The Annals of Statistics
1993, Vol. 21, No. 4, 1982-2000

RANDOM DISCRIMINANTS!

By I-L1 Lu anp DoNALD RICHARDS
University of Virginia

Let X,, X,,..., X, be a random sample from a continuous univariate
distribution F, andlet A =TI, _; . ; (X, - X j)2 denote the discriminant,
or square of the Vandermonde determinant, constructed from the random
sample. The statistic A arises in the study of moment matrices and
inference for mixture distributions, the spectral theory of random matrices,
control theory and statistical physics. In this paper, we study the probabil-
ity distribution of A. When X,,..., X, is a random sample from a normal,
gamma or beta population, we use Selberg’s beta integral formula to obtain
stochastic representations for the exact distribution of A. Further, we
obtain stochastic bounds for A in the normal and gamma cases. Using the
theory of U-statistics, we derive the asymptotic distribution of A under
certain conditions on F.

1. Introduction. For continuous random variables X,,..., X,,, let
2
AEA(X]_,...,Xn)= l_I (XZ_XJ)

1<i<j<n
be the discriminant, or square of the Vandermonde determinant, constructed
from the X;’s. In this paper, we investigate the exact and asymptotic distribu-
tions of A when X|,..., X,, is a random sample from an absolutely continuous
distribution function F.

Random discriminants have a wide variety of applications, arising in hy-
pothesis testing [Andersson, Brgns and Jensen (1983)]; spectral theory of
random matrices [Girko (1988)]; control theory [Kalman (1961)]; and statistical
physics [Mehta (1990)]. Our primary motivation for studying the distribution
of A stems from the work of Lindsay (1989a, b). Let X be a real random
variable and M, = (E(X'*/~2)) be the moment matrix corresponding to X.
Then Lindsay (1989a) proves that
(1.1) det(M,) = c,E[A(Xy,..., X,)],
where ¢, is a constant. When X belongs to certain natural exponential
families, then Lindsay (1989b) uses the representation (1.1) to show how A can
be utilized in the construction of estimators for the mixing distribution
function in certain finite mixture populations.

Although a variety of methods are available for deriving the exact distribu-
tions of random determinants [Muirhead (1982); Girko (1988)], very few
techniques appear to be available in the case of the statistic A. When the
random sample is from a normal, gamma or beta population, we apply a

Received July 1991; revised August 1992.

'Supported in part by NSF Grants DMS-88-02929 and DMS-91-01740.

AMS 1991 subject classifications. Primary 62E15, 62H10; secondary 60E15, 62H05, 62G30.

Key words and phrases. Moment matrices, mixture distributions, random discriminants,
Selberg’s beta integral, stochastic bounds, U-statistics, Vandermonde determinants.

1982

OF]
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁy
The Annals of Statistics. RIKGIS

. ®
www.stor.org



RANDOM DISCRIMINANTS 1983

famous integral formula of Selberg (1944) to obtain stochastic representations
for A [cf. Mehta (1990), Chapter 17 or Richards (1989), for a recapitulation of
Selberg’s proof]. When X is a normal or gamma variable we determine that,
up to a constant factor, A is equal in distribution to a triangular product of
independent gamma variables. When X has a beta distribution and n < 4, we
show also that the random variable A is equal in distribution to a product of
polynomials in independent beta variables.

These stochastic representations for A suggest that its exact probability
density function is too complicated to be of great practical use. Therefore we
use a stochastic analog of Gauss’ multiplication formula [Gordon (1989)] to
prove that, in the normal and gamma cases, A is stochastically bounded above
by a power of a product of at most two gamma variables. This stochastic bound
provides a simple, easily applicable, numerical lower bound on the distribution
function of A. We will also use these methods to obtain stochastic upper
bounds for A, in the normal and gamma cases.

Using the theory of U-statistics [Serfling (1980)], we also derive the asymp-
totic distribution of A under certain assumptions on F. In the normal, gamma
or beta case, these assumptions on F may be verified directly with the aid of
Selberg’s integral. We will show that, after centering and scaling,
log A(X,,..., X,) is asymptotically standard normal for large n. In general,
the rate of convergence is O(n~'/?); but in the normal and gamma cases, the
rate is O(n™1).

The layout of our results is as follows. In Section 2, we review Selberg’s
integral and some of its limiting cases. In Section 3, we apply the Selberg-type
integrals to derive the exact distributions of A in the normal, gamma and beta
cases. In Section 4, we apply the results of Section 3 to obtain stochastic
bounds for A in the normal and gamma cases. In Section 5, we obtain the
asymptotic distribution of A. Finally, in Section 6, we conclude with some
remarks on how the results of Sections 2-5 may be extended to other
situations. These extensions include the cases when the random variables
X,,..., X, areiid. F-distributed; scale mixtures of the normal, gamma or F
distributions; or even when X,,..., X, follow a Dirichlet distribution.

2. Selberg’s integral.

TuEOREM 2.1 [Selberg (1944)]. Suppose that «, B and z are complex
numbers where Rea >0, Rep > 0 and Rez > —min{l/n,Rea/(n — 1),
Re B/(n — 1)}. Then

j(;l~~"[()1A(x1,... x,)° l_[x“ 1 - )B 1dx
(2.1)

_ ﬁ I +j2)l(a+ (J - D2)I(B+ (J - 1)2)
o F1+2)I(a+B+(n+j—2)2)
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There have been several applications of Selberg’s integral in statistics and
probability theory. As examples, we refer to Karlin and Studden (1966), Askey
(1980), Andersson, Brgns and Jensen (1983) and Peddada and Richards (1991).
Many important integrals are special or limiting cases of Selberg’s integral,
and the integral (2.1) has led to the solution of important problems in other
areas [Andrews (1986)]. We will need to review two limiting cases of (2.1), the
first being an integral also treated by Mehta and Dyson [cf. Mehta (1990)].

COROLLARY 2.2 [Askey (1980)]. If Rez > —1/n, then

(2m) "2 f_: e fij(xl, e xn)zjl:[1 exp(—x}/2) dx

(2:2) [(jz+1)

I:I (z+1)°

Proor. In (2.1), set a =B and make the change of variables x; —

(1 + @a)~2x)), j = 1,...,n. After collecting terms, we have
e . (Ve T AN
R Y A(xy,.. ., dx;
[ Lt 131( 2a) x’

(jz + 1)(T(a + (J — 1)2))*
I'(z+ 1DI(2a+ (n+j—2)z)"

- [22(«—1)(2‘/%)(n—1)z+1] lf[

Letting @ — « and applying Stirling’s formula for the gamma function
[Whittaker and Watson (1927), subsection 13.6], then (2.2) follows by domi-
nated convergence. O

A second limiting case of (2.1), also derived by Askey (1980), corresponds to
the gamma distribution in the same way that (2.1) corresponds to the beta
distribution. The proof of this result is also similar to the proof of (2.2). In
(2.1), replace x; by x;/B and then let B — «. Then we obtain the following
result.

CoROLLARY 2.3 [Askey (1980)]. If Rea > 0 and Rez > —1/n, then

© o ! z n
f f A(xy,..,x,) [Tap e dx;
0 0 j=1

(2.3) I'(a+ (j-1)2)T(jz+1)

I'(z+1)

n
=11
Jj=1

Statisticians usually encounter (2.1)-(2.3) in the special case z = 1/2 within
the context of distribution theory of real, symmetric random matrices
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[Muirhead (1982)]. Similarly, the case z = 1 arises frequently in the physics
literature in the study of complex Hermitian random matrices [Mehta (1990)].

3. The exact distributions of A.

3.1. The normal case. Throughout, we denote by N(u,o) the normal
distribution with mean p and standard deviation o.

LemMmA 3.1. Suppose that X1, ..., X, arei.i.d. N(u, o) variables. Then for
any complex number k with Re(k) = 0,

no T(k+i/f)
3.1 E(A%) = 0'”("_1)"( 'Jk) —
(3-1) (4% jl:IIJ lsil:Ijsn r(i/zg)
Proor. Let Y, =(X;, —uw)/o, i=1,...,n. Since the Y; are N(0,1) ran-
dom variables, then it follows from (2.2) that

n T(jk + 1)
3.2 E(AF) = ghn-DTT 2~ 7
52 (4% =0 j=1 I'(k+1)
Applying Gauss’ multiplication formula [Carlson (1977)],
k z+j—-1
(3:3) [(z) = k*71/2(2m) "/ nr(‘—i )
Jj=1

to decompose the gamma products in (3.2) we obtain

F(k+1/j) - T(k+(j-1)/)
(277)(j_1)/2j_1/2

lﬁl P(k+1/j) - T(k+(j—1)/)

j-2 gy - (- 1) /) ’

n

E(Ak) — o.n(n—l)k( njjk) ﬁ
j=1 Jj=2

j=

= o.n(n—l)k( ﬁjjk)
j=1
which agrees with (3.1). O

Let X ~ G(a, B) denote that the random variable X follows a gamma
distribution with shape and scale parameters a and g, respectively. Further,
we use the notation =, to denote stochastic equality (or equality in distribu-
tion). Then we have the following stochastic representation for A.

THEOREM 3.2. LetX,,...,X, bei.i.d., N(u, o), random variables. Then
(3'4) A(Xl""’Xn) st Cn ]___[ Xij’

1<i<j<n

where ¢, = o~ VI17_,j7, and (X, ;: 1 < i <j < n} are mutually independent
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Proor. Since X;; ~ G(i/j, 1) then for Re(k) > 0,
T'(k+i/f)
I'(i/Jj)
By Lemma 3.1 and the mutual independence of the X,
(_A_)" _m DR+ 1/) - T(k+ (= 1)/j)
e TQAL) - TG = D/A)

4 =
n

B(x5) -

E

n

(3.5) -

2E(X1kj)E(X§j) E(Xf—l,j)

By Selberg’s formula (2.1), it follows that the characteristic function of the
random variable D = log(A/c,) is

(A )” o TG+ 1) o TGt + (=1 /j)
=2 T TG -0
and (3.6) is valid for all real ¢. Now define

D*=log( Il Xij).

1<i<j<n

(3.6) E(e*P) =E

n

Then it is not difficult to check that D* has the same characteristic function
as D. Therefore D =, D*; equivalently, exp(D) =, exp(D*), and this estab-
lishes (3.4). O

Note that the moment generating function of A exists only at the origin;
this follows immediately from (3.1). Further, these moments do not satisfy the
Carleman criterion [Shohat and Tamarkin (1943), page 19] so we cannot
deduce Theorem 3.2 directly from the solution to the moment problem.
However, Selberg’s formula allows us to analytically continue the moments of
A from integer to complex powers so we are able to circumvent these difficul-
ties by first deriving the characteristic function of log A. This explains why we
resorted to Selberg’s formula.

3.2. The gamma case.

LemMa 3.8. Let X,,...,X, be i.i.d. G(a,B) variables. Then for k =
0,1,2,...,

n—1
E(Ak) — nnan(n—l)k( l—[jzjk)
Jj=1

(3.7 y T(k+ (a+1)/) L'(k+ (i/)))
o<i<jzn-1 LU((a+1)/j) 1<i<j<n  T(i/j)
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ProoF. Proceeding as in the proof of Lemma 3.1, it follows from (2.3) and
the multiplication formula (3.3) that

voneny 1o D@+ (n —j)E)T(jE + 1)
E(A%) = pFne >jl:[1 T

- Bkn(n—l)ﬁjj,ﬁl F(a + (n _.])k)

j=1" j=1 I(a)

o B L) - T+ G = 1))

j=2 Ly - I - 1)/i)

Then (3.7) is obtained by again applying the multiplication formula to the
individual gamma factors. O

THEOREM 3.4. Let X,,...,X, bei.i.d., G(a, B), variables. Then
(38) A(Xl”Xn) =st Cn ]._.[ Xij l—.[ }’ij7

0<i<j<n-1 l<i<j<n

where ¢, = n"B """ VI1}-1j%, and the random variables {X;;} and (Y; i} are
mutually independent with X;; ~ G((a + i)/j,1) and Y, i~ GG/j,D.

Proor. The proof is similar to the proof of Theorem 3.2. First, we use
Lemma 3.1 and the independence of the X;; and Y;; to check that, for any
nonnegative integer %,

k
(3.9 E[(A/ec,)"] =E( I x, II Y,.j)
0<i<j<n-1 l<i<j<n
Then the rest of the proof follows that of Theorem 3.2. O
3.3. The beta case. Throughout, we denote the beta distribution with

parameters a, 8 by B(e, B). If X,,..., X, are ii.d. B(a, B) random variables
then, by Selberg’s integral formula (2.1),

I'(a +B)
I'(a)L(B)

n

E(AF) =

3.10
10 « T1 I'(a+ (n=J)R)T(B + (n —j)k)T(jk + 1)

j=i F(a+B+(2n—j—-1E)(k+1)

For n = 2,3,4, we now use (3.10) to derive stochastic representations for
ACXy,..., X,).

ProposiTion 3.5. If X, X, are i.i.d. B(a, B), then A(X,, X,) =,, Y,Y,Y,,
where Yy, Y, and Y; are mutually independent; Y, ~ B(a, B), Y, ~ B(1/2,
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(a + B)/2) and

v ~ B(min(a, B),la — Bl/2), a#p,
3 1, a = B.

Proor. When n = 2 it follows from Selberg’s formula (2.1) and the multi-
plication formula (3.3) that

I'(e + B)I'(a + B)
I'(a)T(B)
T(k+a)l(k+B)T(k+3)
F(k +a+B)(k+3(a+B)(k+3(a+p+1))’

E(a%) = 217"

Since the distribution of A is symmetric in « and B then, without loss of
generality, we may assume that a > 8. If a > B, then by another application
of the duplication formula for the gamma function, we obtain

IF(k+a)[(a+B) T((a+B+1)/2)T(k+3)
T(k+a+p)T(a) I(1/2)T(k + 3(a + B + 1))

I'((a +B)/2)I'(k + B)

L(B)(k + 3(a + B))
E(Y!)E(Y$)E(YS),
where Y,, Y, and Y, are as specified above. When a = 3, the same procedure
leads to the result
I'(k + a)F(Za)F(k + l)F(% + a)
I'(k + 2a)F(a)F(k +a+ )F( )

E(A}) =

E(A*) = = E(Y})E(Y}),

then Y; = 1. Since the density of A is compactly supported, then its distribu-
tion is uniquely determined by its moments [Shohat and Tamarkin (1943)].
Then the result follows. O

When n = 3, 4, the above procedure leads to the following:

ProPOSITION 3.6. Suppose Xl, X,, X5 arei.i.d. Ba, B) with a + B > 3/2.
Then A(X,, X,, X3) =, _1Y;, where Y,,...,Y; are mutually independent,
Y, =W,@1-W) wzth W1 B(a B); Y, = W2(1 W,) with W, ~ B(a, B);
Y ~B(1/8,(a +B)/3), Y, ~B(2/3,(a + B)/3),

1 + 1
B( arh

273 ‘5)’ arp>

Y5~
1, a+pB=

wlwwlw
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If X, X,, X5, X, are i.i.d. B(a, B) with a + B > 2, then A(X,,...,X,) =,
[19_.,Y;, where Y,,...,Y, are mutually independent; Y, = W(1 — W), Y, =
W, 1 - W), Y, = W,(1 — W,), with W,, Wy, Wy ~ B(a, B); Y, ~ B(1/2,(a +
B)/G)’ Y5 ~ B(1/3a(a + B)/6)7 YG ~ B(2/3’ (a + B)/6)7 Y7 ~ B(3/4’ (a +
B)/6 + 1/12), Y, ~ B(1/4,(a + B)/6 — 1/4),

B 1 a+8 1 o9
Y9~ (2’ 6 _37 a+B )
1, a+p =2

When n > 4 it does not appear that A can be represented as simply as
above, and we were unable to represent A as a product of independent
variables.

We close this section with remarks on the nonuniqueness of these stochastic
representations. In the normal and gamma cases, nonuniqueness follows from
the fact that any gamma variable can be decomposed into products of powers
of independent gamma variables (cf. Lemma 4.3). In the beta case, nonunique-
ness again follows from a well-known decomposition of any beta variable
[cf. Rohatgi (1976), page 216] as a product of an arbitrary number of indepen-
dent beta variables. Even if the number of independent variables is restricted,
nonuniqueness is again encountered in the beta case. For example, if n = 2
and a = 8 > 1/4 then by Proposition 3.5 we know that A =, Y,Y, with
Y, ~ B(a, @) independently of Y, ~ B(1/2, a). However it can also be checked
that A = W,W, where W, = W(1 — W), W ~ B(a, a), W, ~ B(1/2,2a — 1/2),
and W; and W, are independent.

4. Stochastic bounds for A. In this section, we obtain upper and lower
stochastic bounds for A in the normal and gamma cases. Here, we will use the
notation X >, Y to mean that X is stochastically greater than Y; that is,
Pr(X >t) > Pr(Y > t) for all ¢ [c¢f. Marshall and Olkin (1979)]. Our main
result is the following.

THEOREM 4.1. In the normal case,

2 n(n—-1)/2
) >, AX,,..., X,).

T2 ainin —
(117 [z 6tntn - v/

In the gamma case,
n 4'32 n(n—1)/2
o)l pee] s,
j= —

where G, ~ G(n(n — 1X2a + 1)/4,1), G, ~ G(n(n — 1)/4,1), and G, is in-
dependent of G,
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Note that in the normal case, the bound is an equality when n = 2.

We will need three preliminary results, two being stochastic analogs of
classical formulas for the gamma function, and the third being an inequality
involving the exponential distribution. All three results appear in the recent
paper of Gordon (1989). For the first two results we will provide proofs which
are alternative to those given by Gordon (1989). Below, we let y = —I"(1) =
0.5772... denote Euler’s constant.

LEMMA 4.2 [Gordon (1989)]. Let G ~ G(a, 1). Then

Y.
logG =, — v+ !
o8 Y Jzo(j+1 a+j)

where the {Y;} are i.i.d. exponential random variables with mean 1.

PrOOF. Let Y denote the series on the right-hand side. To prove that Y is
well defined, we need to show that Y is finite, almost surely (a.s.). Since

)Z

NEDCENR

2

Var(Y;) = 2 Z

1 2
- < o,
a+] a+j

then, by Ash [(1972), page 73], Y is finite, a.s. Next, by independence of the
Y;’s, we obtain the characteristic function of Y as

.l

Jj=1

E(e'Y) = E(e'“" IT exp
j=0 J

it itY;
+1 a+j

E(e—ith/a+j)

it |7t
a+j]

It is well known [Carlson (1977)] that y = £5_,(j ™' — log(1 + 7~ 1) and

L2 174
=e ] exp( -
j=0 J+1

it
= “71_[ exp( ) 1+

+1

z

1= 1 z\7!
F(z)=;]’[ 1+J (1+J—,) , Rez>o0.
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el 2]

Therefore

1
E(e'Y) —exp(—th (7 —log 1 +

Jj=1

=IZ[1+1.)“ a+j )( a )
j=1 J a+j+it)\a+it
I'(a +it)
~ T(a)
Defining G = e?, then
; ; I['(a+it)
E(G") =E(e") = T

which is the characteristic function of a G(a, 1) random variable. Therefore,
logG =Y~ G(a,1). O

Now we present the stochastic version of Gauss’ multiplication formula
(3.3).

LemMA 4.3 [Gordon (1989)]. Suppose G, ..., G,._, are mutually indepen-
dent gamma variables, with G; ~ G(a +j/r, B) Then G =rIl}ZG}/" ~
G(ra, B).

Proor. Without loss of generality, assume B = 1. Then for any nonnega-
tive integer %, it follows by mutual independence of the G; and the multiplica-
tion formula (3.3), that

r—1
E(G*) =r*T1E(G}/")
Jj=0

1T(a+ (j+k)/T)
k=0 T(a+j/r)
I'(ra + k)

I'(ra)

This expression is the 2th moment of a gamma variable, G(ra, 1). Since the
gamma distribution is uniquely determlned by its moments, then the result
follows. O

LEMMA 4.4 [Gordon (1989)]. Let Y, and Y, be i.i.d., exponential random
variables. Then for fixed c and t > 0,

P( Y, Y, ;
+ >
rc—6 c+o )

is monotone increasing in 8 for 0 <6 <c.
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The following result is crucial in the derivation of the stochastic bounds
for A.

LemMA 4.5. Let X;; be independently distributed as G(i/j,1), 1 <i <j <
n. Then
)2/(n(n—1))

G(n(n—1)/41) 2, dn(n -1 T1 X,

1<i<j<n

Proor. By Lemma 4.2,
Y, i
k+1 k+i/j)

(41) log JI1 Xij=st — %n(n -y+ X E

1<i<j<n 1<i<j<n k=0

where the Y, ; , are iid. G(1,1) variables. For a given j and %, let & =
(j—20)/2j. Then it follows from Lemma 4.4 that

Y i Y, Y ik Y;

+ =i, ik _ + —i, ]k
k+ifj k+(j-i)/j k+3-8 k+3+5
> Yi’j’k + YJ
R k+ %
Therefore,
1 Y Jk

lo X,i<yg —zn(n— 1)y + .
g 151:].:;<n J st 2 ( )‘y 1<l§lsn kzo( + 1 k + ; )

For each k, let the {Y, # 0 <l < 3n(n—1) - 1} denote the set of all Y; ; , as
i varies over {1,...,n — 1}. Then

log [I X —%n(n—l)y+ Y E

1<i<j<n 1<i<j<n k=0

Y,J,k
E+1 k+1
1
< = gn(n = 1)y
1/2n(n-1)-1 o

=T

=0

1 Y
E+1 Ek+3+2l/(n(n—-1))

a/2n(n-1)-1

= ].Og ]._.[ Gh
=0

by Lemma 4.2, with each G, ~ G(1/2 + 2I/(n(n — 1)),1). Then the result
follows from Lemma 4.3. O
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LEMMA 4.6. Let X,; be independently distributed as G(a +1)/j,1), 0 <
it <j<n-—1. Then

2/n(n—-1)
G((2a + V)n(n — 1)/4,1) >, 5n(n — 1)( I'T Xij)

0<i<j<n-—-1

Proor. Clearly,

log I X,=log [I X,+lg [I X;

O<i<j<n-1 l<j<n-1 1<i<j<n-—1

Applying Lemma 4.2 to each term, and then stochastically majorizing both
terms as in the proof of Lemma 4.5, we obtain

n—1 o

YO i, k )
lo X, <y — n n—1y+ LI
g Osi<Jl'_£n 1 ot ( )y JZI kzo(k +1 k + a/J

1 I’i,j,k
E+1 Ek+ajj+3

+ 1 %

1<i<j<n-1p=0

where {Y; ; ,} are i.i.d. exponential, mean 1, random variables. In both infinite
series, we replace the quantities £ + a/j and % + a/j + 1/2 by the larger
value £ + a + 1/2 + 2j/(n(n — 1)). Then, again as in the proof of Lemma
4.5, we have

1
lOg ]._.[ le Sst En(n - 1)7

0<i<j<n-—-1

1/2 -1D-1 o«
1/2)n(n—1) 1 Yll,k

+ X r

o Zolk+ 1 k+a+L+20/(n(n- 1))

where the {Y;,} are a renaming of the {Y; ; ,}. Then the conclusion again
follows from Lemma 4.3. O

Proor oF THEOREM 4.1. In the normal case the upper bound follows from
the stochastic representation given in Theorem 3.2 and Lemma 4.4. In the
gamma case, the bound follows from Theorem 3.4 and Lemma 4.5. O

To end this section, we derive stochastic lower bounds for A in the normal
-and gamma cases. As before, the constant c,, is defined as in Theorem 3.2 (for

the normal case) or in Theorem 3.4 (for the gamma case).

ProposITION 4.7. In the normal case,
n .
A(Xy,..., X,) =, 0o D] GJJ‘I,
j=2

where G, ..., G, are mutually independent and G; ~ G(j~1, 1.
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In the gamma case,
n
A(X]_, ceey Xn) Zst n"ﬁ”(n—l) l—[ G‘{‘I_lGéJ_l,
j=2
where the G,; are mutually independent, G,; ~ G(41), and Gy ~ Gla, D,

ProOF. Inthe normal case, by Theorem 3.2, A/c, =4 I, ;. ;. ,X;; where
the mutually independent X;; ~ G(i/j,1). If 1 <i <j < n, then it is straight-
forward to check that

i 1 i—1
= = + - .
J Ju-1) Jj-1

Since the G(a,1) distributions are stochastically increasing in a (.e.,
G(a,1) >, G(B,1) for a > B), then for any fixed j, 2 <j < n,

TIx, >, [16[-— R O R A
ij Zs .. + = ’ s - -, )
A A R W G ) I | v /

where the stochastic equality follows from Lemma 4.3. Then the stochastic
representation for A implies that

n

. —(- . =1 e T i
A>, Cnl_lz(J—l) YIDIG(jL )] = nre 1’Jl:[2GJJ L

Jj=

In the gamma case, the proof is similar. Starting with the stochastic
representation in Theorem 3.4,

A(Xy, .., X,,) =gCn H Xij l—I Yij’

O<i<j<n-1 1<i<j<n

we first obtain a lower bound for I'T, _; . ;_,¥;; by proceeding exactly as in the
normal case. Further, since the X;; are i.i.d. G(« + i)/j,1) then by Lemma
4.3,

n

I1 X =st I[1G - 1)_(j_1)Géf1

0<i<j<n-1 Jj=2

where the G,; areii.d. G(a, 1). Combining these results, we obtain the desired
bound. O

Note also that both lower bounds are equalities for n = 2.

5. The asymptotic distribution of A. Suppose X,..., X, is a random
sample from an absolutely continuous univariate distribution F with finite
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mean u and variance o 2. Define

(5.1) Un=(’2‘)_1 Y log(X; - X;)%

l1<i<j<n

Then U, is the U-statistic for the parameter E[log(X; — X,)?], with the
corresponding kernel A(x,y) = log(x — y)? [cf. Serfling (1980), Chapter 5].
Denoting Var{ E[~( X, X,)IX;]} by £, we have the following result.

THEOREM 5.1. Let X,,..., X, be i.i.d., absolutely continuous random
variables with finite mean u and variance o® and let V, = log A(X, ..., X,).
Then as n — «,

Vn - E(Vn)
—d N (0’ 1) ’

yVar(V,)

provided that Var(h(X,, X,)) < .

ProoF. Since Var(h(X;, X,)) < », we have E(h?%) < ». Also, the assump-
tion of absolute continuity of the X; implies that E[h(X;, X,)|X,] is noncon-
stant almost surely; therefore, ¢ > 0. By the theory of U-statistics [Serfling
(1980), page 192],

Un - E (Un)
4¢/n
Now 4¢ < 2Var(h(X,, X,)) and Var(U,) = 4én" ' + O(n"2%), as n — o
[Serfling (1980), page 183]. Therefore, by Slutsky’s theorem and the fact that
V. = | 5 Uy, the result follows immediately. O

—, N(0,1).

CoroLLARY 5.2. Let X,,..., X, bei.i.d. random variables from a normal,
gamma or beta population and let V, = log A(X,, ..., X,). Then as n — o,
Vn - E(Vn)
(5.2) -, N(0,1).

VVar(V,)

Proor. Since E[e**1X9] = E[(X, — X,)*] then, by Selberg’s integral
(2.1), the moment generating function of A(X,, X,) exists in a sufficiently
small neighborhood of the origin. Therefore Var(h(X;, X,)) < », and the
result follows from Theorem 5.1. O

Remark 5.3. (a) If E(|k|*) < », a condition which holds in the normal,
gamma or beta cases, it also follows from Serfling [(1980), page 193, Theorem
B] that the rate of convergence in (5.2) is O(n~1/2). In the normal and gamma
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cases, we can -obtain the asymptotic normality of V, more directly by using
Theorems 3.2 and 3.4 to represent log A as a sum of independent random
variables and applying central limit theory.

(b) In the normal, beta and gamma cases, explicit formulas for the mean
and variance of V, can be calculated using Selberg’s integral [Lu (1991)]. For
example, in the normal case, setting W, = log(A /o™~ V), we have E(W,) =
—yn(n — 1)/2 and Var(W,) = 7w2n(n — 1X2n + 5)/36. In the gamma case, if
we let W, = log(A/B""~ V), then

E(Wn)=—%n(n—1)2y+é_ i(i_ 1 )

m=1\M m+«a

and

2
m+a).

1 1 i
Var(W,) = %wzn(n —1)(2n +5) + En(n -1)(2n-1) ), (

(c) There is also the problem of developing the asymptotic distribution of A
when X,,..., X, are ii.d. with distributions other than those considered in
Theorem 5.1. In this situation, asymptotic results can be obtained from the
results of Rubin and Vitale (1980); the limiting distributions can be repre-
sented as weighted sums of infinite products of Hermite polynomials in
standard normal distributions.

To complete this section we comment on the numerical behavior of the
asymptotic distribution and the stochastic bounds in the normal and gamma
cases. In Figure 1, which pertains to the normal case, the upper and lower
bounds and the asymptotic normal distribution are compared with the exact
distribution of A for various values of n under the assumption that X,,..., X,
are iid. N(0,1) variables. Define the random variables R, = (V, —
E(V,))//Var(V,), the standardized form of V, =logA; R, = (logU —

E(V,))/ \/Var(V,), where U denotes the stochastic upper bound given in

Theorem 4.1; and Rj3 = (log L — E(V,))/ y/Var(V,), where L denotes the
stochastic lower bound given in Proposition 4.7. Further, denote the distribu-
tions of R; by F,, i = 1,2,3. Then Figure 1 provides plots of the simulated
values of the differences Fi(¢) — Fy(¢), F\(t) — ®(¢) and F\(¢) — F5(¢) against ¢,
where ®(¢) denotes the standard normal distribution function. The simulated
empirical distributions of the R; were performed by Monte Carlo methods
using the well-known statistical software package SAS. For each plot, 100,000
realizations of each R, were generated.

From these plots it becomes clear that the upper bound is a better approxi-
mation to the exact distribution than the lower bound. This is to be expected,
given the relative ease with which the lower bound was derived and the
simplicity of the upper bound. Further, both bounds worsen as n increases.
The plots also illustrate the rapid convergence to normality of the distribution
of R,.
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Fic. 1. Comparisons with the exact distribution of log A in the normal case.
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In the gamma case we assume, without loss of generality, that g = 1. With
a = 4, Figure 2 provides plots of the differences Fy(t) — F,(¢), F\(¢t) — ®(¢) and
F(t) — F4(t), where the F, are defined as before and again 100,000 realizations
of each R; were generated.

It is also noteworthy that the functions plotted in Figure 2 are quite robust
to the choice of a. Consider, for example, the function F,(¢) — ®(¢). With
n = 4, this function was plotted for « = 1 and « = 10; it was observed that the
maximum variation between the two graphs was less than 0.02. Similar

remarks apply to the other two functions plotted in Figure 2.
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6. Concluding remarks. The basic problem of deducing the exact distri-
bution of A(Xj,..., X,) can be considered for any random vector (X3, ..., X,).
In general, this is a difficult problem since it requires evaluation of a Selberg-
type integral for the distribution of A(X,,..., X,). If X,,..., X, areiid. F
random variables then the corresponding Selberg integral has been obtained
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by transformations from Selberg’s beta integral [Askey (1980)]. If (X,..., X))
has a Dirichlet distribution, then the moments of A(X,,..., X,) can be
obtained from a Selberg-type integral of Askey and Richards (1989). Therefore,
in these two cases, the distribution of A(X],..., X)) can be analyzed as in the
normal, gamma and beta cases. More generally, since A is homogeneous, we
can evaluate the moments of A(SXj,..., SX,) if the mixing variable S is
independent of (X,,..., X,), and X,,..., X, have distributions belonging to
any of the classes considered above. In principle, these moments can then be
analyzed as before.

There is also the problem of deriving stochastic representations for the
random variable A = II, _ ,(X; — X,) instead of its square, A(X,..., X,). In

1<j

the case when (X,,..., X,) is compactly supported, these follow from the
results for A. In this situation, once it has been proved that A = I1X;; for

mutually independent, nonnegative, X;;, then it is straightforward to check
that if U is uniformly distributed on the set {1, —1} then A and UTIX}/?
have the same moment sequence; hence, stochastic equality follows from the

fact that both variables are compactly supported.
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