1) is our prior knowledge. If we are interested in testing the hypothesis $\mu_0 = \mu_1 = \cdots = \mu_k$, it is to our advantage to restrict the parameter space accordingly [cf. Bartholomew (1961) and Robertson and Wright (1985)].

Let $\overline{Y}_0, \overline{Y}_1, \ldots, \overline{Y}_k$ be the sample means for the k+1 groups. They are the unrestricted maximum likelihood estimators for $\mu_0, \mu_1, \ldots, \mu_k$, they are unbiased but they may fail to satisfy (1.1). We are interested in utilizing the prior knowledge (1.1) to search for a better estimator with smaller mean square error pointwise than the usual estimator $(\overline{Y}_0, \overline{Y}_1, \ldots, \overline{Y}_k)$. Let w_0, w_1, \ldots, w_k be positive weights and let $\mu^* = (\mu_0^*, \mu_1^*, \ldots, \mu_k^*)$ be the weighted least squares estimator,

Received July 1986; revised September 1987.

¹Research supported in part by the Natural Sciences and Engineering Research Council of Canada under Grant A4541.

AMS 1980 subject classifications. Primary 62F10; secondary 62A10.

⁴ Key words and phrases. Isotonic regression, maximum likelihood estimator, order statistics, simple tree ordering.

i.e., μ^* minimizes

$$\sum_{i=0}^{k} \left(\overline{Y}_i - \mu_i\right)^2 w_i,$$

subject to the restriction (1.1). The weighted least squares estimator μ^* is known as the isotonic regression under the simple tree ordering [cf. Barlow, Bartholomew, Bremner and Brunk (1972)]. For the special case when the natural weights $w_i = n_i$, i = 0, 1, ..., k, are used, the isotonic regression μ^* is the maximum likelihood estimator subject to the restriction (1.1) and the notation $\hat{\mu}$ will be used.

The purposes of this article are three-fold. First, we establish that for large k,

(1.2)
$$E(\hat{\mu}_0 - \mu_0)^2 > E(\overline{Y}_0 - \mu_0)^2.$$

Second, we establish that

(1.3)
$$E(\mu_0^* - \mu_0)^2 < E(\overline{Y}_0 - \mu_0)^2$$

for large values of w_0 (as compared with w_1, \ldots, w_k). Finally, we show that if $n_i \leq n_0$, $i \geq 1$, then for any given positive weights w_0, w_1, \ldots, w_k ,

$$(1.4) E(\mu_i^* - \mu_i)^2 < E(\overline{Y}_i - \mu_i)^2,$$

where the condition $n_i \le n_0$ is necessary. It is quite common to have no less observations on the control than on the treatments. Ever since Lee (1981) showed that

$$(1.5) E(\hat{\mu}_i - \mu_i)^2 < E(\overline{Y}_i - \mu_i)^2$$

holds pointwise if (1.1) is replaced by $\mu_0 \leq \mu_1 \leq \cdots \leq \mu_k$, there has been speculation that (1.5) might hold pointwise for all types of order restrictions. The reverse inequality (1.2) under the simple tree ordering (1.1) is the first counterexample in the literature. The inequality (1.3) indicates that the optimal weights are not necessarily the natural weights n_i .

The isotonic regression μ^* can be computed by the minimum lower set algorithm [cf. Brunk (1955)], the minimum violator algorithm [cf. Barlow, Bartholomew, Bremner and Brunk (1972)] and the min-max algorithm [cf. Lee (1983)]. The computation procedure is as follows. Let $\overline{Y}_{(1)} \leq \overline{Y}_{(2)} \leq \cdots \leq \overline{Y}_{(k)}$ be the order statistics of $\overline{Y}_1, \overline{Y}_2, \ldots, \overline{Y}_k$, let $w_{(i)}$ be the weights associated with $\overline{Y}_{(i)}$ and let

$$A_i = \sum_{j=0}^{i} w_{(j)} \overline{Y}_{(j)} / \sum_{j=0}^{i} w_{(j)},$$

where $w_{(0)} = w_0$ and $\overline{Y}_{(0)} = \overline{Y}_0$. We compute A_0, A_1, \ldots, A_r successively until $A_r \leq \overline{Y}_{(r+1)}, \ r < k$, or otherwise $A_{k-1} > \overline{Y}_{(k)}$, in which case we let r = k. By the max-min formula [cf. Barlow, Bartholomew, Bremner and Brunk (1972)], $\mu_0^* = A_r$

and it can be expressed by

(1.6)
$$\mu_0^* = \min_{S} \left(\sum_{i \in S} w_i \overline{Y}_i / \sum_{i \in S} w_i \right),$$

where S is any subset of $\{0,1,\ldots,k\}$ containing the element 0. The isotonic regression μ^* is obtained by setting $\mu_i^* = \max\{\mu_0^*,\overline{Y}_i\},\ i=1,\ldots,k$. It is clear that $\mu_0^* \leq \overline{Y}_0$ and $\mu_i^* \geq \overline{Y}_i,\ i \geq 1$. Since these inequalities are strict with positive probabilities, the μ_i^* are biased. By Theorem 1.4 of Barlow, Bartholomew, Bremner and Brunk (1972), $\sum_{i=0}^k \mu_i^* w_i = \sum_{i=0}^k \overline{Y}_i w_i$, so the weighted sum is preserved. The isotonic regression μ^* is a continuous function of $\overline{Y}_0, \overline{Y}_1, \ldots, \overline{Y}_k$ and it is consistent.

2. Counterexample. Knowing that (1.1) holds doès not guarantee the mean square error reduction for the control group. Theorem 2.1 provides a counterexample by illustrating the unboundedness of the bias of $\hat{\mu}_0$.

THEOREM 2.1. If the means $\mu_0, \mu_1, \ldots, \mu_k$ and the sample sizes n_0, n_1, \ldots, n_k are bounded, then for sufficiently large k,

$$E(\hat{\mu}_0 - \mu_0)^2 > E(\overline{Y}_0 - \mu_0)^2.$$

PROOF. Without loss of generality, we may assume $\mu_0 = 0$. It will be shown that

$$E(\hat{\mu}_0 I_{[\hat{\mu}_0 \le 0]})^2 \to \infty \quad \text{as } k \to \infty.$$

By (1.6), $\hat{\mu}_0$ is decreasing in k and symmetric in the k treatment populations. Since a sample size must occur infinitely often in n_1, n_2, \ldots , we may assume $n = n_1 = n_2 = \cdots$. Also $\hat{\mu}_0$ is increasing in $\mu_1, \mu_2, \ldots, \mu_k$, it suffices to assume $\mu_1 = \mu_2 = \cdots = \mu_k = \mu$ with μ the upper bound of the treatment means. Let $\overline{Y}_{(1)} = \min\{\overline{Y}_1, \overline{Y}_2, \ldots, \overline{Y}_k\}$ and $\tilde{\mu}_0 = (n_0 \overline{Y}_0 + n \overline{Y}_{(1)})/(n_0 + n)$. By (1.6) again, $\hat{\mu}_0 \leq \tilde{\mu}_0$. It suffices to show that $E(\tilde{\mu}_0 I_{[\tilde{\mu}_0 \leq 0]})^2 \to \infty$ as $k \to \infty$. However, $\overline{Y}_{(1)} \to -\infty$ almost surely. Because $\tilde{\mu}_0$ is monotone in k, the monotone convergence theorem completes the proof. \square

It is of interest to find the smallest integer k satisfying (1.2). We consider the case $n_1 = n_2 = \cdots = n_k = n$ and $\mu_1 = \mu_2 = \cdots = \mu_k = \mu$. Since $\hat{\mu}_0$ is increasing in μ , under the extreme condition $\mu_0 = \mu$ we found by simulation that the k can be as small as 5 provided $n_0 > 3.5n$. When $n_0 = n$, the smallest k is 8 as shown in Table 1 where $\mu^* = \hat{\mu}$ when $w_i = 1, i = 0, 1, \ldots, k$.

3. Mean square error at the control group. By (1.6), μ_0^* is increasing in w_0 . Therefore, the magnitude of the bias of μ_0^* is decreasing in w_0 . Theorem 3.1 demonstrates that by increasing the weight w_0 the squared error reduction can be achieved. It does not require that μ satisfy (1.1).

TABLE 1

Simulated mean square errors $E(\mu_i^* - \mu_i)^2$ under 100,000 iterations when $\overline{Y}_0, \overline{Y}_1, \dots, \overline{Y}_k$ are independent normal variates with the same means and a common variance 1 and $w_1=w_2=\cdots=$ $w_k = 1$

k	$w_0 = 1$		$w_0 = k/3$	
	i = 0	$i \geq 1$	i = 0	$i \ge 1$
1	0.7500	0.7500	0.8139	0.8153
2	0.7308	0.7179	0.7805	0.7483
3	0.7662	0.7164	0.7662	0.7164
4	0.8191	0.7214	0.7540	0.6992
5	0.8817	0.7290	0.7520	0.6921
6	0.9387	0.7408	0.7483	0.6842
7	0.9982	0.7492	0.7458	0.6801
8	1.0553	0.7578	0.7445	0.6795
9	1.1086	0.7647	0.7434	0.6791
10	1.1695	0.7772	0.7424	0.6672
12	1.2632	0.7876	0.7306	0.6673
14	1.3610	0.7998	0.7289	0.6603
16	1.4509	0.8117	0.7340	0.6641
18	1.5300	0.8185	0.7315	0.6633
20	1.6072	0.8288	0.7352	0.6584
25	1.7769	0.8479	0.7324	0.6641

THEOREM 3.1. Let the means $\mu_0, \mu_1, \ldots, \mu_k$, the sample sizes n_0, n_1, \ldots, n_k and the positive weights w_1, \ldots, w_k be fixed. There exists a positive real W such that if $w_0 \geq W$, then

$$E(\mu_0^* - \mu_0)^2 < E(\overline{Y}_0 - \mu_0)^2$$
.

PROOF. Without loss of generality, we may assume $\mu_0=0$ and $\sigma^2/n_0=1$. Let $y_1< y_2< \cdots < y_k$ be observed values of $\overline{Y}_{(1)},\ldots,\overline{Y}_{(k)},\ w_{(i)}$ be the weight associated to $y_i,\ s_r=\sum_{i=1}^r w_{(i)},\ a_r=\sum_{i=1}^r w_{(i)}y_i/s_r$ and $b_r=y_r+s_r(y_r-a_r)/w_0$ for $r=1,\ldots,k$, and for convenience let $s_0=0,\ a_0=a_1,\ b_0=-\infty$ and $b_{k+1}=0$ $+\infty$. Then,

$$\mu_0^* = (w_0 \overline{Y}_0 + s_r a_r) / (w_0 + s_r)$$
 if $b_r < \overline{Y}_0 < b_{r+1}$

for r = 0, 1, ..., k. Define a function f(t) as μ_0^* as before with \overline{Y}_0 replaced by tand $f(b_r) = y_r$, r = 1, ..., k. Then f(t) is a strictly increasing continuous concave piecewise linear function with f(t) = t if $t \le y_1 = b_1$ and $(w_0 t + s_k y_1)/(w_0 t + s_k y_1)$ $(w_0 + s_k) < f(t) \le (w_0 t + s_1 y_1) / (w_0 + s_1) \text{ if } t > y_1.$

Suppose that $y_1 < 0$. There exists a positive real ϵ , $-s_1y_1/w_0 \le \epsilon < 1$ $-s_k y_1/w_0$, such that $f(\varepsilon) = 0$. Define a function g(t) by

$$g(t) = t \text{ if } t \leq y_1$$

and

$$g(t) = -y_1(t-\varepsilon)/(\varepsilon-y_1)$$
 if $t > y_1$.

Then
$$f(t)^2 \leq g(t)^2$$
. Let $\Delta(t) = t^2 - f(t)^2$. Then
$$\int_{-\infty}^{\infty} \Delta(t) \phi(t) dt \geq \left\{ -2\varepsilon y_1 \overline{\Phi}(y_1) + \left(\frac{1}{2} - y_1^2\right) \varepsilon^2 \right\} / (\varepsilon - y_1)^2$$

$$+ \varepsilon^2 \left\{ y_1 \phi(y_1) + \left(1 - y_1^2\right) \overline{\Phi}(y_1) - \frac{1}{2} + y_1^2 \right\} / (\varepsilon - y_1)^2$$

$$> \frac{1}{2} - \frac{1}{2} y_1^2 / (\varepsilon - y_1)^2 - y_1^2 \varepsilon^2 / (\varepsilon - y_1)^2$$

$$> \frac{1}{2} - \frac{1}{2} w_0^2 / (w_0 + s_1)^2 - y_1^2 s_k^2 / (w_0 + s_k)^2,$$

where $\phi(t)$ is the standard normal probability density function and $\overline{\Phi}(t)$ is the corresponding upper tail probability. The second term on the right side of the first inequality is positive. The last inequality is due to the observation that the functions $y_1^2/(t-y_1)^2$ and $t^2/(t-y_1)^2$ are decreasing and increasing, respectively, for t>0 and the aforementioned two bounds for ε are then evaluated respectively.

Suppose that $y_1 \ge 0$. It is trivial that the left-hand side of the preceding inequality is positive. Therefore,

$$\begin{split} E\big(\overline{Y}_{0}^{2} - \mu_{0}^{*2}\big) &= E\big[E\big\{\Delta\big(\overline{Y}_{0}\big)|\overline{Y}_{1}, \dots, \overline{Y}_{k}\big\}\big] \\ &> \frac{1}{2}\big[1 - w_{0}^{2}/(w_{0} + m)^{2}\big]P\big(\overline{Y}_{(1)} < 0\big) - s_{k}^{2}E\big(\overline{Y}_{(1)}^{2}\big)/(w_{0} + s_{k})^{2} \\ &> mP\big(\overline{Y}_{(1)} < 0\big)(w_{0} - W)/(w_{0} + s_{k})^{2}, \end{split}$$

with $W = s_k^2 E(\overline{Y}_{(1)}^2)/\{mP(\overline{Y}_{(1)} < 0)\}$ and $m = \min\{w_1, \dots, w_k\}$. The proof is complete. \square

Theorem 3.1 indicates that the reduction of the mean square error $E(\mu_0^* - \mu_0)^2$ occurs for large w_0 . In a simulation study (provided in Table 1) under the same means, the same sample sizes and $w_i = 1, i = 1, \ldots, k$, we found that $w_0 = k/3$ is a suitable choice to significantly reduce the squared error for μ_0^* where $E(\overline{Y_0} - \mu_0)^2$ is set to equal 1.

4. Mean square errors at the treatment groups. Brunk (1965) showed that for any given positive weights w_0, w_1, \ldots, w_k ,

$$\sum_{i=0}^{k} (\overline{Y}_{i} - \mu_{i})^{2} w_{i} \geq \sum_{i=0}^{k} (\overline{Y}_{i} - \mu_{i}^{*})^{2} w_{i} + \sum_{i=0}^{k} (\mu_{i}^{*} - \mu_{i})^{2} w_{i},$$

provided that (1.1) holds. Thus the total weighted mean square error of the isotonic regression $\sum_{i=0}^k E(\mu_i^* - \mu_i)^2 w_i$ is strictly less than that of the usual estimator $\sum_{i=0}^k E(\overline{Y}_i - \mu_i)^2 w_i$. It follows that (1.4) holds for at least one i, $i = 0, 1, \ldots, k$. Under suitable conditions, we shall show that (1.4) holds for all i. Theorems 4.1 and 4.2 do not require that μ satisfy (1.1).

Theorem 4.1. For a fixed index i, $1 \le i \le k$, if $\mu_i \ge \mu_0$ and $n_i \le n_0$, then

$$E(\mu_i^* - \mu_i)^2 < E(\overline{Y}_i - \mu_i)^2$$

for any given positive weights w_0, w_1, \ldots, w_k .

PROOF. By symmetry, it suffices to show the preceding inequality for i=k when $\mu_k \geq \mu_0$ and $n_k \leq n_0$. Let $X = (\overline{Y}_{(1)}, \ldots, \overline{Y}_{(k-1)})$, where $\overline{Y}_{(1)} \leq \overline{Y}_{(2)} \leq \cdots \leq \overline{Y}_{(k-1)}$ are the order statistics of $\overline{Y}_1, \overline{Y}_2, \ldots, \overline{Y}_{k-1}$; let $Z = (\overline{Y}_0, \overline{Y}_k)$ and let

$$\Delta(Z) = (\overline{Y}_k - \mu_k)^2 - (\mu_k^* - \mu_k)^2.$$

By conditional expectation, it suffices to show that

$$(4.1) E(\Delta(Z)|X=x) > 0$$

for any given $x = (x_1, \ldots, x_{k-1})$.

Without loss of generality, we may assume $\mu_0 = 0$. Consider a point $z = (\bar{y}_0, \bar{y}_k)$. If $\bar{y}_0 \leq \bar{y}_k$, then $\Delta(z) = 0$. We shall pair all other points $z_1 = (\bar{y}_{01}, \bar{y}_{k1})$ and $z_2 = (\bar{y}_{02}, \bar{y}_{k2})$ in the following manner:

$$\bar{y}_{01} - \bar{y}_{k1} = \bar{y}_{02} - \bar{y}_{k2} > 0$$

and

$$(4.3) \qquad (\bar{y}_{01} + \bar{y}_{k1}) - 2\mu_k = 2\mu_k - (\bar{y}_{02} + \bar{y}_{k2}) \ge 0.$$

Let f(z) be the probability density function of the bivariate normal random vector Z. We shall establish the inequality

$$(4.4) f(z_1)\Delta(z_1) + f(z_2)\Delta(z_2) \ge 0,$$

and that (4.4) holds strictly with positive probability. Consequently, (4.1) follows.

By (4.2) and (4.3), the conditions that $\mu_k \ge \mu_0$ and $n_k \le n_0$ are sufficient for the inequality

$$(4.5) f(z_1) \leq f(z_2).$$

Let μ_{01}^* and μ_{02}^* be the values of the isotonic regression μ^* at the index 0 evaluated at z_1 and z_2 , respectively. If $\bar{y}_{k2} < \mu_{02}^*$, then $\mu_{k2}^* = \mu_{02}^* < \bar{y}_{02}$ and by (4.2) and (4.3),

$$\Delta(z_2) > 0.$$

Suppose that $\bar{y}_{k1} \ge \mu_{01}^*$. Then $\Delta(z_1) = 0$ and hence (4.4) holds. Suppose that $\bar{y}_{k1} < \mu_{01}^*$. For any nonnegative integer t, t < k, by (1.6) we have that

$$\left(w_{0}\bar{y}_{02} + \sum_{i,j=1}^{t} w_{(j)}x_{j}\right) / \left(w_{0} + \sum_{j=1}^{t} w_{(j)}\right) \\
= \left(w_{0}\bar{y}_{01} + \sum_{j=1}^{t} w_{(j)}x_{j}\right) / \left(w_{0} + \sum_{j=1}^{t} w_{(j)}\right) - w_{0}(\bar{y}_{01} - \bar{y}_{02}) / \left(w_{0} + \sum_{j=1}^{t} w_{(j)}\right) \\
\ge \mu_{01}^{*} - (\bar{y}_{01} - \bar{y}_{02}) \\
> \bar{y}_{k1} - (\bar{y}_{01} - \bar{y}_{02}) \\
= \bar{y}_{k2},$$

where by convention $\sum_{j=1}^{t} w_{(j)} = \sum_{j=1}^{t} w_{(j)} x_j = 0$ if t = 0 and $w_{(j)}$ is the weight

associated with x_j . Therefore, there is a nonnegative integer $r, r \leq k - 1$, such that

$$\mu_{02}^* = \mu_{k2}^* = \left(w_0 \bar{y}_{02} + w_k \bar{y}_{k2} + \sum_{j=1}^r w_{(j)} x_j\right) / \left(w_0 + w_k + \sum_{j=1}^r w_{(j)}\right).$$

By (1.6) and (4.2), for the same integer r we have that

$$\mu_{01}^{*} - \mu_{02}^{*} \leq \left(w_{0} \bar{y}_{01} + w_{k} \bar{y}_{k1} + \sum_{j=1}^{r} w_{(j)} x_{j} \right) / \left(w_{0} + w_{k} + \sum_{j=1}^{r} w_{(j)} \right) - \mu_{02}^{*}$$

$$= (w_{0} + w_{k}) (\bar{y}_{k1} - \bar{y}_{k2}) / \left(w_{0} + w_{k} + \sum_{j=1}^{r} w_{(j)} \right)$$

$$\leq \bar{y}_{k1} - \bar{y}_{k2}$$

and hence $\mu_{k1}^* - \bar{y}_{k1} \le \mu_{k2}^* - \bar{y}_{k2}$. It follows from (4.2) and (4.3) that (4.7) $\Delta(z_1) + \Delta(z_2) > 0.$

By (4.5)–(4.7), the inequality (4.4) holds strictly. This completes the proof. \Box

It is quite common to have no less observations on the control than on the treatments. Under that condition the inequality (1.4) holds for all $i, i = 1, \ldots, k$, if (1.1) is satisfied. Furthermore, (1.4) holds for i = 0 as well if w_0 is sufficiently large. The condition $n_i \leq n_0$ is necessary for Theorem 4.1 as illustrated in the example.

EXAMPLE. Let the sample means \overline{Y}_0 and \overline{Y}_1 be independent normal variates with expected values μ_0 and μ_1 and with variances σ^2/n_0 and σ^2/n_1 . Let μ_0^* and μ_1^* be the weighted least squares estimators for μ_0 and μ_1 with positive weights w_0 and w_1 subject to the constraint $\mu_0 \leq \mu_1$. Closed form expressions for the mean square errors $E(\mu_i^* - \mu_i)^2$, i = 0, 1, are available. When $\mu_0 = \mu_1$,

$$E(\mu_0^* - \mu_0)^2 = \sigma^2/n_0 + \sigma^2 w_1 [(n_0 - n_1)w_1 - 2n_1w_0]/[2n_0n_1(w_0 + w_1)^2]$$
 and

$$E(\mu_1^* - \mu_1)^2 = \sigma^2/n_1 + \sigma^2 w_0 [(n_1 - n_0)w_0 - 2n_0w_1] / [2n_0n_1(w_0 + w_1)^2].$$

Therefore, if $n_0 \geq n_1$ and $w_0 < (n_0 - n)w_1/2n_1$, it follows that we have $E(\mu_0^* - \mu_0)^2 > E(\overline{Y}_0 - \mu_0)^2$. Similarly, if $n_1 > n_0$ and $w_0 > 2n_0w_1/(n_1 - n_0)$, then $E(\mu_1^* - \mu_1)^2 > E(\overline{Y}_1 - \mu_1)^2$. The total weighted mean square error reduction is $\sigma^2 2^{-1} (n_0^{-1} + n_1^{-1})/(w_0^{-1} + w_1^{-1})$.

If one allows w_0 to vary, then the inequality (1.3) does not hold even when k=1 as illustrated in the preceding example. The condition $n_i \leq n_0$ may be relaxed according to Theorem 4.2.

THEOREM 4.2. Let $\bar{\mu} = \sum_{i=0}^k n_i \mu_i / \sum_{i=0}^k n_i$. For a fixed index $i, 1 \le i \le k$, if $\mu_i \ge \bar{\mu}$, then

$$E(\hat{\mu}_i - \mu_i)^2 < E(\overline{Y}_i - \mu_i)^2.$$

PROOF. Let $\overline{\overline{Y}} = \sum_{i=0}^k n_i \overline{Y}_i / \sum_{i=0}^k n_i$. Recall that $\hat{\mu}_i = \overline{Y}_i$ if $\overline{Y}_i \ge \hat{\mu}_0$ and $\hat{\mu}_i = \hat{\mu}_0 \le \overline{\overline{Y}}$ if $\overline{Y}_i < \hat{\mu}_0$. Therefore,

$$\begin{split} E\big(\overline{Y}_i - \mu_i\big)^2 - E\big(\hat{\mu}_i - \mu_i\big)^2 &= E\big(\overline{Y}_i - \hat{\mu}_i\big)\big(\overline{Y}_i + \hat{\mu}_i - 2\mu_i\big)I_{[\overline{Y}_i < \hat{\mu}_0]} \\ &= E\big(\overline{Y}_i - \hat{\mu}_0\big)\big(\overline{Y}_i + \hat{\mu}_0 - 2\overline{\overline{Y}}\big)I_{[\overline{Y}_i < \hat{\mu}_0]} \\ &+ 2E\big(\overline{Y}_i - \hat{\mu}_0\big)\big(\overline{\overline{Y}} - \mu_i\big)I_{[\overline{Y}_i < \hat{\mu}_0]} \\ &> 2E\big(\overline{Y}_i - \hat{\mu}_0\big)\big(\overline{\overline{Y}} - \mu_i\big)I_{[\overline{Y}_i < \hat{\mu}_0]} \\ &= 2E\big(\overline{\overline{Y}} - \mu_i\big)E\big(\overline{Y}_i - \hat{\mu}_0\big)I_{[\overline{Y}_i < \hat{\mu}_0]} \geq 0, \end{split}$$

where the last identity is due to the fact that $\overline{\overline{Y}}$ is independent of $\overline{Y}_i - \hat{\mu}_0$. This completes the proof. \Box

Acknowledgments. The author is very grateful to Professor Tim Robertson for suggesting this investigation. The author thanks the two referees and Professor T. K. Mak for valuable comments. The revised proof for Theorem 2.1 is due to one of the referees.

REFERENCES

Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and Brunk, H. D. (1972). Statistical Inference under Order Restrictions: The Theory and Application of Isotonic Regression. Wiley, New York.

Bartholomew, D. J. (1961). A test of homogeneity of means under restricted alternatives (with discussion). J. Roy. Statist. Soc. Ser. B 23 239-281.

BRUNK, H. D. (1955). Maximum likelihood estimates of monotone parameters. Ann. Math. Statist. 26 607-616.

BRUNK, H. D. (1965). Conditional expectation given a σ-lattice and applications. Ann. Math. Statist. 36 1339-1350.

DUNNETT, C. W. (1955). A multiple comparison procedure for comparing several treatments with a control. J. Amer. Statist. Assoc. 50 1096-1121.

LEE, C. C. (1981). The quadratic loss of isotonic regression under normality. Ann. Statist. 9 686-688. LEE, C. C. (1983). The min-max algorithm and isotonic regression. Ann. Statist. 11 467-477.

ROBERTSON, T. and WEGMAN, E. J. (1978). Likelihood ratio tests for ordered restrictions in exponential families. Ann. Statist. 6 485-505.

ROBERTSON, T. and WRIGHT, F. T. (1985). One-sided comparisons for treatments with a control. Canad. J. Statist. 13 109-122.

DEPARTMENT OF MATHEMATICS AND STATISTICS MEMORIAL UNIVERSITY OF NEWFOUNDLAND ST. JOHN'S, NEWFOUNDLAND A1C 5S7 CANADA