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The remarks that follow are mainly critical, but that is not unusual when
statisticians discuss difficult new areas of research. My criticism is not meant to
obscure the paper’s many positive achievements: the neat development of
resampling methods for the linear regression problem, in particular Theorem 2;
the extended class of weighted jackknives introduced in Section 4, and their
justification in Theorem 3; and the intriguing suggestion in Section 8 for a more
general weighted jackknife based on the Fisher information. The paper’s main
fault, in my opinion, is not the absence of interesting new ideas but rather an
overinterpretation of results, which leads to bold distinctions not based on
genuine differences.

(A) 1 reran part of the simulation experiment of Section 10, exactly as
described except for the following change: Instead of taking the e; ~ N(0, x,/2),
I took them N(0,|x; — 5.5|). This gives nearly the same set of variances for the
errors e;, but with the large variances occurring at both ends of the x range,
rather than just at the right end. Only the estimation of Var(S,) (actually equal
3.64 in this situation) was considered, and only by the two estimators v,
definition (5.1), and 9, definition (2.9).

Here are summary statistics for 400 Monte Carlo trials:

mean st. dev. rms
) 3.47 3.14 3.14
) 2.40 1.20 1.73

(rms indicates root mean square error). Now 9, the ordinary estimator (and also
the “residual bootstrap” estimator v, (2.9)), is biased sharply downward instead
of upward as in Table 1; v, is nearly unbiased, as it was designed to be.

However v,,, is much more variable than ¢, having nearly three times the
standard deviation and twice the rms error for estimating Var(S,). The per-
centiles of the two Monte Carlo distributions

5% 10% 16% 50% (true) 84% 90% 95%
V0 0.57 0.83 1.02 247 (3.64) 6.15 7.80 9.63
0 0.88 1.12 1.27 2.14 (3.64) 3.65 4.06 4.56
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1302 DISCUSSION

show that v, is genuinely bad here, even compared to o, which was never
designed to handle the situation at hand. Usually it is not worthwhile to push
too hard for unbiasedness, particularly in estimating variances, where the most
important application, approximate confidence intervals, refers to standard devi-
ation rather than variance anyway.

Of course this one simulation does not prove that v, is bad in general. The
same cautionary remark applies to the results in Section 10! [Theoretical
considerations (see remark G below) indicate that v,,, will be more variable
than © in most cases. When the o? are all equal, for example, the rms error of
v,q, exceeds & by 41%, for the estimation of Var(f,) in the quadratic regression
of Section 10.]

(B) The jackknife and bootstrap are general-purpose devices, not specifically
adapted to take advantage of a special model like (2.1). Comparisons with
specially adapted methods such as the author proposes are misleading if this is
not made clear. For example, the confidence interval method PBOOT in Table 3
does not incorporate a student’s ¢-correction, as do the entries above it in the
table. If a ¢-correction is applied to PBOOT, say widening interval (2.10) by a
factor of {92 /2092 = 118 about its central point, then the “equal variance”
entries for PBOOT in Table 3 will nearly equal the nominal value 0.95.

Why not always widen PBOOT by a student’s ¢ factor? Because in general
problems, as opposed to the special case of linear regression with normally
distributed errors, it is not clear how to choose such a factor. General-purpose
nonparametric confidence intervals are discussed in Section 7 of Efron and
Tibshirani (1986). There has been substantial progress in this area, made by
many authors using different techniques, but the problem is far from solved.

(C) Attaining the nominal coverage probability does not make a proposed
confidence interval correct. Notice in Table 4 that the intervals for VCJ8 are
much too long (as the author points out), and could not be used in practice. The
six methods in the simulation study that start with “V” are symmetrically
centered at the point estimate §. As discussed in Efron and Tibshirani (1986),
the asymmetry of genuinely correct intervals, such as Fieller’s construction, is an
order of magnitude larger effect than the student’s ¢-correction.

(D) The paper treats the various methods as competitors, but in fact their
similarities are more striking than their differences. Here is a schematic diagram
of bootstrap methods in general, Efron and Tibshirani (1986), that helps relate
the estimators:

P—)y :p—)y*
) |

a~

B B+

The observed data y comes from a specified but unknown probability mecha-
nism P, in this case the linear model y = X8 + e (2.1), with unknown parame-
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ters B and 02, 02,...,02. We want to assess the variability of a statistic
computed from v, here § = (XTX) X7y

Bootstrap methods proceed by ﬁrst estlmatmg the entire probability mecha-
nism P, say by P = ( B 62,62,...,67%) in this case; then by resampling data
vectors y* from P; recalculating the statistic of interest, B* = (XTX) X Ty*,
and finally using the observed variability of the B* values to estimate the
variability of A. In situation (2.1) the bootstrap calculations can be carried out
theoretically, without recourse to Monte Carlo, giving the bootstrap variance
estimate

Vgoor = TX) ZU xx]( TX)71

for .
The estimate © = v, (2.9), uses 67 = The estimate v,,, (5.1) uses &;
r2/(1 — w;). The Hinkley estimate Onay (2 6) (which, incidentally, performed
somewhat better than v,,, in the simulation experiment of remark A) uses
62 =r?/(1 — k/n). Professor Wu suggests another variation in Sectlon 7.
A great variety of other possibilities is possible, for example using 62 = cr? +
(1 — ¢)62, where c is a Stein-like shrinkage factor.

22

(E) The discussion beginning at (6.14) of the “unweighted bootstrap,” the
bootstrap which resamples pairs ( y;, x;) rather than residuals, is misleading. If
the parameter of interest p is the intercept of the true regression line at the
particular point x = X, then p* is not y* = Ly*/n, but rather fi as described
following (6.17). The unweighted bootstrap estimate of variance is quite close to
the usual answer (6.15) in this case.

(F) Notice that the usual jackknife estimate v; and the unweighted bootstrap
estimate v* have nearly identical biases in Table 1. Theorem 6.1 of Efron (1982),
which justifies the jackknife as a linear approximation to the bootstrap, is
quantitatively accurate in this case. The large biases observed for entry (1,1), the
estimated variance of the intercept 8,, occurs for a simple reason: In resampling
the pairs (y,, x;), the unweighted bootstrap uses data sets with varying collec-
tions of x-values, whereas Var(B) in Table 1 refers to the 12 fixed values of x
given at the beginning of Section 10.

In other words, v, and v* estimate unconditional rather than conditional
variances. This is a higher order effect that ordinarily does not seem to be very
important. Here it is important because of the small degrees of freedom (9) and
the fact that B, is the intercept at 0, outside the range of support of the x,,
that ,80 is an extrapolation. For situation (2.1) it is easy enough to run the
bootstrap conditional on the x values, as in remark D. In other situations (see
for example Reid (1981)), conditional bootstrapping is not at all obvious.

(G) The problem considered in this paper, estimating the variance of a
function of B in the heteroscedastic situation (2.7), is interesting in its own right,
independent of jackknife/bootstrap considerations. The estimators v, vy,
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and © are of the form X7 c;r?, where the constants c; depend on X but not on

the o2. For the situation in Section 10, the vectors ¢ = (c,, ¢, ..., ¢,,) are
U 0) (0.67,0.28,0.12, 0.04, 0.00, 0.00, 0.01, 0.06, 0.08, 0.06, 0.02, 0.46)
Oha): (0.52,0.28,0.13, 0.04, 0.01, 0.00, 0.02, 0.09, 0.09, 0.06, 0.02, 0.12)
O (0.11,0.11,0.11,0.11,0.11,0.11,0.11,0.11,0.11,0.11,0.11, 0.11)

This raises several interesting questions, some of which are considered in the
MINQUE literature:

(i) For a given vector of variances (07, 02, ..., 62), what is the best choice of the

vector e, say to minimize rms error?

(i) Given a set of possible variance vectors, is there a preferred general choice

of ¢?

(iii) Is there an adaptive way of selecting ¢ from the observed data, as suggested
at the end of remark D?

(iv) Wu’s estimators v, ,, 7 > 1, involve quadratic forms ;% ;Ci;1:T;- Is there any
real advantage to using the cross-terms r;r;, or does this just add to the
variability of the estimator?
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The emphasis the author places on using nonstandard subset sizes in jackknife
procedures is important for at least one other reason. In some applications of
resampling methods we are estimating an entity that lives in a space in which
extrapolation is essentially impossible. Wu’s equation (4.4) takes the estimate
obtained from analysis of a sample and extrapolates its deviation from the
overall estimate. However, if the space does not admit of extrapolation, then a
choice of a subset size of (n + k& — 1)/2 eliminates the extrapolation entirely.
The value of 8, is then the same as ,@s. By resampling and collecting a set of
values of ,és we get variation that we take to be typical of the sampling variation
in the estimate.

The example that brings this to mind is placing confidence intervals on
phylogenies (evolutionary trees), to which I have applied a bootstrap technique



