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General techniques for the construction of asymmetrical orthogonal

arrays of strength 2 are presented. These are then applied to special cases
to obtain new families of such arrays. Among these are saturated main-

effect plans based on s™ runs with factors at s’ levels, i =0,1,...,r,
where m > v,, vy =1, v;_; divides v;, i = 1,2,...,r, and s is a prime
power.

1. Introduction. The current emphasis on quality control and product
improvement have rejuvenated research in the area of factorial design. Practi-
cal considerations have spurred research in various new or newly emphasized
directions. Among these is that of the use and construction of asymmetrical
factorial designs, exemplified by research of Cheng (1989), Pu (1989), Wu
(1989), Wang and Wu (1991) and Wu, Zhang and Wang (1992). We will present
and combine techniques for the construction of arguably the most appealing
asymmetrical factorial designs, namely asymmetrical orthogonal arrays. Al-
though not all of the techniques are new, their power for the construction of
asymmetrical orthogonal arrays has not been used to the fullest extent, as our
results will demonstrate.

Among the most useful factorial designs are those that allow for unbiased
estimation of all main effects. When this is accomplished orthogonally by using
the best linear unbiased estimators under the assumption of a first order
orthogonal polynomial model [see, e.g., Raktoe, Hedayat and Federer (1981))],
such a design is called an orthogonal main-effect plan. Orthogonal arrays of
strength 2 [Rao (1947, 1973)] are examples of orthogonal main-effect plans
with the added advantage that comparable main-effect contrasts for different
factors are estimated with the same efficiency.

An extensive study of orthogonal main-effect plans was conducted by
Addelman and Kempthorne (1961a). Their report contains various useful ideas
for the construction of such plans, some of which are made more accessible
and are further extended in Addelman and Kempthorne (1961b) and
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Addelman (1962a, b). The catalogue of orthogonal main-effect plans in
Addelman and Kempthorne (1961a) contains also various asymmetrical or-
thogonal arrays. A more recent catalogue appears in Dey (1985), which may
also be used to trace additional references. Some references pertaining to the
construction of asymmetrical orthogonal arrays from orthogonal F rectangles
can be found in Federer and Mandeli (1986).

In Section 2 we will present the tools for our constructions accompanied by
some pertinent references. Applications of these tools to special cases will be
discussed in Section 3.

2. Methods of construction. Some of the concepts and definitions that
are introduced in this section are not new to the literature. Since they are,
however, fundamental for an overall picture of available methodology, we will
include concise formulations of these concepts and definitions in addition to a
citation of pertinent references.

Asymmetrical orthogonal arrays were formally introduced by Rao (1973),
although examples of such arrays appear already in earlier literature, such as
Addelman and Kempthorne (1961a). An asymmetrical orthogonal array of
strength 2, with N runs and with % factors of which %, are at s, levels,
i=1,...,5,t>2 X k;=k,s;#s,if i #1,is a k X N array in which £,
rows are based on symbols from a set S; of cardinality s; such that for any
2 X N subarray, say with one row based on S; and the other on S;, every
element from S; X S; appears equally often as a column. We denote such an
array by OA(N, IT:_,k;,T1:_;s;,2); the notation IT:_; is here only used as a
symbolic notation. Alternatively, if ¢ = 2, for example, we will also write
ky X ky and s; X s, instead of I17_,%; and I1%_,s;, respectively. Clearly, N
must be a multiple of s;s;, i # i’. If £; > 2, N must also be a multiple of s?.
The preceding definition could also include the case ¢ = 1, but then the array
is usually called a (symmetrical) orthogonal array of strength 2 and denoted by
OA(N, k4, s1,2). These arrays were introduced by Rao (1947), although the
adjective ““orthogonal’” seems to have been added by Bush (1950). For simplic-
ity we will no longer demand that ¢ > 2 and that s, #s; if i #i. The
adjectives symmetrical and asymmetrical will only be used when the distinc-
tion is thought to be important. Also, the use of orthogonal arrays as fractional
factorial designs is sufficiently documented that it requires no further explana-
tion.

A useful concept for the construction of symmetrical orthogonal arrays is
that of difference schemes. The first who used it with this objective were Bose
and Bush (1952). Using the notation for additive groups, a difference scheme is
an r X c¢ array with entries from a finite Abelian group G of cardinality g such
that the vector difference of any two rows of the array, say

T, i T, i
contains every element of G exactly c¢/g times. We will denote such an array

by D(r,c, g), although this notation suppresses the relevance of the group G.
In most of our examples G will correspond to the additive group associated
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with a Galois field GF(s). If a D(r, ¢, g) exists, it can always be constructed so
that one of its rows contains only the zero element of G. This property is
important for the next section, and we will therefore only use difference
schemes that have this property.

By the Kronecker sum @ of two matrices A and B = (b,;) based on the
same additive group G, we will mean

A®B-= (b, +A),

where b;; + A stands for the matrix obtained by adding b, ; to each entry of A
and constitutes the ijth block of entries for A @ B. By E we willmeanal X g
vector consisting of the elements of a group G, where if such is relevant and
not clear from the context it will be specified which group is meant. It is then
well known [see Bose and Bush (1952)] that if D is a difference scheme
D(r,c, g), then E & D is an orthogonal array OA(cg, r, g, 2).

Two families of difference schemes that are particularly useful in Section 3
are those of the form D(p*, p% p") and D(2p?, 2p", p’). These difference
schemes are known to exist whenever u > v and p is a prime. A construction
for the first family is already given by Bose and Bush (1952) and uses the
Galois fields GF(p*) and GF(p¥). Masuyama (1969) presents the difference
schemes of the second family. A slightly simpler form for this family is given
by Xu (1979). Although the latter author presents his results only for v = 1,
they can easily be extended to any positive integer v. This was also observed by
Xiang (1983).

The construction of difference schemes has received a considerable amount
of attention in the literature, in part through the construction of generalized
Hadamard matrices. A reproductive construction of difference schemes that
will be useful for our purpose is due to Shrikhande (1964). It simply states
that if D, and D, are difference schemes D(r,, ¢;, g) and D(r,, c,, g), respec-
tively, based on the same group G, then

D=D,eD,

is a difference scheme D(rr,,c;c,, &) based on G. In conjunction with the
difference schemes D(p*, p*, p?) and D(2p",2p?, p’) based on the additive
group associated with GF(p?), this result allows us to conclude the existence of
difference schemes D(2+p*“*rv 2¢p*“*1? pv) based on the additive group
associated with GF(p?), where u>v>1, A, u >0, A+u>1and p is a
prime number.

Another essential concept for the construction of orthogonal arrays is that
of resolvability. Its importance for the construction of symmetrical orthogonal
arrays was already realized by Bose and Bush (1952), but for asymmetrical
orthogonal arrays it seems until now a somewhat dormant concept, a conclu-
sion that is supported by the limited use of the concept in Dey (1985). One

. paper that exhibits some use of the concept of resolvability for construction of
asymmetrical orthogonal arrays is Chacko and Dey (1981). We will say that an
OA(N, IT:_,k,, TT:_;s;,2) is T1:_,B;-resolvable if its columns can be parti-
tioned into N /(B;s;) groups of B;s, columns each so that for any factor with
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s; levels each possible level occurs B; times within the columns of each group.
This definition requires clearly that B;s; does not depend on i € {1, ..., ¢} and
that it divides N.

We can now present the following result. A proof is omitted for brevity, but
would follow a reasoning analogous to that in the proof of Theorem 4 in Bose
and Bush (1952).

THEOREM 2.1. The existence of a

11 B;-resolvable OA(N, I1%;, l__[sirz)
i=1

i=1 i=1
and a

11 B;resolvable OA(N/(BISI), ‘ ﬁ k;, ﬁ si,2)

i=u+1 i=u+1 i=u+1

imply the existence of a

u v v v
118:8,s, < 11 Bi,Blsl)-resolvable OA( N, [1%;, l—Isi,Z).
i=1 ; 1 i=1 i=1

t=u+

Addelman and Kempthorne (1961a) describe two methods that convert a
given orthogonal array to a new orthogonal array. To one of these methods we
will refer as collapsing the levels of a factor, to the other as the method of
replacement.

If a factor in an orthogonal array has s, levels and s, divides s;, then it can
be replaced by a factor with s, levels. This is done by partitioning the s,
symbols into s, groups of size s;/s, and by replacing the symbols in the same
group by a common symbol. The resulting array is still an orthogonal array.
This is the procedure referred to as collapsing the levels of a factor.

Occasionally, depending on the values of s; and s,, a factor with s, levels
can be replaced by more than one factor at s, levels. If there exists an
OAC(sy, &, s5,2) then the factor with s; levels can be replaced by % factors with
s, levels. If the columns of the OA(sy, &, s, 2) are labeled by the s, symbols
that are used to denote the levels of the factor with s, levels, then we can
replace each symbol i for that factor with the £ X 1 column labeled as :. If the
factor with s, levels is part of an orthogonal array of strength 2, then the
newly constructed array by the described procedure is still an orthogonal array
of strength 2. This procedure is referred to as the method of replacement.

3. Use of the methods of construction. We will now demonstrate for
some special cases how the methods of Section 2 can be used with some
additional techniques to obtain certain orthogonal arrays. For the first case,
which will be considered in more detail, we will construct saturated orthogonal
arrays of strength 2 with s™ runs and factors at s’ s’ -1,...,s" levels,
where s is a prime power, m > v,, v;/v;,_, is an integer at least equal to 2,
i=12,...,r, and v, = 1. In order to present this construction, we will first
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introduce some notation. Find nonnegative integers c,, ¢y, .. ., ¢, such that

r Jj-1

m= Y cv, 0< Ycyv<v, j=12,..,r.
i=0 i=0

It is clear that such ¢y, cy,...,c, exist and that they are uniquely determined
by these requirements. Define nonnegative integers b, b4, ..., b, by

b,=0,

b;=c¢,_0;_1 +b,_4, i=1,2,...,r.
Next, define integers my, mq,...,m,,; by

m,,, =m,
m;,=v;, +b,, 1=0,1,...,r.

We also define
d,=0,
di Ui+1/Ui, i=0,1,...,r_1

and
ki=(s"’l+1—s'"t)/(s”t— 1), i=0,1,...,r.

The existence of the following orthogonal arrays was already observed by Bose
and Bush (1952):

(i) An s©*di=2Vresolvable OA(s™+1, k;, 8%, 2),i = 0,1,...,r.
(i) An st~ Dvipegolvable OA(s™i+1, k; + 1,8%,2),i = 0,1,...,r.

Since s™i+1/s(@+di=Vi = g™ we obtain upon repeated applications of Theo-
rem 2.1 the existence of the orthogonal array OA(s™,(k, + 1) X T1/_,k;, s X
IT;_,s",2). By observing that (&, + 1)(s — 1) + LI_1k(s"* — 1) =s™ — 1, we
see that this is a saturated main-effect plan. However, we will show that we
can do slightly better if we use the methods of Section 2 instead of the method
by Bose and Bush (1952) to construct the preceding symmetrical orthogonal
arrays.

As a first step towards this improvement, observe that m, ., = (¢; + d,) -
v, +b;,,1=0,1,...,r. Now let D,; be a difference scheme D(s":, s", s") and
let D,, be a difference scheme D(sVi*%, svi*t: sv) i =0,1,...,r. The exis-
tence of these difference schemes based on the additive group associated with
GF(s") was observed in Section 2. With E; as the 1 X sV vector with the
elements of GF(s") and with 0; as the 1 X s” vector with all entries equal to
the zero element of GF(s"), it is then easily seen that the following array is an
sitdi=Dvpegolvable OA(s™i+1, k;, %, 2):

c; +d, — 2 times

Ei®D1i®D1i®'.. ®D11®D21,
OZQEL ®D1i®'.‘®D1i®D2i’

Oi®0i ®Ol @"'@Ei ®D2i'



CONSTRUCTION OF ASYMMETRICAL ORTHOGONAL ARRAYS 2147

An s@*d~Dviregolvable OA(s™i+1, k; + 1,5%,2) can be obtained by adding
one factor represented by

0,600,000, --90,0E;®0,,

where 0, is a 1 X s® vector of zeros. Notice that contrary to the constructton
by Bose and Bush (1952), this construction requires only computations in two
finite fields, namely GF(s%) and GF(s”*%), and only in one field if b, = 0.

The claimed improvement for the construction of asymmetrical orthogonal
arrays that are obtained from these symmetrical orthogonal arrays by repeated
application of Theorem 2.1 is due to the fact that the current representation of
the symmetrical orthogonal arrays allows us at times to combine some lower
level factors and replace them by one higher level factor without distorting the
orthogonality of the array. More precisely, if c¢; > 1 then we can replace
(sVi#1 — 1) /(s¥ — 1) factors in the OA(s™i+1, k;, s, 2) by one factor at s+
levels without affecting the orthogonality of the array. To see this, note that
the following array is a subarray of the OA(s™i+1, k,;, s”,2) as previously
constructed:

d; — 1 times ¢; — 1 times
E,oeD,®oD,;® - ©D,;00,® -+ &0, ® 0},
0,0E, ©oD,® - ©D,;;0©0,0 - &0, ® 0f,

0,00, ®0, ® --- @ E, ©0,® --- ® 0, ® 0,

where 07 is the 1 X s%*? vector of zeros. That this is a subarray follows since,
as argued in Section 2, both D;; and D, contain a row of zeros. Also, this
subarray consists of (@i~ Dvi 4 5(di=2v 4 ... fgVi 4 1 = (s¥%+1 — 1)/(s¥ — 1)
factors and has only s+t different columns. By identifying each of these
columns with an element of GF(s"i+1) we can replace these (s¥i+1 — 1) /(s% — 1)
factors by one factor with s’i+: levels, which is of the form E; , ® 0, ;.

We can also replace lower level factors by one higher level factor if ¢; = b, =
0. In that case by=b;,= -* =b,=b;,,=0. If b, =0, then 2y, + 1=
(8™ — s™0)/(s¥0 — 1) + 1 = (st —s¥0)/(s% — 1) + 1 = (s" = 1 /(s” - 1),
and the entire OA(s™1, k, + 1, s¥, 2) that is used in the construction of the
OA(s™, (ko + 1) X ITj_ k;, 8% X I1;_;s%,2) can be replaced by one factor at
s¥1 levels in a similar way as before. This leads to an OA(s™,(k; + 1) X
IT7_ok;, s¥1 X T17_58%, 2). This array contains as a subarray replications of an
OA(s™2, k, + 1,8",2) as previously constructed. If b, =0, then 2, + 1=
(sm2 —s™) /(s — 1)+ 1=(s"2—-s")/(s"1 = 1) +1=(s2-1)/(s* — 1).
Thus the OA(s™2, k; + 1, s¥1,2) can in its entirety be replaced by one factor at
sV2 levels. This process can be continued until we finally reach an OA(s™,
(ki+1 + 1 x n;=i+2kj’ §Yir1 X n;=i+zsvj’ 2).

The previous paragraphs are summarized in the following result.
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THEOREM 3.1. Let 1=v,<v, < :-- <v,<m and v,_, divides v;, i =

1,2,...,r. Let b;, ¢; and k; be defined as previously and let s be a prime
power. Then there exists an OA(s™,TT;_y k¥, T1:_,s",2), where

B = ko = (5% = 5) /(57 ~ 1)
* {k1+1, ifc, =0and b, >0,

-
! ky — (s"2—s")/(s"1 = 1), otherwise,

k;+1, ifc,_;>0o0rb,_y=0andc;=0,b,>0,
ks, ifc; ,=0,b,_1>0andc; =0,
BE =
t k;— (s¥*1 —s")/(s" = 1), ifc,_1>0o0rb,_y=0andc;,>0o0rb, =0,

ky— (st —s") /(s = 1)—-1, ifc;_1=0,b,_y>0andc;>0,
wherei =2,3,...,r — 1, )

B+ k.+1, ifc,_;>0o0rb,._, =0,
"\ &, ifc,_;=0andb,_, > 0.

Observe that the orthogonal array in this theorem is a saturated main-effect
plan. This can, for example, be concluded from the fact that the original
OA(s™,(ky + 1) X IT/_1k;, s X TT]_,s™,2) is a saturated main-effect plan and
the manner in which the orthogonal array of Theorem 3.1 is constructed from
this array.

We will now illustrate the result of Theorem 3.1 and the construction of the
corresponding orthogonal array by two examples.

ExavpLE 3.1. Let s=2, m=9, r=2, v,=1, v; =2 and v, = 4. The
values for ¢;, b;,, m;, k; and k¥, i = 0,1, 2, are then as follows:

i c; b, m; k; k¥
0 1 0 1 6 4
1 0 1 3 8 9
2 2 1 5 32 32

Thus, we can obtain a saturated main-effect plan OA(2% 4 X 9 X 32,2 X 4 X
16, 2). This plan can be represented as follows:

E, ® D,, 32 factors at 16 levels;
0,® E, ® Dy,

— 8 + 1 = 9 factors at 4 levels;
0,00, E &0,
0,00, ® E,® Dy, ® Dy
0,®0,®0,0E, D, 2 + 1 + 1 = 4 factors at 2 levels.
0,0©0,®0,00, ®FE,

Here, D, is the array obtained from D, by deleting the row of zeros. In this



CONSTRUCTION OF ASYMMETRICAL ORTHOGONAL ARRAYS 2149

example, our methods do not allow us to combine four-level factors to make an
additional 16-level factor because ¢; = 0 and b, > 0.

ExamprE 3.2. Let r = 1. Then kf =k, — (s** —s)/(s — 1) and k} =k, +
1. A saturated main-effects plan OA(s™, k¥ X k¥, s X s'1,2) can thus be ob-
tained for any m > v; > 2 and prime power s. Wu (1989) treats the special
case s = 2, v; = 2 by a more complicated technique. Wu, Zhang and Wang
(1992) extend this technique to generalize the result of Wu (1989) to the result
in this example. See also our Example 3.4.

To assume a priori that interaction effects are negligible is usually not
recommendable. In view of that and the fact that not all possible factors may
be needed in a particular experiment, it is desirable to have some knowledge
about the alias structure of the design. There are différent approaches that can
be used. For one, we could seek a desirable alias structure by an appropriate
choice of the difference schemes D,; and D,,. This approach is followed in Pu
(1989). As an alternative, the array from Theorem 3.1 can be converted to an
OA(s™, Li_ok¥(s" — 1)/(s — 1),5,2) by the method of replacement as dis-
cussed in Section 2. The alias structure of the asymmetrical orthogonal array
can now be studied through that of this symmetrical orthogonal array. This is
in the spirit of Wu (1989).

The method of replacement allows also an immediate generalization of
Theorem 3.1. Since an OA(s'i+1, (s¥+1 — 1) /(s% — 1), 5%,2) exists for i =
0,1,...,r — 1, any factor at s"+! levels can be replaced by (s’i+1 — 1) /(s¥* — 1)
factors at s¥ levels. This leads to the following generalization of Theorem 3.1.

THEOREM 3.2. Let s,m,v,,...,v,,kE,..., k¥ be as in Theorem 3.1. An
OA(s™, TT7_ol;,TT;_ys",2) exists if the following inequalities hold:

r r
Yl(shi—1)< Yki(s»—-1), j=0,1,...,r.
i=j i=j

ExampLE 3.3. With the parameters as in Example 3.1, we can conclude
that an OA(2°, 1, X I, X 1,2 X 4 X 16, 2) exists if
1, <32,
31, + 151, < 507

ly + 31, + 151, < 511.
ExampLE 3.4. With the parameters as in Example 3.2, we can conclude
that an OA(s™, [, X I, s X s¥1, 2) exists if
lLi<(s™m—s™)/(s"1—1) +1,
lo(s —1) +1y(sr1—1) <s™ - 1.
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The special case of s = v, = 2 corresponds to the result in Wu (1989), and is
generalized to the result in this example by Wu, Zhang and Wang (1992).

Wu, Zhang and Wang (1992) discuss a fairly complicated method to con-
struct orthogonal arrays of the form OA(s™,I1/_,l;,T1/_os",2) with s a
prime power and v, = 1, but no further restrictions on the v,’s. Clearly then,
not all their arrays can be obtained from the result in Theorem 3.2. However,
many arrays constructed by Wu, Zhang and Wang can also be constructed by
the methods in our paper with, typically, an important role for Theorem 2.1.
We illustrate this by an example.

ExampLE 3.5. We will show how to obtain an"OA(2%,7, X I; X 1,2 X 4 X
8,2), where [, < 16 and [, + 3, < 56. Clearly, the existence of this array does
not immediately follow from Theorem 3.2. However, from a difference scheme
D(16,16,4) we obtain a one-resolvable OA(2% 16,4,2), while an OA(2%,
8 X 1,2 X 8,2) can be obtained as in Theorem 3.1. Using Theorem 2.1, these
arrays can be combined to an OA(2%,8 X 16 X 1,2 X 4 X 8,2). If a value of
l; < 16 is desired, each redundant four-level factor can be replaced by three
two-level factors by the method of replacement.

The chief advantages of our methods are simplicity and ease of extension to
other families of orthogonal arrays, as illustrated in the remainder of the
paper. For a discussion on advantages of the method by Wu, Zhang and Wang
the reader is referred to Wu (1989).

The techniques that were applied for the special case discussed in the
preceding paragraphs of this section can also be used for other cases. To
illustrate this, we will now discuss a second family of designs. This time,
consider a design with 2s™ runs instead of s™ runs. Again, let m > v, >
Up_q > *+° >vg=1, v;_, divides v;, i = 1,2,...,r, and s is a prime power.
Further, let b,, c;, d; and m; be defined as for the previous case: From Section
2 we know that a difference scheme D(2s5™i,2s™:, s™:) based on the additive
group associated with GF(s™:) exists. Analogous to an argument by Bose and
Bush (1952), this implies the existence of a difference scheme D(2s™:, 2s™:, s¥)
based on the additive group associated with GF(s¥}). To this latter difference
scheme we will refer as Dg;, i = 0,1,...,r. The array represented by

c; +d; — 2times

Oi®Ei ®D1i®"’ $D1i®D3i’

is then a st~V regolvable OA(2s™:+1, 2(s™i+1 — s™i) /(s¥ — 1), 5%, 2). One
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factor, represented by
0,©0,00,06 - 90,0E,0,,
can be added to obtain a sletdi— DU pegolvable QA(2s™:+1, 2(s™i+1 — §™:) +
1, s%, 2), where 0, denotes a 1 X 2s% vector of zeros. Thus, if we define
fi=2(s™+t —s™) /(s — 1), 1=0,1,...,r,

then we obtain from repeated applications of Theorem 2.1 an OA(2s™,
(fo + V) XTIIi_yf;, s X TI]_;s",2). Although this family of main-effect plans
does not contain any saturated designs, similar considerations as for the

previous case to combine lower level factors to one higher level factor can be
entertained for this case. This leads to the following analogue of Theorem 3.2.

THEOREM 3.3. Let s, m,v,...,0,, bg,...,b,, ¢co,...,C,, mg,...,m, beas

in the previous paragraphs. An OAQ2s™,TTi_l;,I1_ys",2) exists if the fol-
lowing inequalities hold:

Y l(s%—1)< Y f*(s%—1), j=0,1,...,r,
i=j j

i=j
where f§, [, ..., ¥ are defined by
* fo+1, ifcog =0,
fo = fo— (s —s") /(5% —1), ifcy>0,
fi+1a ifci—1>0’ci= )
£ = fi ife,_;=0,¢;=0,
: fi — (sVix1 —s%) /(s% — 1), ifc,_1>0,c; >0,

fi— (s"+1—s%)/(s"=1) =1, ifc,_;=0,¢;>0,
wherei=1,2,...,r — 1.

o f.+1, ifc,_,>0,
" ife,_, = 0.

Thus if ¢; > 0, some factors in our OA(2s™i+1, f;, s, 2) can be combined in
the same spirit as for Theorem 3.1 to form one factor at s¥:+! levels. This
analogy fails, however, if ¢; = b; = 0.
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