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OPTIMAL STOPPING TIMES FOR DETECTING CHANGES IN
DISTRIBUTIONS

BY GEORGE V. MOUSTAKIDES

Institut de Recherche en Informatique et Systemes Aleatoires

It is shown that Page’s stopping time is optimal for the detection of
changes in distributions, in a well defined sense. This work is a generalization
of an existing result where it was shown that Page’s stopping time is optimal
asymptotically.

1. Introduction. Let us assume that X, X,,... are independent and iden-
tically distributed random variables that are observed sequentially. Let also
X,,..., X,,_; have distribution function F, and X,, X, ,,... distribution
function F; # F,. The two distributions are known, but the time of change m is
assumed unknown. We are interested in finding stopping times that will detect
the change with a delay as small as possible. Let P, denote the true distribution
of X,, X,,... when the change occurs at m and E,, the expectation under this
distribution. We allow m to take the value infinity, denoting by this the case
where no change occurs. Let %, n>1, be the o-algebra generated by
{X,, X,,..., X,}. We also consider an auxiliary o-algebra % and we will assume
that we can extend the measures P, on % in such a way that for every real
p €[0,1] we can generate an event in # that has probability p for every P,,.
Define %, = % and %, = %, U %. Allowable stopping times (s.t.) will be all those
s.t. that have the form N = 0 with probability (1 — p) and N = N’ with
probability p where N’ is any s.t. measurable with respect to the filtration
{#,},,>1 and with the randomization p being done before any observation is
taken.

We define optimality of a s.t. in the sense of Lorden [3]. That is, if N is a s.t.
define

(1) D,(N)=esssupE, {[N-m+1]"/%,_ .}, m=>1,
(2) D(N) = suple(N).

Thus we consider the conditional expectation of the delay over those events
before the change occurs that least favor the detection of the change. We would
like to minimize D(N) over those s.t. from the allowable class that satisfy the
following constraint on the rate of false detections:

(3) E{(N}>y>0.

Our goal in the next section will be to prove that Page’s s.t. is optimal in the
above sense. Let us first define this s.t. For simplicity we will assume that F; and
F, are mutually absolutely continuous. Let I(x) denote the Radon-Nikodym
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1380 G. W. MOUSTAKIDES

derivative of F, with respect to F;,. We will assume that /( X,) has no atoms with
respect to P,. Let us define the following sequence of random variables:

SO = O,

(4) _

S, =max{S,_,,1}/(X,), n=>1.
We define Page’s s.t. N, as follows:
(5) Np=inf{n>1: S, > p},
where p is a nonnegative constant and the infimum of the empty set is infinity.
Page’s s.t. is defined a little differently here than it is usually defined in the
literature. N is usually defined as the first n for which 7, = max{S,, 1} exceeds
. The two definitions are equivalent when p > 1, but there is a difference when
p < 1. When p < 1, with the definition that uses 7, we stop at n = 1, but with
the definition in (5) this is not the case. As we will see in the next section there
exists a nontrivial range of values of y for which p € (0,1]. With the following
lemma we give some properties of the sequences S, and T, that will be used
later.

LemMA 1. Let T, = max({S,,1}). For any n>m>1 and for fixed
{Xmi1---» X,,}, the quantity S, is a nondecreasing function of T,,. Also T, can
be written as

n+1

(6) T.= Y [1-8.] TTuxy,
j=1 k=j
where we define T1%, | = 1.

Proor. The property that S, is a nondecreasing function of T, (for fixed
{Xn+15--+5 X,,}) can be proved by induction and using the definition in (4). To

m

prove (6), we can see from (4) that
(7) T,=max{S,,1} =S, +[1-S,]".
If we use (4), (7) and induction we can easily show (6). O

A very important consequence of the monotonicity of S, with respect to T, is
that on the event {Np, > m} the s.t. N, is nonincreasing with 7., ,; thus, the
essential supremum in (1) is achieved for 7,,_, =1 (or S,,_, < 1). This means
that restarting Page’s s.t. at m gives the worst conditional average delay and
thus from stationarity all D,(N,) are equal. The s.t. N, is thus an equalizer
rule, a very important property for proving its optimality.

2. Optimal stopping time. Notice first that for y > 0 we have D(N) > 1.
This is true because with E_{N} > y > 0 it is not possible to stop a.s. at n = 0
and thus we will take at least one sample. With this remark we have that for
1>y > 0, the optimal s.t. (say N,) is {stop at n = 0 with probability 1 — vy
otherwise stop at n =1}. This yields D(N,) =1 and E_{N,} =y. We now
consider the case 1 < y < co. With the next lemma we will show that in order to
find the optimal s.t. it is enough to limit ourselves to a smaller class of s.t.
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LEMMA 2. In order to minimize D(N) over the s.t. that satisfy (3) it is
enough to consider those s.t. that satisfy (3) with equality.

ProoF. From the way we defined our class of s.t., we have that N = 0 with
probability (1 — p) and N = N’ with probability p, where N’ is measurable
with respect to {%,}. If p > 0 then we have that D, (N)= D,(N’) for every
m > 1 and thus D(N) = D(N"’). Notice also that E_{N} = pE_{N’}, where the
product pE_{N’} is defined as being zero when p = 0. If E_{N} = co then
p > 0and E_{n’} = co. We can always find a large enough integer K such that
if we define M’ = min{N’, K} to have pE_{M"} > y. If now M is the randomi-
zation of M’ with probability p then D(M) = D(M’) < D(N’) = D(N). It is
thus enough to consider s.t. that have finite E_{N}. Let now o« > E_{N} =
pE_(N’} > y; this means p > 0 and E_{N’} < co. By defining a new s.t. M
that is equal to N’ with randomization probability p’ = y/E_{N’} < p we have
E_{M) =y and D(M)= D(N’) = D(N). This concludes the proof. O

In the following lemma we introduce a lower bound for D(N ) that we will use
as our performance measure instead of D(N).

LEMMA 3. For any s.t. N satisfying 0 < E_{N} < oo we have that
E {Zﬁ:”(,‘max{sk, 1} }
E { k= ()[I_Sk] }

where we define ¥ _ ‘- = (0. We have equality in (8) when N = N,

(8) D(N) >

= D(N),

ProoF. Let I(A) denote the indicator function of the event A. Define
(9) B(N) = E{[N-m+1]" /9, ).

Because the event {N > k} is %, | measurable we have

> E{I(N=h)/9, )

k=m

Y E {[krf I(x )]I(N > k)/%l}

k=m =

B,(N)

(10)

/

e[ o] )

Notice that in (1) D, (N) was defined as the essential supremum of B, (N ). Since
for every m > 1 we have D(N) > D, (N) using (10), this yields

E{[1-S,_,]"I(N=m))D(N)
>E {[1-8, ] I(N=>m)B,(N)}
- Ew{I(N > m) % [1-58, .1 kﬁl l(X,)}.

k=m J=m

(11)
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When N = Np we have equality in (11). This is true because D(Np) = D,(Np)
for every m and, because as we said in the introduction, the essential supremum
of B,(Np) is achieved on the event {N,>m} N {S, , <1} and that
[1 =S, _,]"I(Np > m) may be nonzero only on this event. Summing now (11)
for all m > 1, interchanging summations and expectations and using (6), the last
term of the inequality in (11) gives

mi Eoo{I(N > m) 4_‘% [1-8,..]" ,ijll(xj)}

(12) {mzl kzm[l = Sneal” 1_[ UX; )}

_ {ﬁ[zn— Su0 T,

k=1

_ Ew{ o Tk_l} _ Ew{ T Tk} _ {”g max{sk,,l}}'.

For the first term in (11) we have that

(13) i Ef{I(N>m)[1-8,_,]"} = Ew{ Z;j;[l - s,,,]*}.

m=1

The quantity in (13) is less than E_{ N}, thus finite. For N > 1 we also have that

N-1
(14) Y1-8.0=21

m=0
thus, the quantity in (14) is no less than the probability P, {N > 1}, which is
nonzero since by assumption we have E_{ N} > 0. Thus, we have shown (8). O

In order now to show that Page’s s.t. is optimal it is enough to show that
among all s.t. that satisfy E_{N} =y, Page’s s.t. is the one that minimizes
D(N). Specifically N, minimizes D(N ) by simultaneously minimizing its numer-
ator and maximizing its denominator. One can now see why it was necessary to
limit ourselves to the class E_{ N} = vy. If we had condition (3) instead, this gives
N = oo as optimal for the denominator. Since from now on all events will be
considered with respect to the measure P, for simplicity we drop the subscript
oo. With the following theorem we show that Page’s s.t. is optimal for a whole
class of optimization problems.

THEOREM 1. Let oo >y > 1. If ¢(2) is a continuous nonincreasing func-
tion, well defined for all z > 0 with ¢(0) bounded, then Page’s s.t. satisfies

N-1 Np—1
(15) supE{ 5 qo(Sk)} - E{ ) «p(Sk)}

N k=0
for all s.t. N that satisfy E{(N} = y.
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Using Theorem 1 we can easily show that N, minimizes D(N). With ¢(2) =
—max{z,1}, Theorem 1 shows that N, minimizes the numerator of D(N) and,
with @(z) = [1 — z]7, that it maximizes the denominator. By assumption we
have that ¢(z) is bounded from above by ¢(0) < oo. Without loss of generality
we can assume that ¢(2) is also bounded from below. This is true because if ¢(z)
is not bounded from below we can always define a new function ¢'(z) =
max{p(z), A}, where A < ¢(r) (p is the threshold for Np). We will thus have

o ) )

Notice that we have equality in (16) when N = Np. This is true because the two
sums in (16) are taken up to N — 1; thus, for N = N, S, is always in the region
where ¢(S,) = ¢/(S,). Clearly if Np maximizes the right-hand side of (16), it also
maximizes the left-hand side. We will thus assume that ¢(z) is bounded and let
D < o be a bound.

Before going to the proof of Theorem 1 we give some definitions and present
certain results that will be useful for this proof. Let us denote by », .the time of
the rth entry of S, in the set [0, 1], i.e., », = 0 and, for r > 1,

(17) v,=inf{n >»._: S, <1}.

In the next lemma we present a property of the time »,.
LEMMA 4. All finite moments of the time v, exist.

ProOOF. Since for a > 0 the function a*® is a convex function of s we have for
0 <s <1 that a® < (1 — s) + sa, with equality if and only if a = 1. If now
a = (X)) and we define a(s) = E{[I(X,)]°}, we conclude that a(s) < 1. Since
/(X)) is not a constant equal to unity, there exists s, that satisfies a(s;) < 1.
Notice now that

P{v, =k} < P(S,_,>1} = P{i}jlll(xj) > 1}

- P{}:li[: [W(x)]” > 1} < [a(sy)]* 7"

To show that all the moments exist, we have
o0

Bl) = X WPy = k) s T W [a(s)]* ' <o

k=1
and this concludes the proof. O

In order to solve the constrained optimization problem defined in (15) using
the Lagrange multiplier technique, we will reduce it to an unconstrained optimi-
zation problem. Let S; = x > 0 and, for any real A define

N-1
(18) V(x, \) = supE{ S [(Sy) - A]},

N k=0
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where now the supremum is taken over all s.t. N. The function V(x,\) is
nonnegative and can take the value infinity. We are interested in finding for
which values of x and A V(x, A) is finite. With the next lemma we can see the
behavior of V(x, A) with respect to x when A is fixed.

LEMMA 5. Let V(x, A) be defined by (18); then V(x, \) is finite if and only if
V(0, ) is finite.

PRrooF. Notice first that using Lemma 1 and the monotonicity of ¢(z) we
conclude that V(x, A) is nonincreasing in x for fixed A. With this property the if
part is easy to show since V(x,A) < V(0A) < 0. For the only if part now,
assume that V(x, A) < oo for some x = x,. For x > x, we then have V(x, A\) <
V(x9, A) < co0. We will now show that we also have V(0, A) < . Let N, denote
Page’s s.t. with threshold x,. For any s.t. N define N’ = min{N, N,}; then

E{ kgo [¢(S)) - A]}
_ E{ 5 lo(s,) - A]} + E{ > [0(S,) - A]}

k=0 k=N’

N-1
< (D +AE{N,} + Z SupE{ 2 [9(Se) = AJI(N, = )}

J=1Nz=j k=j
< (D+A)E{N,} + V(x5,A) < o0
and this concludes the proof. O

From this lemma we have that for fixed A, V(x, A) is either finite for all values
of x or it is infinite. With the following theorem we identify the range of values
of A for which V(0, A\) (and thus V(x, M)) is finite.

THEOREM 2. Let §, = X3_,9(S,) and A\, = E{¢,}/E{»,).
(@) If 0o > A > A, and S, = x > 0, then we have

n +
E{sup[ Y [e(S,) - )\]] } < 0.
P
(b) If & — Ay, is not a constant, then V(0,\) - o0 as A = A, + .

Proor. Condition (a) is sufficient to ensure existence of V(x, \) ([6], page
69). First notice that |E{§,}| > DE{»,} (where D is a bound for ¢(z)), thus A, is
finite. To show (a) for every x > 0, it is enough to show it (using Lemma 1) for
x=0. Con81der the sequence »,, »,,... defined in (17); it goes to infinity a.s.
Define §, = X} | ,9(S;) and n, = », — »,_,. Using the strong Markov property
of the sequence {S,}, we have that the two sequences {£,} and {,} are i.i.d.
sequences of random variables. Let now »,_, < n < »,; then,

(19) kX_ZO[‘P(Sk) -] < k;1 (& — A, + D,
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where D’ = D + |A|. The sequence {w,} with w, = £, — An, is also an i.i.d.
sequence. For A > A, we have that E{w,} < 0. Let § > 0 be such that E{w,} +
8 < 0; then, from (19) we have

L lots) - s | Sl 01] +ino - oy

(20) , .
< [E [w, + 3]] + D', I(n, = 8'r),

where 8’ = 8 /D’. From (20) we have

{sup[g [9(S,) —A]H

n

(21)
< E{sup[ i [w, + 8]] } + D’ i E{nI(n,>087)}.

r k=1 r=1

For the first term in (21) to be finite, sufficient conditions are E{w,} + 8 < 0 and
E{([w, — E{w,}]1%)?} < oo ([2], page 92). The first condition is satisfied; we can
easily show that the second is also satisfied using the properties that ¢(z) is
bounded, that the second moment of », is finite (Lemma 4) and the fact that for
any real a we have (a*)? < a®. To show that the second term in (21) is finite
notice that since 7, is distributed as », we have

0 Elp:

2 E{nI(n,=8r)) < { }

r=1

1
—_z

To prove (b), notice first that V(0, A) is nonincreasing in A; thus, the limit of
V(0, ) exists (being possibly infinity). Consider now s.t. that can stop only at
the instances », and the decision whether to stop or continue at », is made by
using the random variables £,,..., £, and 7,,..., n,. For this case we have

vp—1

R
k‘i—rﬂ [9(S;) - Al > kz=: (¢, — An,] - 2D

This yields

R
) Vo) = B X 6, M.} - 20
k=1
Consider now a s.t. R with E{R} < oo, from (22) taking limits with respect to A
gives

(23) Jim V0.0 2 B ¥ [e - Am]] - 20

Ao k=1
The random variable §, — A m, has zero mean; thus, from [2, page 27], the
right-hand side in (23) can be made arbitrarily large. This concludes the proof of
Theorem 2. O
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We are now ready to prove Theorem 1.

Proor oF THEOREM 1. Notice that the first term in the sum in (15) is
(Sy) = ¢(0). In general, the value ¢(0) is not attainable by ¢(S,) for k& > 0
because ¢(S,) < ¢({(X,)) < ¢(z,), where z, = essinf{l(X,)}. This will be, for
example, the case when ¢(z) =[1 — 2]* and z,> 0. The quantity ¢(z,) will
play a role in our proof. We distinguish two cases

(1) ¢(24) = @(u). For this case we have

B o(50)] < [600) - o(a)] POV > 0) + 5z (V)

= [‘P(O) - ‘P(zo)] + 9(20)7,
with equality when N = N, because for £ > 0 and 2, < S, < p we have
P(S) = ¢(2)-

(2) 9(2¢) > @(p). Let X > . For every s.t. N, E{(ZN_[¢(S,) — A} is linear in
A; thus, V(x, A) being the supremum over N of this expression, is a convex
function of A. If we denote [x] = max{x,1}, the function E{V([x]I(X,), A))}
will also be convex and thus continuous in A.

Consider now the equation

B(A) = o(p) = A+ E{V([p]i(X,),N)} =0.

The function B(A) is continuous in A. Since V(x, ¢(0)) = 0, we have B(p(0)) =
o(p) — 9(0) < 0and B(A) — o as A = A, + (Theorem 2(b)). Thus, there exists
a A* with ¢(0) > A* > A, that satisfies S(A*) = 0. Let now A = A*. From Theo-
rem 2(a) and [6, page 69] we have that V(x, A*) exists and satisfies

V(x, M) = [p(x) = M + E(V([x]U(X,),7)}] .

From [6, page 74] we have that the optimum is to stop when V(S,, A*) = 0.
Since ¢(x) and E{V([x]{(X,), )} are nonincreasing functions of x, this will be
the case when S, > u, i.e., Page’s s.t. N,. O

CoMMENTS. It is very difficult in general to relate explicitly y to u, though
there is a range of values of y where this is possible. Let us consider the case
p < 1. For this case N, is equivalent to Nj, = inf{n: {(X,) > u}. In other words,
given that there is no stop before n, we have that S, < 1 for 2 < n. Indeed if for
some k£ we had S;, > 1, then we would also have S, > g, thus having a stop at £,
a contradiction. For this case the expectation of N, under P, and P, is
E{Np} =[P{l(X,)>p}]"", i =0, c0. Thus, for

1L<ys<[P{UX)=21)] ",

the relation between y and p is given by P, {I(X,) > u} = vy '. For other values
of y the integral equation defined in Page’s paper [4] can be used, but clearly
this is a more complicated situation. For approximations see [7]. In the introduc-
tion we assumed that /( X,) has no atoms. In the general case we have to modify
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the s.t. N, by including a randomization whether to continue or stop every time
we have S, = p.

The approach we have followed here is non-Bayesian. The criterion D(N)
that we used takes into account only the worst possible situation before a change
occurs; thus, it may be considered as conservative. In [5], following again a
non-Bayesian approach, the criterion D(N) = sup,E, {(N — m)/N = m} is
used. The optimal s.t. obtained for this criterion is again of the form “stop when
a statistic R, exceeds a threshold.” The statistic R, satisfies the recursion
R,=@1+ R,_))I(X,). Notice the similarity with the statistic S, used for N,;
both can be written in the form Z, = w(Z,_,){(X,,), where w(z) is a univariate
function satisfying w(z) > 1. Clearly S, is more conservative with respect to past
information (included in S, _,) because it does not take it into account if it is not
important enough. This does not happen with R,. In any case, Page’s s.t. is very
popular and widely used in practice because it has the important property of
combining detection and estimation. Specifically, the largest n < N, for which
S, <1 is the maximum likelihood estimate of the change time m using all
observations up to time Nj. Finally for Bayesian approaches see [1] and [6, page
193].
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