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CONVERGENCE RATES FOR PARAMETRIC COMPONENTS IN
A PARTLY LINEAR MODEL!

By HuNG CHEN

State University of New York at Stony Brook

Consider the regression model Y; = X/B + g(¢;) + ¢; for i=1,...,n.
Here g is an unknown Hélder continuous function of known order p in R, 8
is a k X 1 parameter vector to be estimated and e; is an unobserved
disturbance. Such a model is often encountered in situations in which there is
little real knowledge about the nature of g. A piecewise polynomial g, is
proposed to approximate g. The least-squares estimator £ is obtained based
on the model Y; = X/8 + g,(f;) + e;. It is shown that § can achieve the
usual parametric rates n~1/2 with the smallest possible asymptotic variance
for the case that X and T are correlated.

1. Introduction. Consider the model given by
(1) Y=XB+g(T)+e,

where X’ = (x,,...,x,) are explanatory variables that enter linearly, 8 is a
k X 1 vector of unknown parameters, T is another explanatory variable that
enters in a nonlinear fashion, g(-) is an unknown smooth function of 7' in R,
(X,T) and e are independent, and e is the random error with mean 0 and
variance o2. Assumptions on the X and T will be introduced in Section 2.
Suppose we are interested in estimating 8 only and treat g(-) as a nuisance
parameter. In this paper, a technique of data smoothing is used to analyze the
data, and it is shown that the convergence rate for the obtained estimator of 8 is
n~'2 under suitable conditions on (X, T'). The model defined in (1) belongs to
the class of partial spline models, which has been recently proposed and applied
by Engle, Granger, Rice and Weiss (1986) to study the effect of weather on
electricity demand. For generalizations and related models, see also Wahba
(1984). This model is much more flexible than the standard linear model since it
combines both parametric and nonparametric components. It can be used in
applications where one may believe, without knowing the parametric form of g,
that the dependence of Yon X is linear but might suspect that the response Y is
nonlinearly related to a particular independent variable 7.

There has been a trend in the past few years to move away from the standard
linear regression models and to model the dependence of Y on X in a more
nonparametric fashion, e.g., as done by Stone (1982). However, it is well known
that unrestricted multivariate nonparametric regression is subject to the “curse
of dimensionality,” fails to take advantage of structure in the phenomena being
modeled and is hard to interpret. Stone (1985, 1986) proposes the additive
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CONVERGENCE RATES IN A PARTLY LINEAR MODEL 137

regression model, which allows easier interpretation of the contribution of each
explanatory variable and may be preferable to a fully nonparametric regression
model for a moderate sample size if the model given by (1) is a good approxima-
tion and introduces a heuristic dimensionality reduction principle. According to
that principle, the parametric components 8 could be estimated with the usual
parametric convergence rates; and the overall regression function X'8 + g(T')
should be estimable with the typical nonparametric convergence rates. However,
we show that we may need to use different smoothing schemes in order to
achieve such a goal for the model considered in this paper if X and T are not
independent.

Engle, Granger, Rice and Weiss (1986), Green, Jennison and Scheult (1985),
Wahba (1984) and others have studied the estimate of the regression function
X'B + g(T). Heckman (1986) and Chen (1985) proved that the estimate of 8 can
achieve the convergence rate n=/2 if X and T are not related to each other.
Rice (1986) obtains the asymptotic bias of a partial smoothing spline estimator
of B due to the dependence between X and T and shows that it is not generally
possible to attain n~1/2 convergence rate for the parametric components B.

In this paper, an estimate of 8, £ is obtained by using a piecewise polynomial
to approximate g. The convergence rate of 8 is shown to be n~'/2 with the
smallest possible variance even when X and T are dependent. Assumptions on
the X and T will be introduced in the next section. During most of this paper we
consider only real-valued T. Extensions to higher dimensions are indicated at the
end of Section 2, in which our conditions and main results are formulated. The
piecewise polynomial estimator for g is described in Section 2. The main proofs
are presented in Section 3.

2. Statement of the main results. Let Y, X = (x,,...,x,) and T be
random variables such that T ranges over a nondegenerate compact 1-dimen-
sional interval C, X is a £ X 1 vector in R* and Y is real-valued. Without loss of
generality, it can be assumed that C is the unit interval [0,1]. Let {X;=
X5+, %), T}, Y;, 1 < i < n} denote a sample of size n from the model

Y, = X8 +8(T)) + e,

where the errors e; are assumed to be independent and identically distributed
with mean 0 and finite variance o2 > 0, (X, T}) and e; are independent, B is the
k X 1 vector of unknown pa.rameters and g is an unknown smooth function. Let
Y=Y Y, e=(ey-.r,€,)s Ly = (..., 1Y, &(T) = (&Ty),..., &(T,)
and X = (x Dnxee Given T =1, set 0(t) = E(x;)t) and Z,= Cov(X|t) for
1<i<k. We also assume that 1., is not in the space spanned by the column
vectors of X, so that the model is identifiable; that is, if X/8, + g(T;) = X/B, +
8o(T:) for 1 <i < n, then B, = B, and g, = g,. If 1, is in the space spanned
by the column vectors of X, Xa, for some a € R*, is proportional to 1,,,,. This
contradicts Condition 3 and the detail of this argument is shown by Lemma 3 in
Section 3.

The following three conditions are sufficient for the statement of the main
results.
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ConDITION 1. The distribution of T is absolutely continuous and its density
is bounded away from 0 and oo on C.

CONDITION 2. Let m, y and M denote real constants such that 0 <y <1
and 0 < M; g is an m-times continuously differentiable function such that

|lg™(t') — g™(t)| < M|t' — ¢|",for0 < ¢, ¢’ < 1.
Think of p = m + y as a measure of the smoothness of the function g.

CoNDITION 3. There exist positive definite matrices 2, and 2, such that
both =, — 2, and 2, — Z, are nonnegative definite for all ¢ € [0, 1].

If X and T are functionally related, it may not be possible to estimate 8 with
rate n~ /2. An example of such a case is that g(T') = ax, for some unknown
constant a. In practice, the implication of Condition 3 is that any linear
combination of the components of X cannot be a function of 7. The validation of
Condition 3 can be checked by plotting the scatter diagrams of the components
of X with respect to T.

First, we describe a piecewise polynomial estimator of g, which has been
investigated by Tukey (1961), Major (1973), Chen (1986) and Stone (1985).
Although a piecewise polynomial is not the most widely used estimator, it does
allow us to see easily why the n~'/2 convergence rate for 8 can be achieved.
Given a positive integer M,, the estimator has the form of a piecewise poly-
nomial of degree m based on M, intervals of length 1/M,,, where the (m + 1)M,,
coefficients are chosen by the method of least squares on the basis of the data
(X, T,Y),....(X,,T,,Y,),1<i<n. Let I, 1 <v» <M, denote the subin-
tervals of [0, 1] defined by I,,, = [(» — 1)/M,,,v/M,) for 1 <v < M, and I,,, =
[1 -1/M,,1]. Let ¢,, denote the indicator function for the interval I,,,, so that
¥,.,(¢) = 1 or 0 according to ¢ € I, or ¢t & I,,,. Consider the piecewise polynomial
- estimator of g of degree m given by

8,(t) = Ldn(8)B,,(2),

where {an,,} are polynomials of degree m chosen to minimize the residual sum
of squares

Y (Y - X8 - 2.T))".

12

Set
0,7 = Cov(x; — 6,(T), x; — §(T)) = Cov(x;, x;) — Cov(6,(T), 6(T)),

forl1<i, j<k,and 2 = (% )pxh

THEOREM 1. Suppose that Conditions 1-3 hold and that lim ,n=*M, = 0 for
some A € (0,1) and limn‘/rTM,:P = 0. Then ﬁ(ﬁ — B) converges to a k-variate
normal distribution with mean 0 and the variance—covariance matrix o271
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REMARK 1. An interesting question related to Theorem 1 is whether ¢23 !
is the smallest possible asymptotic variance. Recently, the Hajek-Le Cam
convolution-type representation theorem has been further developed and applied
by Begun, Hall, Huang and Wellner (1983) and Schick (1986) to a wide range of

regular semiparametric models. If the definition of “regular” estimator £ of 8
given by Schick (1986) is adopted, a slight modification of Theorem 3.1 of Begun,
Hall, Huang and Wellner (1983) and the argument of Schick (1986) lead to the
conclusion that 622! is the smallest possible asymptotic variance for all regular
estimators of 8 when the random error e is normally distributed.

REMARK 2. If we put some smooth conditions on 6,(T') such as |§{™(¢t") —
6{™)(t)| < My|t' — t|y, for 0<t,t' <1 and 1 <i <k, where m,, v, and M,
denote real constants such that 0 <y, < 1 and 0 < M, Theorem 1 holds for all
(X, T) that satisfy Condition 3. However, the least-squares estimator of B
proposed in this paper depends only on the smooth parameter p (= m + 7).

REMARK 3. If we replace Condition 2 by assuming that Eg?(T) is finite,
Theorem 1 is still true (for p = 1) since a function in L? can be arbitrarily well
approximated in norm by a continuous function. However, the result holds only
for a specific unknown function g.

A generalization of the model described in this paper is as follows:

Y=XB+g(T)+e (modelI)

and
Y=p+XB+ Y g,t)+e (modelll),
j=1,d
where T = (t,,...,t;) € C in R% g is a smooth function in R? and g; are

smooth functions in R that satisfy Condition 3 and Eg,(¢;) =0 for 1 <j <d.
‘ Model II is assumed to be additive in each variable ¢;, whereas model I admits

the interactions among ¢;’s. Theorem 1 can easily be extended to model I but the
choice of M, (the number of partitions at each coordinate) should satisfy
lim ,n~*M, = 0 for some A € (0,1) and lim ,yn M %" = 0.

Although Theorem 1 still holds for model II, the estimator proposed in this
paper does not take advantage of the additive structure on g. Alternatively, one
can use the additive spline estimator, which is a smoothly joined piecewise
polynomial proposed by Stone (1985), to estimate g. Let ACE(x|¢,, ..., t;) be the
function p + X,_; sh;(¢;) that minimizes E(x — p + X, 4h,(¢))° for LER,
Eh(t)=0 and Eh2(t ) < 0. In this case, Theorem 1 holds for those M, that
satlsfy lim,n"*M, = O for some A € (0,1) and lim ,¥n M;? = 0, but the covari-
ance matrix is 623~ 1, where 2 = (0;;);x; and

o= Cov(x,- — ACE(x/lt,,..., t;), x; — ACE(x/t,,..., ty))-

The next two theorems are used to illustrate whether we can, by the proposed
estimator, simultaneously estimate 8 and g(t) with convergence rates n~'/% and
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n~P/@P+D_ To avoid the unnecessary complexity in the proof, we will put an
additional condition on 6,(¢).

CoNDITION 4. Let M, be a positive constant such that
16,(¢)] < M,, forallte[0,1]and1 <i< k.

THEOREM 2. Suppose that Conditions 1-4 hold and that lim ,n"*M,, = 0 for
some A € (0,1) and lim, M, = co. Then

B - B=0(M;?) + O,(n"1/?)
and
&(t) — g(t) = O(M;?) + O,(Jn"'M,), for any given t € [0,1].

REMARK 4. If M, =n'/@P*) B and g(T) can be estimated with conver-
gence rate n”P/®P*D which is consistent with Theorem 1 of Stone (1985).
However, Theorem 1 does not hold for this choice of M,,.

CoNDITION 5. Let m,, v, and M, denote real constants such that 0 < y; < 1
and 0 < M;; the §,’s are m -times continuously differentiable functions such that

|6im0(¢) — 8{mO(t)| < My’ — ty,, forO<¢,t <1.

Set p, = m, + v, as a measure of the smoothness of the function 4,.

THEOREM 3. Suppose that Conditions 1-5 hold and that M,, = n'/®P*Y and
p, > 1/2. Then Vn(8 — B) converges to a k-variate normal dzstrzbutzon with
mean 0 and the variance—covariance matrix o227, and 2(t) — g(t) =
0,(n~?/@P*D) for any given t € [0,1].

REMARK 5. Theorem 3 shows that we can estimate 8 and g(T') with rates
n~'/2 and n~P/@P*1| respectively, if the 6,’s are smooth (p, > 1/2). This
explains the results obtained by Heckman (1986) and Chen (1985) since they
assumed that those 6,’s are constant functions. Speckman (1986) also discusses
this phenomenon and proposes the “partial kernel” estimator that can estimate
B and g(T') with rates n='/2 and n~P/@P*D simultaneously if g and the 6,’s
satisfy Condition 2.

3. Proofs of the theorems. Throughout this section it is assumed that
Conditions 1-3 hold, lim ,n"*M,, = 0 for some A € (0,1) and lim ,M, = co. Since
any smooth function can be approx1mated well by a polynomlal locally, 8.(t)
[=X,¥,.()P,,.(t)] is used to approximate the function g(¢). For notational
convenience, we write (£,(T)),..., 8,(T,)) as Za, where Z is an n X (m + 1)M,,
matrix and a is an (m + 1)M,, X 1 vector. Hence we need to find 8 and « to
minimize (Y — X8 — Za) (Y — X8 — Za).
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LeMMA 1. Suppose the minimization problem has a unique solution. Then
& =AY — XB) and B = (X(I - P)X)"'X/(I — P)Y, where A = (ZZ)"'Z’ and
P=17A.

Proor. See Theorem 3.7 of Seber (1976). O

LEMMA 2. The minimization problem has a unique solution except on an
event whose probability tends to 0 with n.

PROOF. Since the density of T is bounded away from 0 and oo, it follows
from the Glivenko—Cantelli lemma and the fundamental theorem of algebra that
Z is a full rank matrix except on an event whose probability tends to 0 with n. If
we can show that X'(I — P)X is a positive definite mdtrix, the proof of Lemma 2
will be complete.

Given a = (a,,...,a,) € R* and Y;a? = 1, observe

E(a’X|T=t) = Zaﬂi(t) =0,(t)

and :
Var(a’'X|T =t) = a’3,a.
It follows from Condition 3 that a'3,a is bounded away from 0 and oo for
0 < t < 1. Since
a’X'(I - P)Xa = (Xa — PXa)'(Xa — PXa)

can be thought of as the residual sum of squares after we regress Xa on T [i.e.,
use a piecewise mth-degree polynomial to estimate 6,(7T) = E(a’X|T)], it fol-
lows easily that a’X’(I — P)Xa tends to co in probability as n goes to oo based
on the proof of Theorem 1 in Stone (1982), on a’Z,a being bounded away from 0

and oo for 0 < ¢ < 1, and on the general property of solution to least-squares
problems. Hence X'(I — P)X is a positive definite matrix. O

It follows from Lemma 1 that
B-B=(X(I-P)X) ' X(I-P)Y-8
(2) = (X'(I- P)X)"'X/(I- P)(&(T) +e)
= (X(I-P)X) 'X(I-P)g(T) + (X(I- P)X)'X(I - P)e.

The purpose of the next lemma is to prove that the model described by (1) is
identifiable.

LEmMmA 3. 1, is not in the space spanned by the column vectors of X
except on an event whose probability tends to 0.

Proor. By the definition of Z and P, 1, is in the space spanned by
the column vectors of P. It follows easily from the proof of Lemma 2 that
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a’X'(I — P)Xa tends to o for a = (ay,...,a;) € R* and X;a? = 1 as n goes to
oo in probability. Hence 1, is not in the space spanned by the column vectors
of X. O

LEMMA 4. nM,;'P and nM, (Z'Z)"! are bounded in probability, that is,
every element of nM,,'P and nM,; (Z'Z) ! is Op(1).

This result is due to Stone (1980, 1982). O

Next, we are going to prove that
(3) X(I-P)X/n—> 2, asn— oo.

Set & = X; — 0,(T), sij = xij - 0,(7}), g; = ‘(Eil’ e sey Sin),, O(T) =
(04(T),..., 0,(T)y and 8(T) = (8T)),...,0(T,)y for L<i<k and 1 <j < n.
Let f(T) denote the density function of 7. Given a = (a,,..., a,;) € R* and
Y,a? = 1, it follows from Conditions 1 and 3 that

a’Sa = Var(a'(X - 0(T)))
= f Var(a’X|t)f(t) dt > 0.
[0’ l]
Hence 2 is a positive definite matrix.
LEmMA 5. X'(I — P)X/n — 3 in probability as n tends to .

ProoF. Observe that
(X'(I = P)X);; = (& + 0,T)) (I - P)(e,; + 0(T))
(4) = e(I - P)e; + ei(1 - P)§(T)
+6,(T)(I - P)e; + 6,(T) (I - P)8(T).

Since P is a nonnegative definite matrix except on an event whose probability
goes to 0 as n tends to oo and P is also an idempotent matrix, we get

E(|¢;Pe,| |P) = E(e(Pe,|P)
= E(tr(Pe;e{)|P)
= O,(1)tr( PE(e;e}))
= [Vax(x, - 6(T))](m + 1)M,0,(1)
= 0,(n)
and
E(e/Pe;| |P) < {E(e/Pe|P) + E(e}Pe/|P)} /2
= o,(n).

It follows from the law of large numbers that ele;/n converges to o;; in
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probability. Consequently,

(5) e/(I — P)e}/n - o;;, in probability as n - oo.

If we can prove
(6) n~%(T)(I- P)8(T) - 0, in probability for1 <j <k,
then the conclusion of Lemma 5 will hold. Since I — P is an idempotent matrix,
it follows frem (5) and (6), the Markov inequality and the Cauchy-Schwarz
inequality that

n~le/(I- P)§(T) >0, forl<i, <k,

except on an event whose probability tends to 0 as n tends to co.
It follows from Condition 3 that E8?(T) is finite for'1 < j < k. Choose & > 0,
and let 6, )(T') be a continuous functlon on [0,1] such that

E|8(T) - Bj(T)l <e.
Then there exists a positive constant B, such that
E8(T)(I - P)8(T)| < 2{E{§{(T)(I - P)§(T)| + nBe).

Thus to prove that (6) holds, it suffices to verify that (6) holds with 6, replaced
by 0 Since (I — P)O (T) is the remainder term of O(T) after usmg an mth-
degree polynomial to apprommate 0, .(T') at each submterval I, and 0 (T) is a
continuous function on [0,1] and because of the property of solution to linear
least-squares problems, there exists a p0s1t1ve constant B, with lim,B, = 0 such
that

(- P)§(T)),|<B,, for1<j<kandl<is<n.

Hence (6) is true. O

Now let d,,,, be the center of the interval I,,. Let P,,, be the Taylor
polynomial approximation of degree m to g about d,,,,. Since

|g™(¢) — g™ (t)| < M|t' — ¢|*, fort,teC,
there is a constant B, > 0 such that
(7) (¥, (8)( Py — &8(2))| < B,M;?, forallvandte C.

Since g,(t) is a piecewise polynomial, there are at most O(n/M,) nonzero
elements in each row of P. Observe

(I - P)g(T) = (I - P)(g(T) — Za + Za) = (I - P)(g(T) — Za);
based on (7) and Lemma 4 there is a constant B, > 0 such that
(8) |((I - P)g(T));| < B4M,;?, forl<i<n,

except for an event whose probability tends to 0 with n.
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Observe that
Y (X(I - P)X)'X/(I - P)g(T)
= (X(I - P)X/n) " 'n"V2X(I - P)(I - P)g(T).

It follows from the above arguments and Lemma 5 that there is a constant
B, > 0 such that

(Ve (X'(1 - P)X)"'X/(I - P)g(T)),| < BynM;?, forl<v<k,

except for an event whose probability tends to 0 with n.

Next, we show that yVn (X'(I — P)X) 'X(I — P)e converges in distribution
to a k-variate normal random variable with mean 0 and covariance matrix
2371,

Let r;; be the ith diagonal element of the projection matrix

(I - P)X(X(I - P)X)"'X'(I - P).
According to Proposition 2.2 of Huber (1973), if we can prove
maxr; > 0, asn — oo,
12
then vn (X(I — P)X)"'X/(I — P)e is asymptotlcally normal. Since the covarl-
ance matrix of vn (X’(I P)X)"~ IX(I — P)e is given by n(X'(I — P)X)™ %
the asymptotic variance of Vn (8 — B)is 622! by Lemma 5.

ProoF oF THEOREM 1. Since (X'(I — P)X)/n converges to a positive de-
finite matrix 2 by Lemma 5, it follows from Lemma 3 of Wu (1981) that

maxr;; > 0, asn — oo.
1

Hence it follows from the above arguments that va (f — B) converges in distri-
bution to a normal random variable with mean 0 and covariance matrix 6231 if

lim yaM;? = 0.0
PrOOF OF THEOREM 2. It follows from the proof of Theorem 1 that
B~ B=0(M,?) + 0,(n""?).

For any given ¢ € [0,1], we can write 2(¢) as 2(Z'Z)~'Z'(Y — X8) by Lemma 1
for a suitable z. Hence

8(t) — g(t) = 2(2Z) 'Z(Y - XB) - 5(¢)
=2(ZZ) 'L e + 2(Z2) 'Z'g(T) - &(¢)
+2(2'2) " 'Z/(XB - XB).
It follows from the argument of Stone (1980) that
(9) 2(ZZ)7'Z e + 2(ZZ) " '2'g(T) — g(t) = O(M;?) + O,((n/M,)”?).
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Let X, be the ith column vector of X. Observe that
2(22)7'ZX,; = 2(22) 'Z(6,(T) + ¢;).

It follows from Condition 4 that the 6;’s are bounded and the argument of Stone
(1980) that

2(2'2)7'2X, = 0(1) + O,((n/M,)™?).

Hence

2(22)'ZX(f - B) = [0(1) + O,((n/M,) )]
(10) x[0(M;7) + 0,(n~?)]

= 0(M,?) + O,((n/M,)""%).
It follows from (9) and (10) that
8(t) — &(t) = 0(M;?) + O,((n/M,) ™).

This establishes Theorem 2. O

PROOF OF THEOREM 3. Observe that for 1 <v<k,
(X'(I-P)g(T)), = (8(T) +¢,)(I - P)g(T)
=6,T)(I - P)(I- P)g(T) + ¢, (I - P)g(T).
It follows from (8), Condition 5, the argument used to derive (8) and Lemma 4
that there is a constant B; > 0 such that
(11) |0(T) (I - P)(I- P)g(T)| < BsM,,»*P), forl <» <k,
except for an event whose probability tends to 0 with n. We also get
(12) e)(I - P)g(T) = O,(n'/?M;?), forl<v<k,
by (8) and Chebyshev’s inequality. It follows from the proof of Theorem 1, the
choice of M, (= n'/@?*D), (11) and (12) that yn (8 — B) converges in distribu-

tion to a normal random variable with the mean 0 and the covariance matrix
02271if p, > 1/2. Also,

&(t) — g(t) = O(n~2/@P*D),
by Theorem 2. O
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