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ASYMPTOTIC ANCILLARITY AND CONDITIONAL
INFERENCE FOR STOCHASTIC PROCESSES

By TREVOR J. SWEETING
University of Surrey

Simple conditions on the observed information ensure asymptotic nor-
mality of the conditional distributions of the randomly normed score
statistic and maximum likelihood estimator given a suitable asymptotically
ancillary statistic. In particular, asymptotic normality holds conditional on
any asymptotically ancillary statistic asymptotically equivalent to observed
information. The results apply to inference from a general stochastic
process and are of particular relevance in the case of nonergodic models.

1. Introduction. Under certain conditions it is shown that the condi-
tional distributions of the randomly normed score statistic and maximum
likelihood estimator, given any asymptotically ancillary statistic which con-
tains data asymptotically equivalent to observed information, are asymptoti-
cally normal. These results are particularly relevant in the case of nonergodic
models for dependent data. Efron and Hinkley (1978) discuss approximate
ancillarity and conditionality in relation to observed information for i.i.d.
observations. In Sweeting (1986) conditional limit results are obtained for a
supercritical branching process. The mode of conditional convergence used in
that paper is uniform convergence in compact subsets with respect to the
conditioning variable, which leads to considerations of equicontinuity difficult
to generalize to arbitrary models. In the present paper we use a weaker mode
of probability conditional convergence; see Sweeting (1989) for a general
discussion.

In Section 2 we formulate the problem and discuss the importance of
general conditional results of this type. Regularity conditions are stated, the
asymptotic ancillarity concept is introduced and the main results presented in
Section 3. Proofs are given in Section 4.

2. Formulation of the conditional problem. Let ® be an open subset
of R*, k> 1, and (P,,0 € ®) be a family of probability measures on a
measurable space (2, #). Let &, C # be a nondecreasing sequence of sub
o-fields, where ¢ > 0 is a discrete or continuous parameter and let P,, be the
restriction of P, to %,. Assume that, for each ¢ and 6 € O, P,; < A,, a o-finite
measure, with density p,(6) such that the set {p,(6) > 0} is independent of 6.
Then, without loss of generality, A, can be assumed to be supported on this set
and hence [,(0) = log p,(0) exists a.e. (1,). Further assume that the second-
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order partial derivatives of p,(0) exist in a neighbourhood of the true value
0, € 0. It may be possible to extend the ideas in this paper to more general
settings, not requiring the existence of dominating measures A,, or using
weaker differentiability assumptlons, for example, but this has not been
investigated.

Let M, be the space of all k X k matrices. The norm in M, will be
|A| = (tr ATA)'/2. AV%(AT/2) will denote the left (right) Cholesky square root
(CSR) of the positive definite matrix A. Use of the CSR leads to tidier results
than the symmetric square root; see, for example, Fahrmeir (1988). Properties
of the CSR are used in the sequel without further comment.

Let U/(0) =1(8) be the k X 1 score statistic, [7(8) the 2 X & matrix of
second-order derivatives and J,(8) = —1}(8) the observed information matrix.
Define X,(6) = B; '/2U(6), W(6) = B; /2] (6)B; 7/2, where (B,) is a sequence
of positive definite matrices in M, satisfying B; ! — 0, and write X, = X,(0,),
W, = W,(6,). It was shown in Sweeting (1980) that, under suitable conditions
on W(0), (X,,W,) = (W'2Z W) under 6,, where Z is a standard normal
random variable independent of W. (Here = denotes weak convergence.)
Using properties of the CSR and the continuous mapping theorem, we obtain
(Z,,W,) = (Z,W) under 0,, where Z, = {J,(6,)} "'/2U/8,). The convergence in
distribution of W, suggests that we could regard W, as asymptotically ancillary
for 6. If Z, retains its asymptotic normal distribution conditionally on W,, then
the conditionality principle would dictate basing inferences on this distribu-
tion. A similar argument applies to the randomly-normed ML estimator, when
it exists. Under further nonlocal conditions, conditional inference would also
formally agree with asymptotic Bayesian inference for every smooth prior on
0; see, for example, Sweeting and Adekola (1987). Similar remarks have been
made in Feigin and Reiser (1979), Sweeting (1980, 1986), Dawid (1991) and
elsewhere. These ideas are made precise in the next section. Although the
main motivation is to obtain limit theorems conditional on observed informa-
tion, our results apply to any asymptotically ancillary statistic which includes
data asymptotically equivalent to observed information. See McCullagh (1984),
Basawa and Brockwell (1984) and Jensen (1987) for some related work.

To illustrate the importance of our results, we conclude this section by
applying the conditional limit theorem obtained in Sweeting (1986) for the
supercritical branching process. Assume a geometric offspring distribution
with unknown mean 6 and suppose that the unconditional sampling distribu-
tion of the asymptotic pivot Y, = BT/ 2(5t — 6) is used to construct a 95%
confidence interval for 6, where B, is Fisher’s information. The asymptotic
distribution of Y, here is Student ¢ on 2 degrees of freedom and the resulting
interval is {6: |Y,| < 4.30}. From Sweeting (1986) there exists a statistic V,
asymptotically equivalent to observed information and asymptotically ancillary
for 9 and it is therefore important to examine the conditional coverage of the
above confidence interval. Asymptotic results are given in Table 1 for a range
of values of W,, the ratio of observed to expected information, selected to
represent the central 90% of the unit exponential distribution, which is the
asymptotic distribution of W, here. The poor conditional performance of the
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TABLE 1
Conditional coverage of 95% confidence interval based on Y,

Ratio of observed to
expected information 0.05 0.20 1.00 2.00 3.00
Conditional coverage 4
of 95% C.1. 66.4 946 99.998 100-1.2 x 10~7 100-9.1 x 10~12

confidence interval based on Y, is well illustrated in Table 1. The results in
Sweeting (1986) guarantee that the conditional coverage of the corresponding
interval based on the randomly-normed pivotal quantity, however, is asymp-
totically 0.95.

3. Definitions and main results. Define the B; 7/2 neighbourhoods of
0, by

N(8y,¢) = {6 € ©: | BT/%(6 — 8,)| < c}
for all ¢ >0 and let ¢; =6, + B;7/%s, s € R*. We impose the following

conditions on the normalized information W/6). In conditions D1 and D2
below, s, is a fixed positive number.

D1. There exists a random element W of M, with W > 0 a.s. (00) such
that for all |s| < s,

Wi=w

under the (¢;)-sequence of distributions.

D2. Forall ¢ > 0 and [s| < s,

sup |W,(8) - W, |-, 0
0eN,(8,c)

under the (¢;)-sequence of distributions.

P1. There exists a random element W of M, with W > 0 a.s. (6,) such
that

W, -, W

under 6,,.

Finally, D1* will denote condition D1 strengthened to uniform weak conver-
gence in {|s| < so}. These conditions hold for many standard problems. Condi-
tions D1, D2 are similar to C1, C2, respectively, in Sweeting (1980), the main
djfference being the weakening to convergence in B; 7/Z-neighbourhoods. No
further Lindeberg-type conditions are assumed in the sequel. The first result is
a version of Theorem 1 in Sweeting (1980).
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THEOREM 3.1. Under conditions D1 and D2, for all |s| < s,
(X, W,) = (W'/2Z + Ws, W)

under the (¢F)-sequence of distributions, where Z is a standard normal
random vector in R* independent of W.

We turn now to the question of asymptotic ancillarity. It is argued in
Sweeting (1986) that the definition of asymptotic ancillarity of a sequence (A,)
of statistics should be related to the asymptotic constancy of the likelihood
based on A, in shrinking neighbourhoods N/(6,,s) of 6,. This is a local
property of the distribution of A, and it is not implied by, nor does it imply,
convergence in distribution of A,. Further discussion of the asymptotic ancil-
larity concept used here, and of related work, appears in Sweeting (1986).

We will permit extension of the basic space (Q, &, Py) to (0*, #*, Py, the
product space formed with an arbitrary probability space (Q,, %, Ao), and
take B* = B, X B, t > 0. Let () C (%;*) be a sequence of sub o-fields
(that is, &, ¢ & for each t) and let Q,, be the restriction of Pj to 7.
Without loss of generality we take the dominating measures A, to be probabil-
ity measures [cf. Halmos and Savage (1949)]. Let u, be a dominating measure
for the family (Q,,, 8 € 0); the restriction of A¥ = A, X A, to &, for example,
is one such measure. Let f£,(8) be a density of @,, with respect to u,. From
Theorem 3.1 we see that the dominant region of the likelihood function is a
B; T/%.neighbourhood of 8, and we make the following definition.

DeFINITION 3.2. The sequence of sub o-fields (&) c (%) is asymptoti-
cally ancillary for 6 if, for some s, > 0 and all |s| < s,

f(87)/f(80) —p 1

under 6.

Note that this definition does not depend on the particular choice of f(6).
Also, the set S, = {f,(6) > 0} is independent of 6 and all dominating measures
of Q,, are equivalent on S,. Since P,(S,) = 1, it follows that the definition is
independent of the choice of dominating measure u,. A sequence (A,) of
%*-measurable functions is asymptotically ancillary if the sequence of sub
o-fields induced by (A,) is asymptotically ancillary. Convergence for all s € R*
in Definition 3.2 might appear more natural, but the weaker definition given
here suffices for the present purpose. Our concept of asymptotic ancillarity is
similar to that used in Sweeting (1986), where the mode of convergence is
uniform convergence in compact subsets of the common support of Q.

DerFiNITION 3.3. The sequence (J,) of #*-measurable functions in M, is
equivalent to observed information if, for some s, > 0 and all |s| < s,,

B2, - J(4})]| B T2 =, 0
under (&;).
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DerINITION 3.4. The sequence (&) C (%;*) of sub o-fields is fully informa-
tive if there exists a sequence (J,) of (&7)-measurable functions in M,
equivalent to observed information.

Let &, &, t > 0, be sub o-fields with o/, c Z*. The notation X,|o/ =,
X|oZ will mean E(u(X,)|o7) -, E(u(X)|o7) for every bounded continuous
function . The next theorem is the main result of the paper.

THEOREM 3.5. Let (&) C (#;*) be a fully informative asymptotically ancil-
lary sequence. Then, under conditions P1 and D2,
(X, W)| o7, =, (W2, W) |W
under 0, where Z is a standard normal random vector in R* independent

of W.

CoroLLARY 3.6. Let (&) C(#;) be a fully informative asymptotically
ancillary sequence and (J,) a sequence of (B,*)-measurable functions equiva-
lent to observed information. Then, under conditions P1 and D2,

T2 0,)|st, =, Z

under 0, and there exist local maxima (6,) of 1,(0) for which
JI2(6, - 0,)| =, Z

under 0,, where Z is a standard normal random vector in R*.

If no fully informative asymptotically ancillary sequence exists, the above
results are vacuous. We have the following result, however.

LEmMMA 3.7.  Assume the likelihood possesses a unique local maximum with
probability tending to one under 6,. Then, under conditions D1* and D2,
there exists an asymptotically ancillary sequence (J¥) of statistics equivalent to
observed information.

A partial converse is provided by the following lemma.

LEmMA 3.8. Under conditions P1 and D2, condition D1 is necessary for
the existence of an asymptotically ancillary sequence (J,*) equivalent to ob-
served information.

4. Proofs. Let C(S) be the class of nonnegative bounded continuous
functions on the metric space S and C,(S) the subclass of functions in C(S)
with compact support.

LEmma 4.1.  Let (Q, &, A) be a probability space and (X,,Y,),n = 0,1,...,
be measurable mappings from (Q, &) to R* X R!. Suppose that, for some
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so > 0 and all Is| < sy, v € Cy(RH),
E(esTX"v(Yn)) - E(esTXOU(YO)) <
asn - ». Then (X,,Y,) = (X, Y,).

REMARK. Note that finiteness of E(e®” %») is not necessary here.

Proor. If E(v(Y,)) > 0, then, for n sufficiently large, we can define the
probability measure dP? = v(Y,) dA/E(u(Y,)). Now, for |s| < s,

E;(e"%r) = E(e*"*u(Y,))/E(v(Y,))
~ E(e"%ou(Y,)) /E(u(Yy)) = Eg(e*"™),

where E, denotes expectation under P and hence P, = P;j. Therefore
E(u(X,)u(Y,)) » E(u(X,)u(Y,)) for every u € Cy(R*) and the desired weak
convergence follows by approximation of indicators of finite rectangles. O

Proor orF THEOREM 3.1. First note that ¢; € ® eventually. Write p, =
pA0,), q; = p,(#;). A second-order Taylor expansion about 6 = 6, gives

(1) 1(8) = 1,(60) + (65 — 80) 1(80) + 3(&5 — 80) " L1(w2) (65 — 6,),

where ) = a0, + (1 — a))¢; for some a; with 0 < a; < 1. Taking exponen-
tials in (1) and rearranging gives

(2) e Xep, = exp| 2T W (¥)s] ;.

Write D, = supye n o, 50| WA8) — W, A} = Wi(¢7) — W, and v € Co(M,, X R).
Multiply (2) througfl by v(W,, D,) and take expectations w.r.t. A, to give

(3)  EX(e”™ (W, D,)) = E;(exp[5s™(W, + &3)s]u(W,, D,)),

where E; denotes expectation under P, ;. Since |A}| < D, and v € Co(M,, X R),
the integrand on the right in (3) is i.. Co(M? X R) and D1, D2 imply that the
right-hand side converges to

E(exp [3s"Ws|v(W,0)) = E(exp [3s" W'/?Z]u(W,0)),
where Z is a standard normal vector in R* independent of W. Since this
convergence holds for all [s| < s, it follows from Lemma 4.1 that (X,, W,) =
(W'/2Z, W) under 6,.

Finally, let LS = q;/p,. Again from (2), L = exp[sTX, — 3sT(W, + A3)s].
Since A5 = 0 under 6, preservation of weak convergence under continuous
mapping gives

(X,,W,, L) = (W'2Z,W, L),

where L® = exp[s? W/2Z — 1sT Ws). Since E(L®) = 1, the result now follows
by contiguity; see, for example, Theorem A.2.2 in Basawa and Scott (1983). O
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We shall make use of the following relation. Let (Q, &, A) be a probability
space, P < A with density p, X a %-measurable real function and &/c & a
sub o-field. Then

(4) E(Xpl) = E(X|)f,

where f is the density of the restriction of P to &/ w.r.t. the restriction of A
to &7. Note in particular that f= E(p|o/). The next lemma is a conditional
version of Lemma 4.1,

LEMMA 4.2. Let (Q, %, A) be a probability space, (,,n =0,1,...,) a
sequence of sub o-fields of (O, #) and (X,,Y,), n=0,1,..., measurable
mappings from (Q, #) to R* X R'. Suppose that, for some s, > 0 and all
Is| < 8¢, v € Co(RY), :

E(e"™%u(Y,)|2,) -, E(e’ ™ ou(Yy)|ezg) < as.
as n = ». Then (X, V)|, =, (X,, Yo,
Proor. Define P! as in the proof of Lemma 4.1. Relation (4) gives
E(e*"u(Y,)|9,) = Ex(e*" |4, ) E(u(Y,)|97,).

It follows that E%(e*"*+|.97,) =, E(e* *0|.a7,) and hence E¥(u(X,)|%,) -,
E(u(X)|2,) for all u € CO(Ing, as in Corollary 3 of Sweeting (1989). There-
fore E(u(X,)u(Y,)le7,) -, E(u(Xy)uv(Y,)le) and this easily gives the
corresponding convergence for finite rectangles. Since the class of (X, Y,)-con-
tinuity rectangles with rational coordinates is a countable convergence-
determining class, the result now follows from Theorem 9 in Sweeting (1989).

O

LEmMA 4.3. Let (Q,%,)), &, (X,,Y,), n=0,1,..., be as in Lemma
4.2. Suppose that X, |, =, X\, and Y, >, Y, a constant. Then
(X,, Yt =, (Xq, Yo)lbp.

Proor. Let u € C(R*), v € C(R). Then
|E(u(X,)v(Y,)|%,) — v(Y,) E(u(X,)|,)| < ILIE(Jv(Y,) — v(Yo) ).

Now u(Y,) —, v(Y,) and hence E(lu(Y,) — v(Yy)]) - 0 since v is
bounded. But E(|u(Y,) — v(Y,)) = E(E(lu(Y,) — v(Y)!e7,)), so E(u(Y,) -
w(Yy)lleZ,) =, 0. The result follows since E(u(X,)e7,) =, E(u(Xy)ly). O

Proor oF THEOREM 3.5. Since (&) is fully informative, there exists a
sequence (J,) of &/-measurable statistics equivalent to observed information.
Write W, = B;1/2/,B;T/2. 1t follows from D2 that A3 = W(y) - W, -, 0
under (¢¢), where (¢7) is as in the proof of Theorem 3.1. Define D, =
SUD < N8, 50| Wi(8) — W,| and let v € Co(M,,). Multiply (2) through by v(D,)
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and take conditional expectations w.r.t. ¥ relative to &7, to give
Ey(e*"%w(D,)p| ;) = Eyy(exp[3sTW,(47)s]as|e7).
Relation (4) now gives
E7*(e*"*u(D,)|o7)
= exp[3s” W,s| E7*(exp[ 3s™Bss|v(D,) |, ){ £ 67) /£.(60)},

where E® denotes expectation under P;:;s Since D, = 0 under (¢?), it follows
from Lemma 4.3 that D,|.o7, —, 0 and, since A3 < D,

(6) Et*s(exp[gsTAS,s]v Dt)l.sa/,) -, v(0)

under (¢). Denote by V, the difference between the léft- and right-hand sides
of (6). Then, using the /-measurability of V,, for all ¢ > 0,

Pi (V.| >e) < P;;o(IV | > &, fi(00) < 2f(¢;)) + P fi(80) > 2fi(47))
2P, (|V,]| > ¢) + Pt’zo(Hft(d’t)/ft(oo)} -1/ > 1)->0

from (6) and the asymptotic ancillarity of (27). The convergence in (6)
therefore also holds under 6.
It now follows from P1, (5) and the asymptotic ancillarity of (.7) that

EX°(e*"%w(D,)| o) -, E(e*™"*2|W)u(0)

(5)

under 6,, where Z is a standard normal vector in R* independent of W.
Lemma 4.2 now gives X, =, W'/?Z|W. Since W, is ./-measurable, it is
easily seen that this 1mp11es (X,, W), =, (W'/?Z, W)IW F1nally, since W, —
W, -, 0, Lemma 4.3 gives

(X, W, W, = W,) |z, =, (W22, W,0)|W
and the result follows from Theorem 10 in Sweeting (1989). O

Proor oF CoroLLARY 3.6. All convergence statements are taken to be
under 8,. Write W, = B;/2/,B; 7/% and note that J; '/2U, = W, '/2X,. Since
W, — W, -, 0, Lemma 4.3 and Theorem 10 in Sweeting (1989) along with
Theorem 3.5 give

(7) (X, W,)|, =, (W22, W)|W.

The first result now follows, again from Theorem 10 in Sweeting (1989).

For the second result, Theorem 3.5 implies the existence of a sequence (0 )
of local maxima of [,(0) for which Y, = BT/2(6, — 6,,) is stochastically bounded
This follows from a nonuniform version of Lemma 4 in Sweeting (1980) and
the proof is omitted. A nonuniform version of Theorem 2 in Sweeting (1980)
then gives X, — WY, -, 0. Lemma 4.3 and (7) now give W,7/?Y,|.oZ, =, Z and

the result follows from WT/ 2BT/2 = JjT/2,
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Proor oF LEMMA 3.7. From Theorem 3.1, (X)) is sbochastically bounded
under (¢7). A modification of Lemma 4 in Sweetlng (1980) gives the existence
for each s of a sequence (87) of local maxima of /,(6) such that Y = BT/ -
(67 — ¢?) is stochastically bounded under (¢$). It follows from D2 that (J @6,)
is a sequence of statistics equivalent to observed information, where (0 ) is the
unique local maximum guaranteed with 6,-probability tending to 1.

Now let (J,) be any sequence equivalent to observed information and write
W, = B] /%), B'T/ 2, Let H be any distribution with bounded uniformly con-
tinuous dens1ty h with respect to Lebesgue measure on M,. Then we can
construct a %,-measurable function ¢ in M, with distribution H. Let ¢ > 0
and write W = W, + ¢¢. Then W has density £(0) = [h({w — x} /&) dG,(x),
where G,, is the distribution of W, under 6. From D1* it follows that

2(¢7) > f°(8y) uniformly in [s| < sy, where [0,) = [h({w — x}/e) dG(x)
and G is the distribution of W under 6,. Moreover since the functions
h({w — x}/¢) are equicontinuous in x, the convergence is uniform in w.
Therefore there exists a sequence & — 0 such that, for all |s| <s,,

;) /ff(0,) = 1 uniformly in w, which implies the probability convergence
of this ratio to unity. Thus W* = W/ is asymptotically ancillary and hence so
is J* = Bl/?W>*BI/2 Furthermore since W — W, -, 0 under (¢}), J* is
equivalent to observed information. O

Proor oF LEMMA 3.8. Take &7, to be the o-field generated by oJ;*. Then
Theorem 3.5 implies the unconditional limit (X,, W,) = (W'/2Z, W) under 4,,.
The contiguity argument given at the end of the proof of Theorem 3.1 now
yields W, = W under (¢;), which is condition D1. O
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