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INEQUALITIES FOR DISCRETE TUBE-LIKE PROBLEMS VIA
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By DANIEL Q. NAIMAN AND HENRY P. WYNN

Johns Hopkins University and City University

Improvements to the classical inclusion-exclusion identity are devel-
oped. There are two main results: an abstract combinatoric result and a
concrete geometric result. In the abstract result conditions are given which
guarantee the existence of a depth d + 1 identity or inequality for the
indicator function of a union of a finite collection of events, that is, an
expression which is a linear combination of indicator functions of at most
(d + 1)-fold intersections of the events. Such an identity or inequality can
be integrated with respect to any probability measure to yield a probability
identity or inequality. Connections are given to previous work on Bonfer-
roni-type inequalities. The concrete result says that there is a depth d + 1
identity for the union of finitely many balls in d-dimensional Euclidean
space. With a single correction term this result also holds in the d-dimen-
sional sphere. These results form the basis for a discrete theory of tubes,
which up to now has been continuous in nature. The spherical result is
used to give a simulation method for finding critical probabilities for
multiple-comparisons procedures, and a computer program implementing
the method is described. Numerical results are presented which demon-
strate that in the tails of the distribution probability estimates based on the
method tend to exhibit less variability than estimates based on naive
simulation.

1. Introduction. This paper touches on several areas of mathematics,
statistics and elementary probability theory. The main results are somewhat
technical in proof but easily stated. Consider a finite collection of measurable

subsets {A;}"_;. The classical inclusion-exclusion identity is

z(iQIA,.)= T IA)- T I(An4)

l<i<n 1<i<j<n

+o+(-1)"TU(A N NAY),

where I(A) denotes the indicator function of the event A. The depth of the
identity is n, that is, the most complicated intersection is n-fold. A probabilis-
tic identity is obtained by integrating the identity with respect to a probability
measure w. In this paper we are principally interested in identities (and
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associated inequalities) of depth m < n:

(1.1)
+ ...+(_1)’""1. Y I(A,n-NA; ),

Lgyeres | A

where the rth sum is over a restricted set of r-tuples of (ordered) indices.

There are two aspects to the main results: abstract results in Section 2
(Theorems 2.1 and 2.2) which are combinatoric in nature and concrete results
(Theorems 3.1 and 4.1) which are more geometric. Theorem 2.1 gives a
condition for equality and inequality in a formula of the form (1.1) in terms of
the Euler characteristic of certain simplicial complexes and subsimplicial
complexes associated with the index sets being summed over. These results are
used to extend the theory of Bonferroni inequalities as considered by Tomescu
(1986). This result is generalized in Theorem 2.2 in a manner which is used
in Section 4. Connections, in a combinatorial sense, between the inclusion-
exclusion principle and the Euler characteristic have previously been estab-
lished by Rota (1971). The connection developed here is different, in that the
geometry of Voronoi diagrams plays a fundamental role. Theorems 3.1 and 4.1
apply the combinatoric results to the situation when the A; are disks of equal
radius, and the dimension of the (Euclidean or spherical) space is d. Integra-
tion with respect to the uniform measure gives a statement about the volume
of the union of the disks. A key result is that there is always a depth r + 1
identity (1.1) for the indicator function of a union of disks, where r denotes
the dimension of the affine subspace spanned by the centers of the disks. Since
r < d the depth can always be reduced to d + 1.

Excellent intuition, fortunately, is obtained by taking the A; to be the disks
of equal radius in d =2 dimensions. Readers who are used to covering
problems will share some of the authors’ frustrations in handling large
collections of overlapping disks. The fact that not all patterns of intersection
are obtainable by mapping set-theoretic problems into disks in the plane was
apparently known to Venn (1880) [see also Pakula (1989)]. Here is an example
to illustrate our Theorem 3.1. Consider five disks of radius 3, A,,..., A5 with
centers at P;: (0,0), P,: (1,1), Py: (—2,1), P: (-1, —2), P5: (1, —2), respec-
tively (see Figure 1). Then

I( GAi) =I(A,) +I(Ap) +I(Ag) +I(Ay) +1(As)

i=1
—I(A; N Ap) —I(A; NAg) —I(A; N Ay — I(A; N Ap)
—I(A;NAj) —I(AsnAy) —I(A, N Ag) —I(A; 0 Ay)

+I(A,NA;NAG) +I(A,NA3NAY)
+I(A;NA,NA) +I(A; NA, N Aj).
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Fic. 1. Five circles of equal radius in the plane.

The depth here is 3. For circles in two dimensions we need never use depth
greater than 3. ‘

To illustrate how the terms of the identity are determined for the example
just described, consider the Voronoi diagram corresponding to the points
P,,..., P, that is, break up the plane into regions V;, i = 1,...,5, where V;
consists of those points which are closer to P, than to any of the other points
P, (see Figure 2). Now form the line segments P,P,, P,P;, P,P,, P, Py, P,P,,
P,P,, P,P; and P;P,, connecting pairs of points for which the corresponding
Voronoi sets share a common boundary, and shade the triangles P,P,P;,
P,P,P,, P,P,P; and P,P,P;, corresponding to 3-tuples for which the corre-
sponding V; share a common point. We obtain a simple simplicial complex
known as the Delauney complex corresponding to the points (see Figure 3).

Note that the Delauney complex is a convex polytope and has Euler charac-
teristic

x = 5(points) — 8(edges) + 4(triangles) = 1.

There is a further result which forms the basis for the main result (Theorem
3.1). Pick any point P (not necessarily one of the P,) and some radius r > 0

and take all points P, and edges and triangles in the Delauney complex whose
elements are within r of P. These form a subcomplex of the Delauney complex
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Fic. 2. Voronoi diagram corresponding to the centers of the circles in Figure 1.

F1G. 3. The associated Delauney simplicial complex.
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TaBLE 1
Subcomplexes of the Delauney complex corresponding to P = (3, 3) and varying radii r > 0

r range Points Edges Triangles Ax

[0, 8 0

(3 %% 2 1

(28, &%) P, P,P, 1-1=0
(%05, 21y P; PP, P,P; P,P,P; 1-2+1=0
(4,2 Py P,P,, P,P, P,P,P, 1-2+1=0
(4, +=) P, PP, P,P,, P,P; P,P,P,, P,P,P; 1-3+2=0

whose Euler characteristic is unity (assuming r is large enough so that the
subcomplex is nonempty). For example, if we take P = (},1), the points
ordered from closest to P to furthest from P are given by P;, P,, P;, P, and
P,. As r increases from 0 to +, we obtain the subcomplexes listed in Table 1.
For r € (3, #) the subcomplex consists of a single point P,. For r € [2, 2%

we attach the point P, and the edge P, P, to the single point P,. In general,
the subcomplex corresponding to a given radius r > 0 is the union of all the
terms in rows of Table 1, including the relevant row for that radius. Each time
r passes a critical level, we modify the subcomplex by adding the points, edges
and triangles in the corresponding row of the table. The resulting change in
the Euler characteristic is given in Table 1. Note that each row after the first
contributes zero to the Euler characteristic. This same phenomenon occurs for
any starting point P.

The key to understanding this result is the following dual observation.
Start with the Voronoi set V; corresponding to P;. This set is star-shaped with
respect to P. Now add the sets V; according to the ordering of the points. Each
ofthesets VUV, VUV, UV, VUV, UV, UVsand V; UV, UV, UV, U
V, (see Figure 4) is also star-shaped with respect to P.

The word tube is in the title of the paper because a union of overlapping
disks is a region consisting of the points closest to the set comprising the
centers of the disks, where the distance to a closed set S is defined as

d(x,S) = yirelgd(x,y).

The set of centers can be considered as the axis of the tube. There are close
connections between our work and the differential geometric results of
Hotelling (1939) and Weyl (1939) on the volumes of tubes, which have been
given prominence in the statistical community by several recent papers in-
cluding Naiman (1986), Naiman (1989), Johansen and Johnstone (1990),
Johnstone and Siegmund (1989) and Knowles and Siegmund (1989). In the
differential geometric setting, the axis S is a line, curve or a more general
surface, that is, d-dimensional submanifold. Hotelling (d = 1) and Weyl (d > 1)
used differential geometric methods to express the volume of the tubular
neighborhood of S as an iterated integral over the submanifold, giving d
iterates. These results have been extensively refined and connections with
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Fic. 4. Certain unions of Voronoi sets are star-shaped.

several other areas of geometry have been established. Griffiths (1978) and
Gray (1989) mention the importance of Weyl’s formula in the early develop-
ment of the generalized Gauss-Bonnet theorem, and connections with integral
geometry and Crofton’s formula. Connections with integral geometry and
algebraic geometry have also been investigated by Chern (1966), Shifrin ( 1981)
and Langevin and Shifrin (1982). There have also been several attempts by
differential geometers to generalize the Hotelling-Weyl formulas to other
spaces. See Gray (1989) for an extensive bibliography.

The direct attack on the dlscrete case in the present paper has, perhaps,
been overlooked and the authp_rs feel it reveals a more fundamental result
which underpins the continuous cases, by a suitable limiting argument. The
main result (Theorem 3.1) is based on a property of Voronoi diagrams that has
gone heretofore unnoticed. This is despite the fact that several authors,
including Coxeter, Few and Rogers (1959) and more recently Edelsbrunner
and Seidel (1986), have used Voronoi diagrams to study the configurations of
disks of equal radius in Euclidean space, while others, see, for example, Avis,
Bhattacharya and Imai (1988), use the Voronoi diagram to partition the union

‘ of balls into star-shaped sets by intersecting the union with each Voronoi set
corresponding to the center of a ball. This, of course, leads to a different
identity from (1.1), one that involves star-shaped sets which cannot be con-
structed using set operations on the balls alone. The identity (1.1) has the
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added advantage that the most complicated multiple-comparisons problem
from the class of problems described in Section 5 déeomposes into problems in
which the number of confidence intervals is at most the dimension of the
parameter space (see Remark 5.1).

The work of Groemer (1975), .continuing the earlier work of Hadwiger
(1955) [see also the expository paper of McMullen and Schneider (1983)], is
similar in style to that of this paper. In Groemer (1975), Euler characteristics
associated with linear combinations of indicator functions of unions of convex
sets are also considered. A key difference between that work and ours is that
the Euler characteristic for us is associated with various subsimplicial com-
plexes of a given complex and Groemer assigns a (possibly different) Euler
characteristic to the function itself. A careful reading of Gréemer’s work does
not reveal the solution of the present problem. To summarize, wé hope to pave
the way for discrete tube theory to be alongside ‘and reveal somnie of the
underlying structure of the continuous tube theory.

The original and continuing motivation for us has been the theory of
multiple comparisons. It is a standard method, originating with Hotelling, to
convert a confidence statement or rejection—acceptance statement for a set of
Studentized variables to a statement about the probability content of certain
regions on the surface of a sphere with respect to the uniform measure. In
important cases we need to evaluate the content of the union of spherical caps
of equal radius. Fortunately, on the surface of the sphere the theory also
holds. The result then is that one need not consider overlapping disks below
“depth” m = d + 1, where d is the dimension of the surface of the sphere,
provided that no point is common to all of the disks.

The layout of the rest of the paper is as follows. Section 2 discusses simple
discrete tubes and tubes on trees as a lead into the abstract version of the
result. Section 3 contains the proof of the main concrete theorem for disks in
Euclidean space with some associated topological theory which is also used
in Section 4. A description of a simulation approach for finding volumes of
discrete tubes is also given. Section 4 discusses the analogues of the results in
Section 3 for spherical space, which is the domain we are more interested in
for statistical applications. Section 5 describes a computer implementation of
the basic identity to evaluate critical constants for multiple-comparisons proce-
dures via simulation, and examples are given there to illustrate how simula-
tion based on the use of the identity can result in tremendous improvements
in efficiency, especially for very small values of the error probability.

2. Abstract discrete tubes. Let A,,..., A, be a finite collection of
measurable subsets of a probability space with measure . Define

S, = )y I(A,n---NA,)

1<i;< -+ <ip<n

for 1 < k < n. The Bonferroni bounds are

2r n 2r—1
Y (-1)*'s, sI( U A,-) < ¥ (-1)*'s,
k=1 i=1 k=1
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for r=1,2,... . For example, when r = 1,
n
21 Y 1A)- X% I(A;NA)) sI( UA,-) < Y I(4),
l<i<n 1<i<js<n i=1 lgign

which, when integrated, gives the form in which the bounds are most used in
practice.

Worsley (1982, 1985) with results generalized by Tomescu (1986) discusses
the improvement to the bounds (2.1). Writing

S3= YL I(Ai., N4y,
2<i<n
Si= Y I(Ai.inA;nA),
1<i<j<n
this improvement is written as
n
(2.2) Sl—SZ+S§‘sI(UAi)ssl—S;‘.
i=1
Two important features of this inequality should be stressed.

1. S5 and S3 are sums over restricted subsets of the sets of indices {(i — 1, i)}
and {(i — 1,17, j): i <j}.
2. Equality is obtained for collections {A;} with special properties.

We are interested here in equality statements, for example,

(2.3) I(UAi) = L I(A)- ¥ I(A_1nA).
i=1 l<ign 2<i<n
DEFINITION 2.1. A collection of sets {A,}"_, is called a simple tube if
J

for any pair (i, j) with 1 <i <j <n. By convention, the empty set @ is
contained in each A;. We may state the condition equivalently as

A;NA;cA,, k=i+1,...,j-1.

It is instructive to draw Venn diagrams of equally sized disks whose centers
lie on a curve in the plane to show the tube-like nature of the condition. It can
be seen that if the curve turns too sharply, then the simple tube condition is
violated.

Lemma 2.1, If{A}}., is a simple tube, then () I(U?_,A,) =S, — S} and
(i) 8; — S, + 8% =28, — S}, that is, each inequality in (2.2) becomes an
equality.
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Proor. (i) For any collection {A;} we may write

n n-—1 n n-1 n

Oa-"U{a\ 0 afua-Ula\ 0 (40 4)) Ua,

i=1 i=1 j=i+l . i=1 j=i+1
But from the tube property

U AnA=AnA,
j=i+1

so that

n—

n 1
UAdi= U{A-(A,nA,)}VA,.
i=1 i=1

But by the disjointedness of the sets on the right

I( LnJ Ai) = nZ_lI(Ai - (AiNAy) +1(A,)
i=1 i=1
- Y I(A) - ¥ I(A, N 4.
i=1 i=2

(ii) From the tube property
S0 we obtain

l<i<j<n 2<i<j<n

= X I(A,_,nA) =85 o
i=2

It is helpful to convert the simple tube property to a statement about the
linear graph G = (V, E) with vertices V={i: i =1,...,n} and edges E =
{G—1,i):i=2,...,n). Consider a simple binary stochastic process created by
the indicator functions of the sets A,. Thus X, = I(A;). The simple tube
condition implies that

{(Xi=1}n{X;=1}=(X,=1,i <k <j}.

It is clear then that the behavior of the X; process can be decomposed into
disjoint events C, for each of which some connected linear subgraph G, =
(Vy, E) has all X; =1 for j €V, and X; = 0 for j € V,. Each of the events
C, corresponds to a special elementary event of the form

Ck = n Ai N n Ai.
ieV, iV,
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For four sets, for example, the table of possible events is:

G, Event, C, X, X, X; X,
{1} AINASNA5NA; 1 0 0 0
{2} AINA;NA5NA; 0 1 0 O
{3} AINASNA3;NAS 0 0 1 0
{4} AiNASNASNA, 0 0 0 1
{1,2} A NnA,NnA5NAS 1 1 0 0O
{2, 3} AiNA,NA;NAS 0 1 1 0
{3,4} AiNASNA;NA, O 0 1 1
{1,2,3} A nNnA,NnA;NAS 11 1 0
{2,3,4} ASNA,NnA;NnA, 0 1 1 1
{1,2,3,4} A NnA,NnA;NnA, 1 1 1 1.

We can now give an alternative proof of the identity (2.3) [Lemma 2.1(i)] for
simple tubes. Since the C, are disjoint and U™ ;A; € U ,C,,

Y I(A) - ¥ I(A_1nA4)

l<i<n 2<i<n
= Y YIANGC)- X Y I(A_;NA;NC,)
l<i<n k 2<i<n k
-I{ T Kanc)- T KA nAnc))
k l<i<n 2<i<n
-2{T e - T xe)
& liey, G, j)<E,

= % -I(Ck){lvkl _|Ek|}'

Since each G, is connected and linear |V,| — |E,| = 1 so that the expression
reduces to X, I(C,). Now since the C, are disjoint and exhaust U, _,_,A;, we
have

(Y a)=-Z1nanna)-Tre,
© \1<izn E \iev, A %

completing the proof. O

With little alteration the result can be extended to trees, a tree being a
connected graph which consists of no cycles.

n

DEFINITION 2.2. A generalized simple tube is a collection {A;}" ,, where
the indices form the vertices of a tree G = (V, E) and

A;NA;CA,
for any & on the path from i to j.
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For such a collection, clearly there is a decomposition

[ Oa) -1,

where

n Ai N n Acl; ’
iEVk iéVk
and where the G, = (V,, E,) are connected subtrees of G. The general result
is the following.

LEmMA 2.2. For a generalized simple tube {A,} with tree G,

I(iL:JlAi)=ZI(A,-)— Y I(4;NA4)).

ieV (i,j)eE

Proor. This is identical to the above proof of (2.2) with the observation
that |V,| — |E,| = 1 when G, = (V,, E,) is a tree. O

The reader should now be aware that the counting operation in |V,| —
|E,| = 1 is the key. The quantity |V,| — |E,| is the Euler characteristic of the
tree, which is always unity.

We now generalize to simplicial complexes.

DEFINITION 2.3. An abstract simplicial complex % is defined as a collec-
tion of subsets F of a finite set {0, 1, ..., n} with the property that if F € %,
then every subset of F is in .%. The subsets F are called faces of the
simplicial complex.

The one-element faces of an abstract simplicial complex % are called
vertices of ¥ or zero-dimensional faces, the two-element faces are called
edges or one-dimensional faces and the three-element faces are called triangles
or two-dimensional faces. More generally, the k-element faces are called
(k — 1)-dimensional simplices. We denote the set of g-dimensional faces of %
by %;. The maximum dimension of a face in % is called the dimension of %
The Euler characteristic of a d-dimensional simplicial complex % is then
defined as

d
x(¥)=%X (-1)x |,
qg=0
where |%,| denotes the order (cardinality) of J%,. For a simplicial complex %
with vertlces 1,...,n and a subset of its vertlces J, there is a subsimplicial
complex #(J) deﬁned as the collection of faces of ¥ all of whose vertices are
elements of oJ.
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DEFINITION 2.4. A collection of sets {A;}"_; together with a d-dimensional
simplicial complex % with vertices 1,...,n is called an abstract tube of
dimension d if the subsimplicial complex ¥(J) has Euler charagt?ristic unity
whenever J C {1, ..., n} is a nonempty index set such that A(J)= N, ,4; N
N;e A5+ 3.

As a consequence of the definition U }_; A, can be partitioned into nonempty
events each of which corresponds to a subsimplicial complex of % with Euler
characteristic 1. This generalizes the notion of an abstract simple tube. For the
latter, the associated tree is a one-dimensional simplicial complex, and the
simple tube property guarantees that whenever N;.;A; N N;. A} # D,
the (sub)simplicial complex #(J) is itself a tree, hence has Euler characteris-
tic unity. A large class of examples of more complicated abstract tubes are
provided in Sections 3 and 4.

A general result is the following. An even more general result is given in
Theorem 2.2.

THEOREM 2.1. Let the collection of sets {A;}_, and simplicial complex %
form an abstract tube of dimension d. Then the following inclusion-exclusion
identity of depth d + 1 holds:

(24) I(UA) - fo(—l)’ £ 1(na)

r= FeX, ‘ieF

Conversely, if (2.4) holds for some simplicial complex %, then the collection of
sets together with % forms an abstract tube.

Proor. The basic idea is to show that a point in A(J) is counted exactly
once in the expression on the right-hand side for each nonempty index set o/,
and use the fact that the sets A(J) for J nonempty partition the union of the
A,. Since ¥ ; ,,I(A(J)) = 1 we can multiply the right-hand side of (2.4) by
I(A(J)) and sum over J # & to express it as

d

Y L0 T 1 nAnaw)

J#=D r=0 FeX, ‘ieF
Note that

I(A(J)), if{i,,...,i,} cd,
I(A; n---NA, NA(J)) = "
(4s, tr () {0, otherwise,

so that using the discrete tube property the above becomes

d ‘
X X (-)x(D)I(AW))

J+D r=0

- £ AWK - T IAW) =I( U A)

J+D i=1
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For the converse, if A(J) # &, then for x € A(J) if we evaluate (2.4) at x
we obtain 1 = x(¥(J)). O

By changing the condition in Definition 2.4 to x(.#(J)) = 1, or x(#(J)) <
1, we obtain respectively upper and lower bounds for I (U4, ) since the next
to last equality in the proof of the theorem becomes > or < respectively.
This result explains several improvements in, or versions of, the Bonferroni
inequality. The theorem of Worsley (1982) is precisely the special case of a tree
and takes the form

P(UA)< T Pa)- T P(4na),
i iev @(i,j)€E
when G = (V, E) is a spanning tree for the index set {i}. Let ¥ be such a tree.
Then we can partition U} ;A; into events C, which correspond to a con-
nected subtree or the union of connected subtrees. For each such C,, x(C,) > 1.
In fact, x(C,) is the number of disconnected trees. The inequality in the
right-hand side of (2.2) is a special case.

Consider the left-hand side of (2.2). We let J# be the simplicial complex
comprising {i}, i=1,...,n, {i,j}, i=1,...,n, j=i+1,...,n, and {i -
1,i,j}, i=2,...,n, j=i+1,...,n. A little investigation shows that the
disjoint events C, into which U} ,A; can be partitioned all have y < 1. For
example let n = 5 and suppose A;, A; and A, occur but not A, and A;. Then
the corresponding (sub)simplicial complex of % is given by

{1,3,4,{1,3},{1,4},{3,4}},

and this has y = 0 < 1.

The more general results of Tomescu (1984) fall into this category but we do
not develop this connection here. The principle, though, is clear. Lay down a
complex % such that the subcomplexes ‘“‘triggered” by the A; (i.e., the i for
which X; = 1) have y all <1, =1lor > 1.

Observe that in the proof of Theorem 2.1 even if we cannot make any
assumptions about the Euler characteristic of #(J), we obtain an identity.
This identity is used in Section 4 to prove Theorem 4.1. For future reference
we record this result as the following theorem.

THEOREM 2.2. Let {A;}'_, be a collection of sets and let % be a d-dimen-
sional simplicial complex with vertices 1,...,n. Then

>:( y' L (naj- % X(Jf(J))I(

FeX, ‘ieF g+Jc{l,..., n}

NA N nAf).

ied i¢gd

3. Unions of balls of equal radius. The main result of this section is
that any collection of balls of arbitrary radius in d-dimensional Euclidean
space forms an abstract tube of dimension d, so there is a depth d +1
inclusion—exclusion identity for the indicator function of their union. Section 4
describes analogues of these results for the sphere.
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In Section 2, we used abstract simplicial complexes because we only needed
to represent combinatorial information. In this section, it becomes important
to view a simplicial complex as a topological space and exploit its topological
properties. ’

Let {x,}"_, be a finite set of points on <. It is assumed that the points are
in general position in the sense that no subcollection of d + 1 points lie in a
(d — 1)-dimensional affine subspace and no x € #? is equidistant from more
than d + 1 of the points x,. This is equivalent to saying that

(3.1) det(xi,o .. xid #0
for all distinct j,,..., j; and
1 e 1
(3.2) det| o T Faa |40
(E75 R P
for all distinct jg,..., jz.1. Since the set of ordered sequences {x;}"_, which

fail to be in general position has Lebesgue measure 0 in %#?", a given set of
points can always be moved to general position by an arbltrarlly small pertur-
bation, if necessary. This observation is used to prove the analogue to Theo-
rem 3.1 for the case when the general position assumption is violated (see
Remarks 3.4 and 3.5).

Associated with the given points is the familiar Voronoi subdivision of %
into regions consisting of points closest in Euclidean distance to each point x;
(see Figure 2). Formally, for each pair of the given points, define the half-space

S(x;,x;) = {x € #4: d(x,x,) < d(x,%))},

where d( , ) denotes Euclidean distance, and define the ith Voronoi region
V= {x € @4 d(x,x) = _inf d(x,xj)} - N S(x,1;).
Jj=1,...,n j=1

The collection {V;: i = 1,...,n} forms a covering of #¢ by nonempty closed
convex polyhedra whose interiors V.° are nonempty and fail to intersect. Since
the points x; are in general position, any collection of more than d + 1 of the
sets V, has empty intersection.

Any finite covering {X;, i = 1,...,n} of a topological space X may be used
to define a simplicial complex which is referred to by combinatorial topologists
as the nerve of the covering. This is the simplicial complex having a single
vertex {i} corresponding to each X;, and a face {j;,...,j,}] whenever
N{_,X;, # &. Let .# denote the nerve of the covering {V.}_,. This simplicial
eomplex is also referred to as the Delauney complex. Because of the general
position assumption, this simplicial complex has dimension at most d. We use
notation analogous to that in Section 2. In particular, .#; denotes the set of
g-dimensional faces of /.
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Let B,(x,r) denote the open ball in ¢ centered at x and having radius
r > 0. The main result of this section is the following theorem.

THEOREM 3.1. The collection of balls {B,(x;, r)}'., together with the sim-
plicial complex A4 forms an abstract tube of dimension d, and the following
identity holds:

(33) I(_Qle(xi,r)) Z( D" T 1( N Butir)

FeJ, ‘ieF

for any r > 0.

Note that the sets in the formula are intersections of at most d + 1 balls
while the traditional inclusion-exclusion formula would require up to n-fold
intersections. Note also that as r increases the B,(x;, r) become larger so that
the faces F for which N ;. zBy(x;,r) # & become more numerous and the
tube depth becomes greater. The basic nerve .#, however, remains fixed.

Before giving the proof we need the following definition.

DEFINITION 3.1. A subset V ¢ 29 is said to be star-shaped with respect to
a point x € #¢ if V contains the line segment xy connecting x and y for each
yeV.

REMARK 3.1. The following statements are easily verified. Any convex set is
star-shaped with respect to each of its points; however, a set can be star-shaped
with respect to one of its points without being convex. The intersection or
union of a collection star-shaped sets with respect to the same point is
star-shaped with respect to that point.

The basic result upon which the proof of Theorem 3.1 rests is the following
lemma. Even though we do not make use of it, we include the converse because
it is of interest in its own right since it characterizes the Voronoi decomposi-
tion.

LemMa 8.1. Ifx € #? and r > 0, then U{V:: d(x, x;) < r} is either empty
or star-shaped with respect to x. Conversely, if closed sets W, ¢ #? with W.°
nonintersecting have the property that for every x € #¢ and r > 0 the set
U{W,: d(x, x;) < r} is empty or star-shaped with respect to x, then W, =V, for
i=1,...,n

Proor. To prove the first statement, without loss of generality label the x;
so that d(x,x,) < -+ <d(x,x,)and let m = m(x) be the largest index such
that d(x, x,,) < r. Note that the half-space

S(xhxk) = {x € gd: d(x’xi) = d(x’xk)}
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for i < k contains x so it is star-shaped with respect to x. Now,

U Wid(x.x) <r}= UV,
i=1

[l

L]
m

U {ye‘%d:d(y’xi) Sd(y’xk)’k = 1"-',n}

i=1

{ye #:d(y,x) <d(y, %), k=m+1,...,n}

[
Cs

i=1

= G F\ S(x;,%1),

i=1k=m+1

which contains x. The result follows from Remark 3.1.

For the second statement, suppose x € V2. If r = d(x, x,) + &,
then {i: d(x,x;) <r} ={m} for sufficiently small values of &> 0 so
U{W;: d(x,x;) <r} =W, is star-shaped with respect to x. It follows that
x € W, so we have shown V,? c W,,. Since W, is closed V,, ¢ W,,. On the
other hand, to show W, cV, it suffices to show W?cV,, so suppose
x € W2 — V. Let ¢ > 0 be small enough so that By(x, ) ¢ W,. Since the V;
cover #°, we have x € V, c W, for some i. It follows that there exists
y € By(x,¢) N W,° and so y € W;° n W,2, which is impossible. O

The following proof of Theorem 3.1 is due to one of the referees, Our
original proof is sketched below because we feel that while the first proof is
considerably more concise, to us it is somewhat less intuitive than our proof,
which uses a standard result and some basic machinery from algebraic topol-
ogy.

We will need the following facts which are due to Hadwiger (1955) and
which may be found in Sections 1 and 2 of McMullen and Schneider (1983).
Let #¢ denote the set of compact convex polytopes in %%, and let U(£)
denote the set of all finite unions of sets in %%, There exists a unique function
which assigns an integer (called the Euler characteristic) to each element of
U(#?) and having the following properties:

2l
X(P)“{l’ & + P e 9,

(3.4) 0. P=-g,

and
(85) x(PUQ) +x(PNQ) =x(P)+x(Q) forall P,Q e U(F).
By induction, the inclusion-exclusion principle
X( U Pf) =X X x(P,n-0PR)
i=1 =1 B€ o <dy,

follows from (3.4) and (3.5).
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LeEmMA 3.2. If P € U(P?) is star-shaped with respect to some point, then
x(P) = 1. -

PrROOF. Assume P € U(F?)is star-shaped with respect to the point x and
let P= U, P, where P, € 97, Let P, denote the convex hull of P, and x.
Then P= U™ ,P, and

x(P) =

Proor oF THEOREM 3.1. We proceed to verify the abstract tube property
(see Definition 2.4). Let @ # J c({1,...,n} and suppose N;c ;B (x;,r) N
N;esBy(x;,r)° # @. We must show x(A(J)) = 1.

Fix x € N;c yBy(x;,7) N N ;e By(x;, 7). Let C be any polytope in ¢
containing x and all of the vertices of the Voronoi decomposition {V;, i
1,...,n} in its interior, and put V’l =V,nC, sothat V, € P9, We have J =
{i: d(x,x;) <r). Since J # &, @ = U, .V, is star-shaped by Lemma 3.1, so
that (@) = 1, by Lemma 3.2. Using the inclusion-exclusion principle,

24

x@=X (-0 T x0T

i< <y

(where of course, the summands with ¥ > d + 1 are 0). Now )((V1 NnN--N
V,)=1lifandonlyif V; N --- NV, # O, since each vertex of V; is a vertex

of V., and this holds if and only if {iy,...,,} belongs to .#(J). Hence

||
1=x(Q) = L (=)" 1A oD)] =x(H()- o

Our original proof proceeds along the following lines. We must show
x(A(J)) = 1, where oJ is defined in the proof above. Observe that .#(J) is
the nerve of the cover {V,, i € J} of the space U ;. ,V;. Now each subcollection
of sets in the cover either has an empty intersection or forms a convex set and
is therefore contractible. A cover with this property is referred to as good. A
basic result from algebraic topology [see Segal (1968)] states that the nerve of a
good open cover has the same homotopy type as the space covered. There is a
technical problem with applying this result in that the V; are not open.
Nevertheless, it is possible to thicken the sets V; a bit to make them open and
retain the goodness of the cover as well as the star-shapedness of the unions in
Lemma 3.1. Consequently, the nerve .#(J) has the same homotopy type as a
star-shaped set. Since the Euler characteristic 1s a homotopy invariant,
x(A(J) = 1.
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ReMARK 3.2. The identity of Theorem 3.1 is the same for all tube radii r
and can be integrated with respect to an arbitrary measure. The most impor-
tant case to consider for applications is Lebesgue measure u,; which leads to a
statement about volumes.

By Theorem 3.1 the volume of a discrete tube can be expressed as a linear
combination of volumes of sets of the form A;(r) = N;c,B,(x;,r), where
lJ| < d + 1. Whenever the set A j(r) is nonempty, it is convex. For fixed J
there is a simple algorithm for finding a point ¢; which is common to all of the
nonempty A j(r), whose description is as follows. For every nonempty
I c J there is a unique d; lying in the affine hull of {x;, i € I}, such that
llx; — d;ll = r;, for all i €I and for some r; > 0, which can be found by
linear algebra. Let % denote the collection of index sets I cJ for which
sup; ¢ sllx; — d;ll < r;. This set is nonempty because J € &#. Then ¢, =d,,
where I gives a minimum value for r; among I € #.

For a given v € S?~1, the unit sphere in %#?, let y,(v) denote the Euclidean
distance from c; to the boundary of the set to be measured, that is,

m
vs(v) = sup{s >0;c,+sve ) Bd(le_,r)}.
i=1
Then a simple argument leads to the following expression, which we have
found useful for simulations:

pal 0 BuCxi )] = Vil 3a(0) dva (o),

where v,_; denotes the uniform measure in S?~!, and V, denotes the volume
of the unit ball in #¢, so that V, =1, V, = 2and V,,, = [27/(d + 2)]V,.

ReEMARK 3.3. Under the general position assumption, distinct indices
Jo»-+-»Jq define a d-dimensional simplex in .#” if and only if the unique
sphere passing through x;,..., x;, fails to contain any of the remaining x,’s
in the ball it bounds. This sphere is easily seen to be the set of points x for
which

1 1 1
det| ¥o T T T o

2 2 2

(E7N R E 70 £

It is easy to verify that the algebraic version of the simplex condition states
that

1 PPN 1
56 det xj02 xjdz xizdet(xi o xid)>0
. 0

(7% R F 7 E A

forall i & {j,,...,Jq}

We finish this section with remarks which strengthen the conclusion of
Theorem 3.1.
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ReEMARK 3.4. Even if the general position assumption for the centers of the
balls is violated, the proof of Theorem 3.1 shows that collection of balls
together with the nerve of the Voronoi cover still forms an abstract tube,
except that in this case the dimension of this nerve can be greater than d. In
Remark 3.5 we show there is a way to reduce this dimension to at most d.
Nevertheless, even if the dimension exceeds d for the nerve of the Voronoi
cover, we obtain an identity

n
N [VEYO) E M Ce [ EIEA)
i=1 GoseonrdmdEN

where the terms on the right-hand side can involve intersections of more than
d + 1 balls. For example, consider the extreme case when the x; are all
equidistant from the origin, so that all of the Voronoi sets contain the origin.
Then the nerve of the Voronoi cover consists of every subset of indices so the
identity reduces to the familiar inclusion-exclusion formula.

REMARK 3.5. When the dimension of .# is greater than d, we can find
modify .# to define a d-dimensional simplicial complex .#” which gives a
depth d + 1 identity for the indicator function of the union of balls which
holds except possibly on the union of the boundaries of the balls. In particular,
the identity is valid almost everywhere with respect to Lebesgue measure. The
arg'ument proceeds as follows. We can assume n > d + 2 since otherwise the
problem is trivial. Suppose the identity (3.7) has depth m, where m >d + 1.
This means that (3.1) or (3.2) fails to hold for some indices. For given indices
Jos---»Jq the set of distinct points for which (3.1) fails forms the solution set
to a polynomial equation in #"¢, and similarly, so is the set of distinct points
for which (3.2) fails for given j,, ..., j;.1- The set M of points which are not
in general position is a union of finitely many such sets, so there exists a
smooth curve ¢: [0, 1] » #£"¢ such that:

@) ¢(0) = (xy,...,x,),
(i) @) = (¢(@8)y,...,¢(1),) & M for all ¢ > 0.

As ¢ varies throughout (0,1], by (i), none of the determinants in (3.6)
vanishes; consequently, they undergo no sign changes. It follows from Remark
3.4 that the nerve .#"’ of the Voronoi cover corresponding to the points {¢(2);,
i = 1,...,n) remains unchanged, and since the points are in general position
the dimension of this nerve is at most d. By Theorem 3.1 the identity (3.3)
holds with .# replaced by .#”, and x; replaced by ¢(2),, for any ¢ > 0. Taking
the limit as ¢ — 0 gives the identity

(VEXORIES £ L I

Fed}

N Bu(is7)),

ieF

which holds except possibly for pomts in U, dBy(x;,r).

REMARK 3.6. If the subspace L spanned by xi,...,x, has dimension d’,
then d in Theorem 3.1 may be replaced by d’ while the balls B,(x;, r) remain



62 D. Q. NAIMAN AND H. P. WYNN

in %9, This can be established easily by conditioning on (intersecting with)
affine subspaces parallel to L. The intersection reduces to a problem with d
replaced by d’ and r by r’ < r.

ReEMARK 3.7. The collectiori of possibly unequal size balls {B,(x;, r,)}",
forms an abstract tube of dimension d. The proof, which is quite similar to the
proof of Theorem 3.1, uses the decomposition analogous to the Voronoi
decomposition of #¢ into regions

V¥*={yeR:d(y,x)/ri<d(y, %) /Ts, b = 1,...,n}.

4. The spherical case. Theorem 3.1 has an analogue for the spherical
case which is proven by similar techniques. Rather than give all of the details,
most of which are analogous to the Euclidean case, we mention some of the
key features which are different for the spherical case.

For points u,v € /¢, the unit sphere in Z?*!, let p(u, v) = cos ™ u, v)
denote the angular distance between u and v and define the spherical disk

Dy(u,r) ={veA%p(u,v) <r}.

As in the Euclidean case we fix points {u;}.; € % in general position,
meaning that no subset of d + 1 of the points lies in a d-dimensional
subspace, and no point in /¢ is equidistant from more than d + 1 of the
points. This amounts to the statement that none of the determinants

1 coe 1
det(x;, -+ %), det(xj0 e xjd+1)
vanishes for distinct indices j,..., j;,1- The corresponding Voronoi regions

V. c /¢ are defined as before and are easily seen to be spherical convex
polyhedra in the sense they are intersections of finite collections of half-spheres
(instead of half-spaces). The nerve of this covering of the sphere will be
denoted by 7"

The analogue of Theorem 3.1 is the following theorem.

THEOREM 4.1. We have

I( thDd(ui,r)) ¥ (—1)"1(

i=1

l

- Dd(ui,r))

(4.1) J -t

- ¥ (-1* T 1( N D)
qg=0

FeJ, ‘ieF
for 0 <r<mw/2.

CoroLrarY 4.1. If N} ,Dfu;, r) =&, then the collection of sets
{Dy(u;, r)} together with # forms an abstract tube of dimension d and

n d
1 O0uwan) = £ (-7 £ 1( () uwr)

q= Fed, ‘ieF

for 0 <r<ar.
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In many applications of interest in multiple comparisons, the assumption in
Corollary 4.1 will be satisfied because the points u; are paired with their
antipodes. Note that when N} ;D (u;, r) # & there is an extra n-fold inter-
section term which can be quite difficult to evaluate. In these situations sonie
other methods will be needed to bodnd this term.

In order to prove Theorem 4.1 it is necessary to introduce terminology
analogous to that used in the Euclidean case. In particular, it becomes
necessary to clarify what we mean by a star-shaped subset of the sphere.
Recall in the sphere given any two points which are not antipodes there is a
unique geodesic arc which connects them. If the points are antipodes there
are infinitely many geodesic arcs connecting them. We are thus led to intro-
duce the following definition.

DEFINITION 4.1. A set VC /% is said to be star:shaped with respect to
u €V if for every y € V, V contains every geodesic arc connecting u to y.

Under this definition, spherical convex sets (intersections of half-spheres)
are star-shaped so we have the following analogue to Lemma 3.1 which is
proved in the same manner.

LemMa 4.1. Ifu € % and 0 <r < m, then U{V:: p(u,u;) < r} is either
empty or star-shaped with respect to u.

The proof of Theorem 4.1 proceeds along the same lines as the proof of
Theorem 3.1. Let 2, denote the set of spherical convex polyhedra in ¢ and
let U(2,) denote the set of finite unions of sets in 2. The spherical analogue
of the Euler characteristic used in Section 3 is the following. There is a unique
integer-valued function y on U(Z2,) which assigns the value 0 to the empty
set, 1 to every nonempty element of 2, and satisfies the additivity property
(3.5).

A critical difference between the Euclidean case and the spherical case is
that a subset of % can be star-shaped without having Euler characteristic 1.
In fact, the sphere itself is star-shaped, but its Euler characteristic is easily
seen to be 1 + (—1)?. Fortunately, this is the only pathological case, and we
have the following analogue to Lemma 3.2.

LemMma 4.2. If Q € U(2),) is star-shaped, then
’ ifQ + A7,

@ =\ (cnt, irq=ot

Proor. If @ is star-shaped with respect to x and @ # ¢, then —x & Q.
The same technique used in the proof of Lemma 8.2 shows that x(@) = 1. On
the other hand, by choosing a particular covering of ¢ with spherical
convex polyhedra it follows from the additivity property that y(-#%¢) =1 +
(-4 o
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Proor oF THEOREM 4.1. If J is a proper nonempty subset of {1,...,n},
then, as in the proof of Theorem 3.1, by Lemmas 4.1 and 4.2 and the
inclusion—exclusion property

1 =x(:leJJV2~) = X(H(T)).

On the other hand, if J ={1,..., n} we obtain
L+ (1% = x(?) =X( U Vi) =x(A(J)).
i=1

It follows that the right-hand side of the identity given in Theorem 2.2
coincides with the left-hand side of the identity in the statement of the
theorem. O .

Finally, we summarize the changes to Remarks 3.2-3.7 that lead to corre-
sponding results in the spherical case.

The uniform probability measure of each set N;. ;D (u;,r) can be evalu-
ated as follows, whenever |J| < d + 1. There exists a point c; € /¢ which
lies in every nonempty intersection N, ;D (u;, r) (as r varies). It is easily
checked that this point is the unit vector in the direction of the point x that
minimizes ||x|| subject to the condition (u,,x) > 1, for all i € J, and this can
be found by a simple algorithm. Define /¢~ !(c;) = {v € #%: (v,c;) = 0},
which forms a d — 1-dimensional subsphere of ¢, and for given v €
%" !c,;) let p,(v) denote the angular distance from c, to the boundary of
N ;e D4(u;, r) along a great circle in the direction v. Then

Vd( N Dy(u;, "))
ied
(4.2)
= fp(U)sind‘l(t) dtdvd_l(v)/g(d/2,1/2),
S d_l(CJ) 0
where v;_; denotes the uniform probability measure on #?~!(c,).
The condition for when indices j,,..., j, define a simplex of .# has the
same geometric description as in the Euclidean case, while the algebraic
condition becomes

1 e 1 1
det(xj0 e xi)det(xjo %) >0

for all i # j,,..., jg.

When the general position assumption is violated, the identity (4.1) remains
valid except that the sum on the right-hand side is up to the dimension of .#.
It is always possible to find a simplicial complex .#’ whose dimension is at
most d, which, when substituted for .# in (4.1) gives an identity which holds
everywhere except possibly at points on the boundary of the sets D (u,, r). If
the points u; lie on a subspace of dimension d’, there is an identity (4.1) for
which the simplicial complex on the right-hand side has dimension at most d’'.
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As in the Euclidean case, there is an analogous result in which the disks can
have unequal radii.

5. Applications to multiple comparisons. We restrict attention to
multiple comparisons. In Section 51 we give a straightforward account of the
use of Theorem 4.1 to arbitrary multiple-comparisons problems. In Section 5.2
we briefly describe the full computer implementation and in Section 5.3 we
show its versatility and efficiency for some standard and nonstandard prob-
lems.

5.1. Geometry of simultaneous confidence intervals. The basic setting we
focus on is the following familiar one. Let B be a random p-vector having a
standard multivariate normal distribution: B ~ NP(Q,AIP), and let s% be an
independent Xg /q random variable. Typically, B = (8 — B)/co, where B de-
notes the unknown parameter vector in a regression model whose design has
been orthogonalized, B denotes its least squares estimator and s% = §2/02
Let x!B,i=1,...,m, be m linear combinations of B. The statements whose
probabilities we are interested in evaluating represent failure of coverage for
certain Scheffé-type [see Scheffé (1953, 1959)] simultaneous confidence inter-

vals, and take the form
(5.1) xfB > cllx,lls forsomei=1,...,m.

Write a; = x,/||lx;|l, U = B/||B]| so that the a, are fixed unit p-vectors and U
has a uniform distribution in .#?~!. Statement (5.1) can be written as

(5.2) a'U > cs/||B|l forsomei=1,...,m,
or
(5.3) Ue UD,_(a;,w),

i=1

where w = cos (c/R) and R ~ \/pr’q independent of U. [Here we define
cos X(x) =0 for x > 1.]

Conditioning on R (and hence w), we can compute the probability of (5.3)
using the results of Section 4. The union U.,D,_ia;,®) has a depth p
identity so long as N/2;D,_,(a;, w) is empty. For two-sided confidence proce-
dures we obtain each vector —x; among the vectors x;, so that each —a;
appears among the a;. Thus N2, D,_\(a;, w) = & since the angular radius o
does not exceed /2 (since ¢/R > 0). The full probability of (5.1) is

|

REMARK 5.1. It is of interest to note that when we substitute the basic
identity into (5.4), use the linearity of the conditional expectation and then
take expectations over R, we express the error probability in the original
multiple-comparisons problem as a linear combination of error probabilities

(5.4) ER[P(UG GDP_I(a,-,w))
i=1
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for a collection of smaller problems in each of which the number of points a, is
at most the dimension of the parameter space.

5.2. Implementation. The multiple-comparisons application has been fully
implemented as a computer program written in C. The program is described
briefly as follows.

(i) Input. The program accepts the matrix of unit vectors A =
[a%,...,a" ] (see Section 5.1) together with the two dimension parameters p
(parameters) and q (residuals). There are options to make the rows of A into
unit vectors if they are not upon input and to symmetrize by expanding A to
include all —a* for each a; appearing in A without its antipode.

(ii) Rank reduction. In many examples, A is not full rank so that the
input dimension p can be reduced to some p’ < p. This is carried out using a
singular value decomposition. This automatic dimension reduction is useful in
complex problems.

(iii) Perturbation. It is necessary to place the points in general position
before carrying out the Voronoi reduction. This is effected by adding small
independent uniform random deviates in (-4, §) to each entry of the matrix
A, where 6 is an additional input. There is also an option to select the
direction of the perturbation. Then the rows of A are renormalized and the
result is used to carry out the Voronoi reduction. The original matrix is used
for the final probability calculations.

(iv) Voronoi reduction. First the simplex condition of Section 4 is checked
for every subset of size p’ of the a;. The theory says that every face of the
Delauney simplicial complex (the nerve of the Voronoi covering) corresponding
to the a, (in the sphere /7' ~!) is a subface of one of these minimal simplices,
so after listing these simplices, a test is carried out for each subset of size 1
through p’' — 1 of the rows of A to discover if it is to be included in the full
Delauney complex.

(v) Centers. For each face of each dimension in the Delauney complex
(with corresponding index set J), the point c; (see Section 4 and Remark 3.2)
is determined using the unperturbed points a ;.

(vi) Integration in the sphere. The conditional probability in (5.4) is ex-
panded as a sum of terms of the form

R),

with each term corresponding to a face of the simplicial complex found in (iv).
Each is evaluated using simulation and the expression (4.2) as a spherical
integral. Each integral is evaluated using a sample of random directions. These
directions are obtained from a sample of unit vectors in #? ~!. This sample
can be used to construct a sample of unit vectors in each subsphere #? ~(c )
by removing each projection of each vector onto the ray through c;. This
allows for the possibility of using the same sample of unit vectors for all of the

m
tP|U e .nle'-—l(ail’w)
j=
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spherical integrals, which leads to more computational efficiency. At the same
time, this leads to greater storage requirements. The values of R used are
generated separately [see (vii)].

(vii) Integration in the angle. The expectation Eg(-) step is performed by
using the following idea. The event'(5.2) can be written as

¢/R<1 and cos '(a'U)<cos ' (¢c/R) =w, i=1,...,m,

where R = ||Bll/s = /pF, ,. The full probability then becomes

(5.5) plue G Dp_l(a,-,w)ch)P(ch).

The last probability is evaluated using a fast routlne for the F, , tails and
pseudorandom angles » are generated according to the condltlonal distribu-
tion of cos"X(c/R) given R > c are generated by rejection. The angles are used
in the sphere integration in (vi).

(viii) Consolidation, output. A typical goal is to find the critical constant c
so that the coverage probability (5.4) takes some prescribed value. Several
programming decisions described above were made with this goal in mind. For
example, since the result of Steps (iv) and (v) is the same for all values of c,
those steps are carried out before values of ¢ are specified. The sample of
random directions in (vi) can be used for every value of ¢ in some specified
range. However, for generating the random angles in (vii), the sampled distri-
bution depends on c, so the following method is utilized to save computation
time. The program accepts as input a minimum c,;, and maximum value c,,,
of ¢ and the number of (evenly spaced) intermediate values to use. Once a
sample of values of R (with R > c,;,) is used to generate random angles for
€ = Crmins for each new value of ¢ > c,;,, the subsample of values for which
R > ¢ is used to give a corresponding sample, and the second probability in
(5.5) is determined easily. The program outputs a probability estimate along
with the resulting sample size for the random angles. As long as the resulting
sample size remains positive, the simulated probability constitutes an unbiased
estimator. Once a value of ¢ has been found, the user has the option of
obtaining a more accurate estimate of the associated coverage probability by
repeated simulation with larger sample sizes.

The results of the simulations can be compared with the naive simulation
which merely uses the original statements (5.1) and normal and X? variates.
Although full evaluation must await further research, preliminary analyses of
speed and accuracy indicate (i) very close agreement with naive simulation
verifying the general efficacy of the method, (ii) for roughly the same computa-
tion time, a considerable increase in accuracy over naive simulation in the tails
(large c¢) and (iii) a rich understanding of the contributions of disk intersec-
tions of particular depths.
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5.3. Examples. For each example a little work is needed to prepare the
matrix A for input, and for many standard examples, the program carries out
this step automatically. The authors are in a position to compute the critical
value ¢ for any size a, for multiple-comparisons procedures of reasonable
dimension (less than 10), using the technology described in this paper. Rather
than present tables for particular problems, we outline a handful of examples
to merely indicate the versatility.

ExamMpPLE 1 (Tukey-Kramer Studentized range). For the one-way layout
with p cells and n; observations in the ith cell, a problem which has received
considerable attentlon in the literature is that of bounding all pairwise differ-
ences between cell means 6;, based on independent estimates 6, ~ N(6,,0%/n;)
and 2 ~ o2y2. In this context, the program finds critical values for the
quantity

A

J

1 )
_.+_
n

so that B =(/n (8, —0),..., ‘/77,: (6, — 8,)) and the linear combinations
are of the form (0,...,0,1/ yn;,0,...,0, -1/ \/n_j,O,...,O). The dimension
p is reduced to p — 1 in the rank reduction [Step (ii)]. Typically, ¢ = X ;n; — p
(residual degrees of freedom) but the program allows this value to be arbitrary.
As in Dunnett (1980), we take a? = 1/n; and we allow a; to be arbitrary.

For unbalanced designs, using ¢ = ¢{*)/ V2 V2, where q¢ o , denotes the critical
point from the Studentized range distribution, was conjectured by Tukey
(1953) to give rise to a conservative procedure and this conjecture was finally
resolved by Hayter (1984). Dunnett (1980) carried out an extensive simulation
study to determine the degree of conservatism of the procedure, using an
approach close to what we have called naive simulation.

We present as a preliminary example one of the cases from Dunnett (1980).
Take p = 4 and (a;,a, a5,a,) = (1,1,1,1), (10,1,1,1) and g = 5. The simu-
lation values are presented in Table 2. We have taken a critical value c as close
as possible to achieving @ = 0.05 and then determined the approximate rejec-

TABLE 2
Studentized range critical values

(ay,az,ag,ay) Voronoi Naive Dunnett
(1,1,1,1) 0.049144 0.048150 0.0513
(10,1,1,1) 0.042332 0.042050 0.0431

Difference 0.006812 0.006100 0.0082
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tion probability a by simulation. Following Dunnett, the critical constants are
compared for the balanced and the unbalanced procedures. The sample sizes
are taken to be 10,000 (each for angles and directions) for the Voronoi
procedure and 100,000 for the naive simulation. (Dunnett quotes a sample size
of 10,000.) Our simulation study indicates (i) close agreement between simu-
lated a values using the Voronoi and naive simulation methods and (i)
consistency with Dunnett’s figures, which corroborated Tukey’s conjecture.

Note that positive differences between a values is indicative of the conser-
vatism of the Studentized range procedure in the unbalanced case. Also, since
Dunnett uses a different value for ¢, only the difference in « values should be
comparable.

The two methods can be compared in terms of computing speed, accuracy
and memory utilization. The memory utilization requirements tend to be far
more substantial for the Voronoi method than for the naive method because (i)
simplices and their corresponding center points need to be stored and (ii) we
stored the samples of unit vectors and angular radii for re-use. For the
calculations below we used a Sun Sparcstation 1, with the storage capacity
which allowed for double precision arrays of size one million.

To investigate speed and accuracy, we picked a few examples and chose the
following simulation experiment. For each value of the critical constant c, the
naive simulation method is carried out with a sample size of 10,000 for nine
independent trials. The average and the interquartile range of the nine
estimates (d,) are determined, as well as the average computing time per
trial. Then a single test trial is carried out using the Voronoi method with a
sample size of 1000. This is used to determine the approximate sample size for
which the Voronoi method achieves the same computing time per trial as the
naive method. Then nine independent probability estimates (&) are obtained
using the Voronoi method. The average and interquartile ranges are deter-
mined for the Voronoi method and the naive method, as well as the average
computing time per trial. In all cases the actual computing times (based on the
scaled sample sizes) were close enough as to be taken as identical.

It is important to emphasize that the Voronoi reduction step is not taken
into account when comparing computing times. Arguably, our comparison is
biased in favor of the Voronoi method when one is interested in finding the
coverage probability for a single value of c. However, we are interested in
determining coverage probabilities for a whole range of possible values of the
constant ¢, so that we can choose ¢ to obtain a prescribed level for the
procedure. Since the Voronoi step need only be carried out once for several
values of ¢, asymptotically, as the number of values of ¢ goes to «, the time
spent on this step becomes negligible compared to the time spent on the
simulation.

The results are summarized in Figure 5. We considered three different
ANOVA models with (3, 4, 5), (3,4, 5,6) and (3, 4, 5, 6, 7) observations per cell.
For each model considered, the error degrees of freedom is the total number of
observations minus the number of cells. The graph gives the log of the ratio of
interquartile ranges (LRIQR) for the Voronoi method estimates and the naive
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Fic. 5. Relative variability of probability estimates: confidence intervals for pairwise differences
of cell means (one-way ANOVA).

estimates, for a range of values of c, versus the average of the estimates of the
error probabilities ay.

Note that in each case, as the error probability decreases (as ¢ increases) the
Voronoi estimate shows less and less variability relative to the naive estimate,
and for sufficiently small values of « the variability of the Voronoi estimates is
below that of the naive estimates, represented by the fact that the graph of the
LRIQR curve falls below the horizontal line where the LRIQR equals 0. We see
that for values of « less than about 0.1 or 0.01, the Voronoi estimates improve
upon the naive estimates. For small values of a this improvement can be quite
substantial. For a = 10725 = 0.0032 the Voronoi method gives estimates with
1/10 of the interquartile range of that of the naive method. The most
dramatic improvement occurs for small numbers of cells. This is typical
behavior for other examples we have been able to study.

. ExampLE 2 (Simple slippage). For the same models as in Example 1,
instead of finding confidence intervals for all pairwise differences we may wish
to decide if one of the cell means differs significantly from the others, the
so-called slippage problem. For this purpose, one may construct confidence



INCLUSION-EXCLUSION IDENTITIES 71

TABLE 3
Estimated error probabilities for the simple slippage procedure
with three cells and ¢ = 2.75°

(Observation / cell) /m m=1] m=2 m=3 m=ow
333 (0.074150) (0.037157) (0.029026) (0.016428)
117 0.001423 0.000881 0.000756 0.000480
126 0.002292 0.001415 0.001186 0.000703
135 0.003277 0.002009 0.001655 0.000954
144 0.003619 0.002205 0.001819 0.001043
225 0.000538 0.000373 0.000309 0.000188
234 0.000428 0.000295 0.000240 0.000143

“Actual estimate for row other than the first is the corresponding term in the first row
minus the entry.

intervals for all differences

1
6~ — L 0

J*i

Thus quantiles are to be determined for

1 .
-6) - “—sz*i(”j - 6;)

(%
/1 1
7 n

p—
: r
T (p-1)* "',
We compare again the balanced case with the unbalanced case demonstrating
conservativeness, for some cases, of the procedure which uses the critical
points for the balanced cases, and we show how the Voronoi method leads to
more efficient estimates in the tails of the distribution.

First, we restrict attention to a model with p = 3 and p = 4 cells, and we
compare error probabilities for procedures with ¢ = 2.75 for varying numbers
of observations per cell. The results are summarized in Tables 3 and 4. The
leftmost columns in Tables 3 and 4 give the relative numbers of observations
in each cell, which are to be multiplied by m to give the actual number of
observations in each cell. In each case, to make the example as realistic as
possible, the number of degrees of freedom equals the total number of observa-
tions minus the number of cells. The first row of the tables give estimates of
error probabilities while the remaining rows are differences between estimated
error probabilities and the estimates for the balanced case (the first row). For
each entry the estimate is based on the Voronoi method with a sample size of
10,000. Note in each of the rows besides the first the difference is positive,
which is consistent with the conjecture that using tables for the balanced case
leads to a conservative procedure.

Again it is of interest to compare the Voronoi method with the naive
simulation method, in the manner as was carried out for the Tukey—Kramer
problem. Figure 6 gives a graph of the relative variability of the Voronoi

A

T = max -
13
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TABLE 4
Estimated error probabilities for the simple slippage procedure
with four cells and ¢ = 2.75%

FiG. 6. Relative variability of probability estimates: confidence intervals for all simple slippage

(Observation / cell) / m m=1 m=2 m=3 m=o
3333 (0.078658) (0.043742) (0.035163) (0.022593)
1119 0.000166 0.000281 0.000145 0.000151
1128 0.000733 0.000544 0.000375 0.000251
1137 0.001355 0.000825 0.000600 0.000356
1146 0.001736 0.000993 0.000729 0.000417
1155 0.001868 0.001049 0.000765 0.000438
1137 0.000791 0.000617 0.000442 0.000298
1236 0.001192 0.000798 0.000610 0.000398
1245 0.001418 0.000895 0.000692 0.000443
1335 0.001424 0.000988 0.000741 0.000492
1344 0.001551 0.001038 0.000786 0.000520
2226 0.000064 0.000146 0.000096 0.000076
2235 0.000141 0.000132 0.000126 0.000082
2244 0.000210 0.000137 0.000143 0.000091
2334 0.000089 0.000108 0.000078 0.000049

“Actual estimate for row other than the first is the corresponding term in the first row

minus the entry.

05 F *

I

-15

Obs/Cell = (3,4,5)
........... - Obs/Cell = (3,4,5,6)
r Obs/Cell = (3,4,5,6,7)
—25 ' ' ' -
0.0 1.0 2.0 3.0
-logyo(@,)

contrasts.

4.0



INCLUSION-EXCLUSION IDENTITIES 73

0.5

e of oqual
varkabitty

1 Obs/Cell
............. 3 Obs/Cell
5 Obs/Cell
@ Obs/Cell
-25 : ' : ' ' '
0.0 1.0 2.0 3.0 4.0

~logyo(8y)

Fic. 7. Relative variability of probability estimates: confidence intervals for all pairwise differ-
ences of cell means (2 X 2 table).

method estimates to that of the naive method estimates for three different
designs. Note the same qualitative features described for Figure 5 are present,
and the improvement of the Voronoi method is even more dramatic. Here we
see that for @ < 0.1 the Voronoi method is more efficient.

ExampLE 3 (Pairwise differences in two-way layouts). To obtain an exam-
ple with a little more structure, we consider the problem of bounding all
pairwise differences of cell means in a balanced additive (no interactions)
two-way layout with r rows and ¢ columns and m observations per cell. The
standardized cell estimates in standard notation are 6,; = Y, +Y g Y.,
where the Y;;, are independent N(0, o?2). Here we determine the quantiles of
the distribution of '

T—  max (0, - ;) = (b - ;)|
G, ) #(u,v) Gd;jy,

’

where d ;iup is the appropriate standardization constant.
We looked at (r, ¢) = (2, 2) (Figure 7) and (2, 3) (Figure 8) and m = 1,3, 5,
and compared the variability of estimates using naive simulations to the
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Voronoi method, as for the previous examples. For the 2 X 2 case (Figure 7),
and for all of the values of m we looked at, the Voronoi method is more
efficient than the naive method when a < 1073 = 0.05, and the graph is
remarkably similar to the one in Figure 5. The 2 X 3 case (Figure 8) seems to
require smaller values of a (= 0.003) before the Voronoi method improves
on the naive method, and the case of one observation per cell (two degrees of
freedom for the error) seems to require a less than about 0.001. Again, it is
possible to improve the accuracy by a factor of 10 in a practical range of «
values. Unfortunately, larger problems (e.g., the 2 X 4 case) are not feasible
for extensive study given our currently available computing resources, but we
expect the conclusions for these problems to be similar.
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