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Let @ = {x = (xy,..., %,)7: 0 < x; < 1} be the unit cube in R". For any
probability measure £ on @, let M(£) = [oxxT£(dx). Harwit and Sloane
(1976) conjectured that if X* is the incidence matrix of a balanced incomplete
block design (BIBD) with n treatments and n blocks of size (n + 1)/2, then
X* minimizes tr(X”X)"! over the n X n matrices with entries 0 < x;; < 1.
This arises from a problem in spectroscopy. In order to solve the conjecture,
we consider the more general problem of maximizing j,(M(£)) over the
probability measures on € for — o0 < a < 1, where jo(M(§)) = {det M(£)}*/*,
J-o(M(§)) = the minimum eigenvalue of M({) and j,(M(¥)) =
{n~1tr[M(£)]°}/@ for other a’s. A complete solution is obtained by using
the equivalence theorem in optimal design theory. Let £, be the uniform
measure on the vertices of @ with & coordinates equal to 1. Then depending
on the value of a, optimality is attained by £, or a mixture of £, and &, ,
with 2 > [(n + 1)/2]. Optimal £’s with a smaller support can be found by
using BIBDs. It follows that if n is odd and X* is the block-treatment
incidence matrix of a BIBD with n treatments and N blocks of size
(n + 1)/2, then X* minimizes tr(X7X)? for all ¢ <0 and maximizes
det(XTX) and tr(XTX)* for all 0 < @ < 1 — In(n/2 + 1)/In(n + 1) over the
N X n matrices with entries 0 < x;; < 1. Similar results are derived for the
even case and the incidence matrices of BIBDs of larger block sizes.

1. Introduction. The purpose of this paper is to use the equivalence theo-
rem in the approximate theory of optimal design to solve some outstanding
problems in Hadamard transform optics and spring balance weighing design.

Hotelling proved in 1944 that if X is an N X n matrix (N > n) with —1 <
x;; <1 for all i, j, then all the diagonal entries of (X”X)"' are > N~'. This
implies that
(1.1) tr(XTX) "' > n/N.

It also follows from Hotelling’s proof that equality holds in (1.1) if and only if
XTX = N1, i.e, all the entries of X are 1 or —1, and any two columns of X are
orthogonal. When N = n, these are the well known Hadamard matrices.

What is the analogue of (1.1) when the entries of X are restricted to be
between 0 and 1? This more difficult problem arises from the method of
multiplexing in spectroscopy. A detailed discussion of the applications to
Hadamard transform optics in spectroscopy and imaging can be found in Harwit
and Sloane (1979). A brief introduction follows.

Received June 1986; revised March 1987.

1Research supported by National Science Foundation grant DMS-85-02784.

AMS 1980 subject classifications. Primary 62K05; secondary 62K10.

Key words and phrases. Balanced incomplete block design, equivalence theorem, Hadamard
matrix, Hadamard transform optics, optimal design, spring balance weighing design.

1593

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. RIKORY

X

www.jstor.org



1594 C.-S. CHENG

Let Dy, ,, (respectively, ]_)N ») be the collection of all the N X n matrices with
entries 0 < x;; ;<1 (respectlvely, = 0 or 1). Suppose an experimenter wants to
determine the spectrum of a beam of light. When the noise is independent of the
strength of the incident signal, more accurate estimates may be obtained by
combining different frequency components in groups rather than measuring the
intensity of each frequency component separately. An optical separator (such as
a prism) separates the different frequency components of the incident light and
focuses them into different locations (slots) of a mask. Each slot can be open or
closed. If a slot is open, then the light is transmitted; if it is closed, then the light
is absorbed. The total intensity of the frequency components not blocked is then
measured. If there are n frequency components and N different measurements
are to be made, then we have the model

(1.2) y = Xw + e,

where y is the N X 1 random vector of measurements, w = (w;, W, .. ,w,)T is
the vector of the intensities of the n frequency components, X € D Non and eis
the random error with E(e) = 0 and cov(e) = ¢%I,. The (i, j)th entry of X
is equal to 0 if in the ith measurement, the jth frequency component is blocked,
and is equal to 1, otherwise. One important question is how to design the mask
(i.e., to choose X). This is precisely what the statisticians called spring balance
weighing designs [Raghavarao (1971), Chapter 17]. Furthermore, if the slots can
be partially open, then the entries of the design matrix are real numbers between
0 and 1, i.e., X € Dy ,. Under model (1.2), the least squares estimator of w is

(XTX) 1XTy with dispersion matrix o*X”X) . A useful criterion is to
choose an X € Dy , (or Dy ,) such that 7 1var(w) = o2tr(XTX)"! is mini-
mized. Such an X is called A-optimal.

More generally, for a € (— c0,1], a # 0, one can consider the maximization of
J/XTX) = (n7'L2 X% over Dy ,, where A,,..., A, are the eigenvalues of
XTX; the solutions are called _]a-optlmal [Pukelshenn (1980)] For a < 0, this is
to minimize tr(X7X)?, while for a > 0, tr(X7X)? is maximized. It is clear that
J_,-optimality is equivalent to A-optimality. Since lim,_ ,/,(XTX) =
{det(XTX)}!/" and lim, _, _ j,(X7X) = the minimum eigenvalue of X7X, the
J-family also covers the well known D- and E-criteria as limiting cases. For this
reason, we shall refer to the D- and E-criteria as j,- and j_ -criteria, respec-
tively. The j,-family is more general than the @ -criteria (p > 0) introduced by
Kiefer (1974). Since ®,-optimality is equivalent to j_,-optimality, the @ -family
corresponds to the j-criteria with a € [—c0,0]. We also point out that the
J-criteria are defined for @ < 1 only, since (n~'L7_,A%)"/ is no longer a concave
function of X”X when a > 1.

Very little is known about the solution of the preceding problem. Harwit and
Sloane (1976) conjectured that for any X € D, , (i.e., N = n),

(1.3) tr(XTX) "' > 4n2/(n + 1)°.

[Also see Sloane (1979).] They also noted that equality holds in (1.3) if X is an
S-matrix. An S-matrix S, of order n is an n X n matrix obtained by deleting the
first row and column of a normalized (n + 1) X (n + 1) Hadamard matrix and
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then changing 1’s to 0’s and —1’s to 1’s. It is easy to see that
$:8, = {(n + 1)/4}(1, + J,),

where J,, is the n X n matrix with all entries equal to 1, i.e., S, is the incidence
matrix of a balanced incomplete block design with n treatments and n blocks of
size (n + 1)/2. An S-matrix S, is known to be D-optimal over D, , [Raghavarao
(1971), page 320]. If Harwit and Sloane’s conjecture holds, then S, is also
A-optimal over D, . In the present paper, among other results, we shall show
that S, is not only A- but also ® -optimal over D, ,, for all p > 0.

Harw1t and Sloane also asked if the minimum of tr(X7X)"! over D,
always be attained by a matrix in D,, » As noted earlier, if we restrict ourselvw
to optimizing over the matrices with 0-1 entries only, then we are in the domain
of spring balance weighing designs. Recently, Jacroux and Notz (1983) made
important contributions to the determination of optimal spring balance weighing
designs. Their main results are:

1. For odd n, if thereis an X € ]_)N’ .. such that
XX = (4n) 'N(n + 1)1, + J,),

then X is A-, D- and E-optimal over ]_)N, e
2. For even n, _
(a) if there is an X € Dy , such that

X'X = {N/4(n - 1)}{nln + (n - 2)Jn}’

then X is A- and E-optimal over D N, n
(b) if thereisan X € DN .. such that

XTX = {4(n + 1)} 'N(n + 2)(1, + J,),
then X is D-optimal over ]_)N, nr

Letting N = n in result 1, one obtains the A-, D- and E-optimality of S, over
D, .. However, this does not quite solve Harwit and Sloane’s problem. Jacroux
and Notz’s method involves discrete optimization and depends heavily on the
fact that the matrix entries are either 0’s or 1’s. They also had to deal with the
three criteria A-, D- and E- separately. In this paper, we shall extend
the preceding results to the whole j,-family and at the same time strengthen
the optimality to all of Dy .. The key idea is to use the approach of approximate
designs due to Kiefer and Wolfowitz. There we have the celebrated equivalence
theorem which is a powerful tool for constructing and verifying optimal designs.
Once it is realized that the equivalence theorem can be used to solve the
problem, the proof becomes very simple and stronger results can be obtained.
The readers are referred to Kiefer (1974) for an extensive treatment of the
approximate theory of optimal design.

This paper is organized as follows. In Section 2, the problem is formulated in
terms of approximate designs. The equivalence theorem is stated there. A quick
application shows how Jacroux and Notz’s results can be proved by using the
equivalence theorem. A complete solution of optimal approximate designs is
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given in Section 3, followed by some discussions and applications. The proof is
presented in Section 4.

2. Approximate theory. Let Q be the unit cube {x = (xl,:.., x,)7: 0 <
x;<1} in R™ and = be the set of all the probability measures on the Borel
subsets of Q. For any ¢ € =, define the information matrix

M(¢) = fQ xx7¢(dx).

Let jo(M(£)) = {det M($)}/",
J_w(M(£)) = the minimum eigenvalue of M(¢)

and for —c0 <a <1, a+0,let

n 1/a
0() = [ Eaace)]
i=1
where Ay(§),..., A, (§) are the eigenvalues of M(£). For a € [— o0, 1], we shall
solve the problem of
(*) maximizing j,(M(¢)) over £ € E.

For any X € Dy, ,, write

x|
X=| : |, wherex,€Q.
xy
Then
N
XTX = ) xxT.

i=1

If £y is the probability measure on = which assigns probability 1/N to each x;,
then

M(¢y) = N71IXTX.

Therefore, if {x is j,optimal over =, then X is j,-optimal over Dy ,. The
matrices in D ~, » are called exact designs, while the measures ¢ in E are called
approximate designs.

The equivalence theorem was first proved by Kiefer and Wolfowitz (1960) for
the D-criterion. Kiefer (1974) extended it to general criteria. Other versions can
be found, for instance, in Pukelsheim (1980) and Pukelsheim and Titterington
(1983). When specialized to the j-criteria and to the present setting, it is
reduced to the following form:

THEOREM 2.1 (Equivalence theorem for the j, -criteria). Suppose M(£*) is
positive definite. Then for any —co < a < 1, the following three statements are
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equivalent:

(a) &* maximizes j,(M(£)) over £ € E.
(b) £* minimizes max . ox"(M(£)}* !x over ¢ € E.
(c) max, cox"(M(£%)}* 'x = tr{M(£")}"

Moreover, an optimal £* must be supported on points where the maximum of
xT(M(£*)}° " 'x over Q is attained and all the optimal £*’s have the same
information matrix M(¢¥).

Usually, the equivalence theorem can be applied in the following way. The
last statement in Theorem 2.1 about the support of an optimal £* can be used to
guess a good candidate; condition (c), which is easier to check than (a), can then
be used to verify its optimality.

As an application, let us first see how Jacroux and Notz’s results can be
proved by using Theorem 2.1. Consider the case where N is odd. If X is an
N X n (0,1) matrix such that X”X = (4n)"!N(n + 1)1, + J,), then M(¢x) =
N~XTX = (4n)"%(n + 1){d, + J,). In order to show that £y is j,-optimal over
=, it is enough to verify

maxxT{(4n)_1(n +1)(I, + J,,)}a_lx = tr{(4n)_1(n +1)(I, + J,,)}a,
xeQ
ie.,
(2.1) mang(In +J,)% 'x = (4n) N(n + )tr(1, + J,)°.
b. 4

Since (I, +d,)*=1I,—n "Y1 - (n+ 1)*)}d,, the right side of (2.1) is

(4n)~Y(n + 1){n — 1 + (n + 1)%}. The proof is finished by showing

mang[In -nY{1-(n+ l)a_l}Jn]x =@n) (n+){n-1+(n+1)%).

xXeE
It is easy to see that if @ <1 — In(n/2 + 1)/In(n + 1), then the maximum of
xT[I, - n Y1 — (n+ 1) 1}J,]x over x € Q is attained at vertices of Q with
(n + 1)/2 coordinates equal to 1 and (n — 1)/2 coordinates equal to 0. For such
an x, a simple computation shows that

xT[In -n1-(n+ l)a_l}Jn]x =(@n) (n+1){(n-1) + (n+1)%).

So condition (c) in Theorem 2.1 is satisfied and £y is j,-optimal over E for all
—o00 <a<1-1In(n/2 + 1)/In(n + 1). By passing to the limit (a > — ), we
see that £y is also j__-optimal. Consequently, X is Joptimal over all the
N X n matrices with 0 < x;; < 1forall a <1 - In(n/2 + 1)/In(n + 1); in par-
ticular, it is A-, D- and E-optimal over the N X n (0,1) matrices. By letting
N = n and a = —1, we have also proven Harwit and Sloane’s conjecture for the
case where 7 is odd. Jacroux and Notz’s results for even N can be handled in the
same fashion.

The preceding proof is so simple partly because we already have the right
candidate. In case no good candidate is available, as commented earlier, the
equivalence theorem can often provide some good guess. In the next section, we
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shall give a complete solution to problem (*). In the proof, one can also see how
the designs found by Jacroux and Notz emerge naturally from the equivalence
theorem.

3. Main results. We first state and discuss the solution of problem (*). The
proof is deferred to the next section.

For any integer k2 such that [(n + 1)/2] < k& < n, where [x] is the integral
part of x, let £, be the uniform measure on all the vertices of Q@ with %
coordinates equal to 1 and n — & coordinates equal to 0. Define two functions f
and g on the integers [(n + 1)/2] < k < n by

In{(2k + 1 n)/(2k + 1)) (]
1) gk)={ WEn-D/(n-k)y) 0 H|Tg |sk=r7l
1, ifk=n,
and
In{(2k —1-n)/(2k - 1)} 1
In{k(n - 1)/(n—k)} ’
(n
(3.2) i(k) = +1<ks<n-—1,
o, if (n+1) ’
2
1, if k=n.

Then it is clear that —oo = f([((n + 1)/2]) < g([(n + 1)/2]) < f(k) < g(k) <
f(k+ 1)<g(k+1)<1—f(n)—g(n)forall[(n+1)/2]+1sksn—2. So

{Lf(R), 8(R)1Yk=((n+1)/2) and {(&(R), f(k + 1)YiZl+1)/2) together form a parti-
tion of [ — 00, 1]. We state our main result as

THEOREM 3.1. Suppose k is an integer such that [(n + 1)/2] < k < n. For
f(k) < a < g(k), the design &, is j,-optimal over =, while for k <n and
8(k) < a < f(k + 1), the mixture €&, + (1 — )¢, ,, with ¢ given by

(E+1)*(n—1)— (k+1)(n—k-1){(2k+1-n)/(2k+ 1))/
(2k+1)(n—1) + (2k+ 1 —n){(2k + 1 — n)/(2k + 1)}/

(3.3)

is j,-optimal over E.
Since {[ f(k), 8(k)}i=((n+1)/2) and {(&(k), [(k + 1))}k [(n+1)/2 together form

a partition of [ — o0, 1], the precedmg theorem provides j,-optimal designs for all
a € [—0,1]. Each optimal design is a £, or a mixture of §, and &,., with
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k > [(n + 1)/2]. It can be seen that the ¢ defined in (3.3) is a strictly increasing
function of a € (g(k), f(k + 1)) and that as a ranges from g(k) to f(k + 1), the
¢’s cover all of (0,1). Therefore, any mixture of £, and §,,, is j,-optimal for a
single value of a in(g(k), f(k + 1)), whereas except for k£ = n, £, is optimal for
infinitely many a’s. As a increases from —oo to 1, the support of an optimal
design shifts from the vertices of @ with [(n + 1)/2] 1’s to those with more 1’s.
At a =1, the optimal design puts all the mass on the point with all the
coordinates equal to 1.

Among the optimal designs in Theorem 3.1, £, /2 is the most important.
It is j,-optimal for the widest range of a’s which also includes the
more important and commonly used criteria. For instance, when n is odd,
f(n + 1)/2) = —0 and g(n + 1)/2) =1 — In(n/2 + 1)/In(n + 1). So
§(n+1y2 18 Jyoptimal for all a€[—-o0,1— In(n/2 + 1)/In(n + 1)]. Since
1 - In(n/2 +1)/In(n + 1) > 0, £, i j,-optimal for all a € [—,0], ie.,
it is optimal with respect to Kiefer’s @ -criteria for all p > 0; in particular, it
is A-, D- and E-optimal. When n is even, g(n/2)=1-In(n + 1)/
In(n — 1). So §,,, is j,optimal for all a € [—o0,1 — In(n + 1)/In(n — 1)].
Unlike the odd case, this does not quite cover all the j,-criteria with nonpositive
a’s. Theright end 1 — In(n + 1)/In(n — 1) is less than, although quite close to 0.
As a consequence, £, , is not D-optimal. However, since 1 — In(n + 1)/In(n —
1)> —-1if n>3, §, , is A-optimal for all even n > 4; it is also E-optimal for
all even n. Due to the importance of the (Dp-criteria, we state the results for
®,-optimal designs in the following corollary.

COROLLARY 32. (i) If n is odd, then &, ), is ®,-optimal over = for all
0<p<oo.

(i) If n is even, then §, ,, is ®,-optimal over Z for all p > In(n + 1)/In(n -
1)—1. For 0<p<In(n+1)/In(n—1)— 1, &, » + 1 — &), .1 is P,-opti-
mal over =, where

_ (n+ 2)2(n -1) - (n? - 4)(n + 1)1/(p+1)

(3.4)
4{n?+ (n+ )YV -1}

As a matter of fact, we first obtained our results for the @,-criteria. The
distinction between the even and odd dimensions as exhibited in Corollary 3.2
was somewhat puzzling at the time. It was Professor F. Pukelsheim’s suggestion
to look into the j,-family which led to Theorem 3.1 and a much better under-
standing of the problem.

It was pointed out earlier that when n is even, §, ,, is A- and E-optimal, but
not D-optimal. Letting p = 0 in (3.4), we have ¢ = (n + 2)/2(n + 1). So §p =
{(n+2)/2(n + 1}, » + {n/2(n + 1)}, . is D-optimal. This design can be
described in simple terms. Since §,, ,, is supported on n'}z) points, £, assigns to

1
each vertex of @ with n/2 1’s a weight of (n + 2){2(n + 1)(,;2)} , which is
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n

-1
equal to {(n;Z) + (n P 1)} . Similarly, it can be shown that £, also assigns a
-1
weight of {(n%) + (n/2n+ 1)} to each vertex of @ with n/2 + 1 1’s. Accord-
ingly, &), is simply the uniform measure on all the vertices of @ with n/2 and
n/2 + 1 1’s. We state this as

COROLLARY 3.3. If n is even, then the uniform measure &, on all the vertices
of Q@ withn/2 and n/2 + 1 1’s is D-optimal over =.

The solutions to the approximate design problem (*) can be used to derive
upper bounds on j(X7X) for X € D ~, n- This is because if £* is j,-optimal over
=, then j,(X”X) < N7}, (M(£¢*)) for all X € Dy, ,,. It is easy to see that when n
is odd, M(¢,.1)2) = (n + 1)4n)"'(I, + J,), and when n is even, M(¢, ,) =
{(4(n — 1)}~ YnI, + (n — 2)J,}. Therefore, we have, for a = —1:

COROLLARY 3.4. Forany X € Dy , with N > n,
tr(XTX) ' = N7 4r(M(£(u010)) = 4n3/N(n +1)°, if nis odd
and
tr(XTX) "' > N‘ltr(M(gn/z))_l =4(n®> - 2n + 2)/nN,

if nisevenandn > 4.

Lower bounds for other criteria can be similarly derived. Note that the
inequality in Corollary 3.4 for odd n reduces to (1.3) when N = n.

The designs listed in Theorem 3.1 are not the only j,-optimal designs. Optimal
designs with smaller supports can be found by using BIBDs. It is clear that if N
is the block-treatment incidence matrix of a BIBD with n treatments and block
size k, then the uniform measure on all the row vectors of N has the same
information matrix as §,. Thus in Theorem 3.1, we can replace §, with the
uniform measure on the row vectors of the block-treatment incidence matrix of
an arbitrary BIBD with n treatments and block size 2. A D-optimal design for
even n with a smaller support than the design described in Corollary 3.3 can be
constructed as follows. Let d, and d, be BIBDs with n treatments and block
sizes n/2 and n/2 + 1, respectively. If r, =r,, where r; is the number of
replications of each treatment in d;, i = 1,2, then it can be seen that £, has the

. . . . N,
same information matrix as the uniform measure on the row vectors of (Nl ,
2

where N; is the block-treatment incidence matrix of d;. In view of the previous
observations, we have

COROLLARY 3.5. (i) If n is odd and X* is the block-treatment incidence
matrix of a BIBD with n treatments and N blocks of size (n + 1)/2, then X*
minimizes tr(XTX)? for all a < 0 and maximizes det(XTX) and tr(XTX)* for
all0 <a<1-1In(n/2 +1)/In(n + 1) over X € Dy ..
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(ii) If n is even and X* is the block-treatment incidence matrix of a BIBD
with n treatments and N blocks of size n/2, then X* minimizes tr(X7X)? over
XeDy, foralla <1 - In(n + 1)/In(n — 1).

(iii) Suppose n is even. Let d, be a BIBD with n treatments and N, blocks of
size n/2 and d, be a BIBD with n treatments and N, blocks of size n/2 + 1

such that r, = ry. Then X* = (11:;) is D-optimal over Dy , y, ,, where N, is the

block-treatment incidence matrix of d;.

(iv) For [(n + 1)/2] < k < n, the block-treatment incidence matrix X* of a
BIBD with n treatments and N blocks of size k maximizes tr(XTX)* over
X € Dy , foralla € [ f(k), g(k)], where f(k) and g(k) are defined in (3.1) and
3.2).

The results by Jacroux and Notz (1983) quoted in Section 1 are special cases
of Corollary 3.5.

4. Proof of Theorem 3.1. The case a = 1 in Theorem 3.1 is trivial, so we
shall only consider the case —oo <a < 1. One can prove the theorem by
computing the information matrices of the optimal designs listed there and
verifying condition (c) in Theorem 2.1. This of course does not give the complete
picture. Instead we shall actually show how these designs are derived; particu-
larly how the weight ¢ in (3.3) is determined.

First of all, notice that problem (*) is permutation invariant. For any
permutation = of integers 1,2,...,n and any x = (x,,...,x,)T € , let #n(x) =
(xﬂ(l)’ xﬂ(2), ceey xw(n))T° Then obviously ja{M(gw)} =ja{M(£)}’ where £qr iS de'
fined by £,.(B) = £(m(B)) for any Borel subset B of Q. Since j, is concave for
a < 1, problem (*) must have a permutation-invariant solution, i.e., there exists
a j-optimal £* such that £* = §* for all 7. For such £*, M(£*) must also be
permutation-invariant, i.e., M(§*) = aI, + BJ, for some constants a and 8. By
Theorem 2.1, all the optimal designs have the same information matrix; it
follows that M(§*) = oI, + BJ, for any j-optimal £*, permutation-invariant or
not. This yields a substantial reduction of the problem. Now we only have to
determine a and B.

By Theorem 2.1, an optimal &* must be supported on points where the
maximum of ¢(x) = xT[M(£*))% 'x over Q is attained. For any 1 < i < n, if we
fix all the coordinates of x except x;, then ¢(x) is a quadratic function of x; with
positive leading coefficient, whose maximum over [0,1] is attained at 0 or 1.
Therefore, £* must be supported on the'points with all the coordinates equal to 0
or 1, i.e., vertices of Q.

Now we determine the number of zero coordinates a point in the support of
an optimal £* can have. Let x be a vertex of Q in the support of £* with & 1’s
and (n — k) 0’s. Since {(M(£*)}*"!'={al, +BJ,}* ' =a*'I,— n Ya® ! -
(a + np)*~ 1},

(4.1) o(x) = a® 'xTx — n_l{oz"_1 —(a+ nB)a_l}xTJnx

=a® k- n_l{az""l —(a+ n,B)a_l}k2.
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The maximum of (4.1) is attained at the integer(s) closest to k* =
na® '/2{a®" ! — (a + nB)*'}. Clearly k* > n/2. Therefore, an optimal £* must
be supported on vertices of £ with at least [(n + 1)/2] coordinates equal to 1. In
fact, since (4.1) is a quadratic function of &, one concludes that

if * > [k*] + 1, then £* must be supported on vertices of @ with [2*] + 1
1’s;

if k* <[k*]+ 3, then £* must be supported on vertices of @ with [£*] 1’s;

if £* = [k*] + 3, then £* must be supported on vertices of @ with [2*] and
[B*]+ 11

The solution is clear now. Since M(£*) must be of the form oI, + Bd,, in view
of the previous results on the support of £*, one can try the uniform measures £,
or mixtures of £, and £, , with 2 > [(n + 1)/2].

A straightforward computation shows that

M(¢,) =n"Yn—-1)"k(n—-k){L,+ (n— k) '(k—1)d,}.
Therefore,
{M(£)}" =n"%(n-1)""k%(n - k)°

X {I,, — n‘l[l —{k(n-1)/(n - k)}a]Jn}.

Let h(t) = xT{M(¢,)}* x, where x is a vertex of @ with ¢ 1’s. The right side of
Theorem 2.1(c), tr{M({,)}% is n"%(n—-1)"%% n - k) [n—1+ {k(n—-1)/
(n — k)}*], which can be shown to equal A(%). Therefore, condition (c) in
Theorem 2.1 holds for £,, i.e., §, isj,-optimal if and only if

(4.2) h(k) > max{h(k — 1), h(k + 1)}.
By direct computation, (4.2) is equivalent to
2k-1-n)/(2k-1) < {k(n-1)/(n - B} < (2k+1-n)/2k+1).

Taking logarithms, we conclude that £, is j-optimal for all a € [ f(&), g(k)].
For g(k) < a < f(k + 1), we try mixtures of §, and £,,,. Let £(¢) = &§, +
(1 — €)é,.,. Then

(4.3) {(M(¢(e))}* ={(k+1)(n—k—-1)+e(2k+1— n)}f‘_

x {n(n - 1)} [L, - n 1 - (K(e)*)d,],
where
(44) K(e)=1+n{k(k+1)—2ek)/{(k+1)(n—k—-1)+e(2k+1—n)}.
Let H(¢) = xT{M(£(e))}* 'x, where x is a vertex of Q with ¢ 1’s. Recall that an
optimal design £* must be supported on points where the maximum of

xT(M(£*)} 'x is attained. Because £(¢) is supported on vertices of @ with & 1’s
as well as those with 2+ 1 1’s, if £(¢) is j,-optimal, then we must have
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H(k) = H(k + 1). Comparing H(k) with H(k + 1), we are led to
(4.5) K(e) = {(2k + 1 — n)/(2k + 1)}/,

where K(e) is defined in (4.4). Solving (4.5), we obtain the & given in (3.3). It is
easy to see that the condition g(k) < a@ < f(k + 1) implies0 < & < 1,s0 §(¢) is a
legitimate probability measure.

To finish the proof, we must show that £(¢) satisfies condition (c) in Theorem
2.1. Since H(t) is a quadratic function of ¢ with negative leading coefficient and
H(k) = H(k + 1), the maximum of H(¢) over the integers is attained at ¢t =k
and %+ 1. It follows that max, . ox{M(£(e))}* 'x = H(k). A routine but
somewhat tedious computation, with the help of (3.3) and (4.5), shows that
H(k) = tr{M(£(¢))}° Therefore, £(¢) satisfies condition (c) in Theorem 2.1 and
the proof is completed.
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