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EXACT CONFIDENCE SETS FOR VARIANCE COMPONENTS
IN UNBALANCED MIXED LINEAR MODELS

By ALaN P. FENECH AND DAvVID A. HARVILLE!

University of California, Davis, and Iowa State University

We present a general procedure for obtaining an exact confidence set
for the variance components in a mixed linear model. The procedure can be
viewed as a generalization of the ANOVA method used with balanced
models. Our procedure uses, as pivotal quantities, quadratic forms that are
distributed independently as chi-squared variables. These quadratic forms
are constructed with reference to spaces that are orthogonal with respect to
the covariance matrix of the observation vector, which is a function of the
variance components. For balanced models, these pivotal quantities sim-
plify to multiples of the sums of squares used in the ANOVA method. An
exact confidence set for the vector of ratios of the effect variances to the
error variance is also presented, based on the same collection of quadratic
forms.

Computing formulas for calculating approximations to these confidence
sets are presented, and the results of their application to several two-way
data sets are given.

1. Introduction. Suppose y is an n X 1 observable vector that follows
the general mixed linear model

(1.1) y=XoBo+XiB1t+ - +XpBr + Brsrs

where X; is an n X m; known matrix (i = 0,..., k), B, is an m X 1 vector of
unknown parameters and for i = 1,...,k + 1, B, is an m; X 1 unobservable
random vector whose distribution is N(0, 0;2I) where o> is unknown. Here
the random vectors S, . .., 8., are jointly independent and 0> > 0,1 < i < &,
2., > 0. Define o =(02,0%,...,02, 02, ), vi=02/02,, i=1,...,k+1,
and y = (yy, ¥gs- -+ Ya> Ya+1)' here v,y = L.

In this article we develop exact 100(1 — a)% confidence sets for the vector o
of variance components and the vector y of variance ratios. Such sets can be of
direct interest; they can also be used to define generally conservative simulta-
neous confidence intervals for functions of o, or of y [Khuri (1981)].

Let x2(r) represent a central chi-squared random variable with r degrees of
freedom. A confidence set for y or o is easy to construct if there exist £ + 1
known quadratic forms in y,yA,y, 1 <i < k + 1, such that:

() y'Ayy,...,y'A, . 1y, are jointly independent;
(i) y'A,y/A,0 ~ x(r;) for a known positive integer r; and a known linear
form Ao = L% {A; 07
(iii) the %2 + 1 vectors A; are linearly independent.
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Assuming the existence of such quadratic forms and taking a; and
b, to be constants chosen to satisfy Pla; < x*(r;)) <b;}) =1 —«;, where

k*I(1 —a;) =1 - a, a 100(1 — @)% confidence set for o is the set S(y: o)
that consists of all possible o values that simultaneously satisfy the inequali-
ties

(1.2) a, <yAy/No<b, 1<i<k+1

Further, suppose that A,,, =(0,0,0,...,0,1), so that A}, ,0 = 02, ,. Then
an exact 100(1 — a)% confidence set S(y: ) for y can be obtained as follows.
Observing that the random vector F = (F, F,, ..., F,)’, where

o YAy/rn 1
ytAk+1y/"k+1 AtiY

follows a known multivariate F distribution, and choosing the constants c;
and d; to satisfy Plc, < F,<d;, 1 <i <k} =1-a, S(y: y) is the set of all
possible y vectors that simultaneously satisfy the inequalities

YAy /T 1
¢; < — — <
YAy 1Y/Thi1 Ay

The sets S(y: o) and S(y: v) are computationally easy to work with, as each is
(with probability 1) a closed bounded polyhedron. See Khuri (1981) for a
detailed discussion of confidence sets like these.

For balanced classificatory models, quadratic forms y‘A;y satisfying (i), (i)
and (iii) exist. They are the ordinary effect and residual sums of squares in the
usual ANOVA table. These quadratic forms correspond to an orthogonal
decomposition of C(X,)*, so their ranks necessarily sum to n — rank(X,).
Other cases where such a collection of quadratic forms exist have been found;
see Graybill and Hultquist (1961), Broemeling (1969) and Broemeling and Bee
(1976). Brown (1984) gave general conditions for determining the existence of
quadratic forms y‘A;y satisfying (i), (i) and (iii).

Unfortunately, for many models of the form (1.1), quadratic forms y‘A;y
satisfying (i) through (iii) may, if they exist at all, be hard to find or may be
such that they correspond to an orthogonal decomposition of a proper sub-
space of C(X,)*. In the following sections, we present a general procedure for
forming an exact 100(1 — a)% confidence set for o, or for vy, for a model of the
form (1.1). It is based on (%2 + 1) statistically independent quadratic forms in y
that are central chi-squared in distribution. These quadratic forms are used as
pivotal statistics; they differ from those just considered because they are
allowed to depend on o or on y. By construction these quadratic forms
correspond to an orthogonal decomposition of C(X,)*, with respect to the
inner product defined by ~%X;X/o? + Io?,,. Previously, Pincus (1977) and
Tjur (1984) considered quadratic forms associated with various other orthogo-
nal decompositions of C(X,)*. Our proposed confidence sets for o and for y
are defined by sets of inequalities like (1.2) and (1.3). We give lemmas that
indicate how to calculate these confidence sets and present the results of their

i

(1.3) l1<i<k.

i
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application to two-way additive models. For balanced models, these sets are
identical to those presented as S(y: o) and S(y: y) earlier.

In principle the likelihood ratio can be used to generate a confidence set for
a, or for y. Taking T to be a matrix whose rows are a basis for C(X,)*, the
likelihood function associated with Ty depends only on o. An approximate
confidence set for o could be obtained from the likelihood ratio associated with
Ty by assuming that this statistic follows its limiting chi-squared distribution.
However, the quality of the approximation is generally unknown and the
calculation of the confidence set is a substantial numerical problem. Another
large-sample approach assumes that the restricted maximum likelihood esti-
mator of o or of y (the estimator obtained by maximizing the likelihood
function associated with Ty) follows a limiting multivariate normal distribu-
tion. The quality of this approximation is also generally unknown.

Finally, Hartley and Rao (1967), Section 9, define an exact 100(1 — @)%
confidence set for y. If 2 = 1, this set, our proposed set, and Wald’s confidence
set [as generalized by Seely and El-Bassiouni (1983)] are essentially the same.
If £ > 2, Hartley and Rao’s set and our set are both obtained from the same
set of pivotal statistics, but use these statistics in very different ways, as we
discuss subsequently.

2. The proposed confidence sets.
2.1. For o.

Notation. Let Q ={0:02>0for 1 <i <k and o?,, > 0}. The family of
models (1.1) can be expressed as y ~ N(X,B,, L*X, X/a? + Io2,,) or y ~
N(X,By,07,V), where V=1L*X X!y, +1 For 0<i<k, define X*=
(XoXy,...,X;) and let X, , =1 For 1<i<k+1, let r,=rank(X}) —
rank(X}* ;). We proceed to develop a confidence set for o.

An orthogonal decomposition of C(X,)*. For 0 <i <k, let U* be the
orthogonal complement of the column space of X with respect to the
ordinary Euclidean inner product. Let U, ; = U and for 1 <i < k let U, be
the orthogonal complement of U* within U*; with respect to the inner
product defined by V: U; = {x: x € U* | and x'Vy = 0V y € U}*}. The dimen-
sion of U; equals the difference in the dimensions of U* ; and U;*, which is r;.

Write

(2.1) C(Xy)*'=UeUye--0U,0U,,,.

Our development is only applicable if the dimension of each U, exceeds 0, and
we subsequently assume this to be the case; that is, we assume r; > 1 for
1 <i <k + 1. By construction the spaces U, are pairwise orthogonal with
respect to x‘Vy. Except for U, ;, the spaces U; can be regarded as depending
formally on o. (In fact, U, is invariant to the choice of ¢; and if the TX,; X/T'*
commute in pairs, where the rows of T are an orthonormal basis of U, all
the U, are invariant to the choice of ¢.)
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The quadratic forms. For 1 <i <k + 1, let H; be a matrix whose rows
are a basis for U;. Define for 1 <i <k + 1,
_ -1
F(y,0) = [H(0)y)'[Hi(o)o, VH(o)'| [Hi(o)y].

In this definition, we write H (o) for H; to emphasize the dependence of H;
on o2,,V and hence on o. From a geometric point of view, F(y, o) is the
squared length of the projection of (¢2,,V)_'y onto U; with respect to
the inner product x‘(o2,,V)y so the function F.(y, o) does not depend on the
choice of H;. These quadratic forms will be the pivotal statistics used to define
our confidence set for o

We use the following result in establishing our confidence set for o.

TuEOREM 2.1. For the true value of o,
(i) the k + 1 random variables F(y, o) are jointly independent and
(i) F(y,a) ~ x4r).
Proor. Consider the spaces U, defined using x‘Vy. Recalling that the r;
rows of H; are a basis for U,
H;y ~ N(HiXoBo, ‘Tkz+ 1HiVHit)
~ N(O, 0',22+1HlVHlt)

(since the rows of H; are in U}* ;, which is contained in Ug*). By construction,
the U, for 1 <i <k + 1 are pairwise orthogonal with respect to V. So the
vectors H,;y for 1 <i < k + 1 are jointly independent. Now

F}(y, o) = [Hiy]t[a'kzuHiVHit] _I[Hiy]
is clearly central chi-squared in distribution with degrees of freedom r;; and
the F/(y, o) are jointly independent. O

Before defining our confidence set for o, note that ¥, (y, o) is a familiar
quantity. First, recalling that the rows of H, ,, are a basis for U, ,,

. -1
F, (y,0) = [Hk+1y]t[0'k2+1Hk+1VHI£+1] [Hk+1y]

-1
= [Hk+ 1y]t[Hk+1Hl€+1] [Hk+1y]/0'k2+1a

since H,,_,X; = 0 for all {. This function is just the ordinary residual sum of

squares obtained from the model (1.1) divided by o7, ;. Letting

-1
Fo(y) = [Hk+1y]t[Hk+1H1§+1] [Hk+ly]a
F,.(y,0) = F,, (y)/02, ,, the usual pivotal for obtaining an interval for o7, ;.
The confidence set S(y: o). Supposing that the constants a; and b; are
chosen so that [T#*!P{a; < x%(r;) < b;} = 1 — q, the set
(2.2) S(y:0) ={o:a, < F(y,0) <bforl<i<k+1}

is an exact 100(1 — @)% confidence set for o.
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2.2. For y. Regarding the elements of H; as functions of y rather than o,
define for 1 <i <k + 1, F(y,y) =[H,y/{HVH}]"'[H,y]. These quadratic
forms will be used to define the pivotal statistics for our confidence set for 7y.
[Note that F(y,o) = F(y,y)/o2,, for all i, so that F, (y,y)=F, (y),
identified earlier as the ordinary residual sum of squares for model (1.1).]

The confidence set S(y: y). Consider for 1 < i < k the functions G(y,y) =
(.5, v)/7)/(Fy . 9)/Ty11). Since F(y, @) = F\y,y)/o?., for all i, Theorem
2.1 implies that for the true value of vy, the distribution of the random vector
(G{(5,7),Go(y,7),...,G(y,7)) is that of a multivariate F' random vector
(F,F,, ..., F,)" with numerator degrees of freedom r, r,,...,r, and denomi-
nator degrees of freedom r,, ;. Supposing the constants ¢; and d; are chosen
sothat P{c; < F, <d, for1 <i <k} =1 — a, the set

(2.3) S(y:y) ={y:ic;<G(y,y) <d;forl<i<k}
is an exact 100(1 — a)% confidence set for .

2.3. Connections with the ANOVA method. For 1 <i <k, let W, be the
orthogonal complement of U* with respect to U*; using the ordinary
Euclidean inner product, and let W, ., = U}*. Let T, be a matrix whose rows
are an orthonormal basis for W,. Define T = (TY{,...,T{, ), so that the rows
of T are an orthonormal basis for Ug'.

Following Brown (1984), we define an ANOVA(c) to be a partition of the
quadratic form (Ty)Ty into y'A,y + -+ +y‘A,y, where y'Ay,...,y'A,y are s
known quadratic forms in y such that:

) y'Ayy,...,y"A,y are jointly independent;

(ii) y'A,y/A.0 ~ x*(f;) for a known positive integer f; and a known linear
form Ao = L%*]A; 0f; and

(iii) the s vectors A,,..., A, are distinct (beyond a known multiplier).

Brown showed that an ANOVA(o) exists if and only if the k& matrices
TX,;X!T! commute in pairs, in which case the s quadratic forms y‘Ay,
1 < i < s, are unique up to order.

It can be shown by construction that, if an ANOVA(o) exists, then

F(y,0) = ¥ yA;y/Aj0
JEI,

for some partition of the integers 1,...,s into k2 + 1 sets I,..., I, ;. If, in
addition, s = £ + 1, then the s quadratic forms y‘A;y, 1 <i < s, are, aside
from order, the £ + 1 sums of squares (T,y)'T;y, 1 <i <k + 1. Thus, if an
ANOVA(o) exists and if s = k£ + 1, then the proposed confidence sets S(y: o)
and S(y: y) are the same as those produced by the ANOVA method. -

3. Calculating S(y: o) and S(y: y). In this section we present results
which facilitate the calculation of S(y: o) and S(y: y). These results exploit
the fact that the functions F.(y, o) and F(y,y) depend respectively for y fixed
only on o7, j > i,and v;, j = i.
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Preliminary observations. Recall that U, ,, = U)* and that for 1 <i <&,
U; is the complement of U* within U;*; with respect to the inner product
associated with V. Define V, = I andfor 1 <i <k — 1,

k

Jj=i+1

LEMMA 3.1.

(1) For 1 <i <k, U, is the complement of U* within U* | with respect to
the inner product defined by V.
(ii) For 1 <i <k, F(y,y) depends on vy only through values of
Yoo Ye-1r-- -2 Ve )
(iii) For 1<i <k + 1, F(y,o) depends on o only through vaiues of
2 2 2
O 15 Ohy ey T
Proor. For y € U¥*, x'Vy = x'V,y, so that (i) is true.
Recall that F.(y,y) = [H;yY[H,VH}!]"{H,y], where the rows of H, are a
basis for U,. Since the rows of H; are in U* |, HVH! = H(X, X}y, + V)H!.
Therefore,

(3.1) F(y,v) = [Hy)[H(X: X!y + V)H!] '[Hy).

For i = k, U, and V, are invariant to y; for i < &, U; and V, depend on y only
through v;,4,...,v. So (i) is true.
Suppose 1 < i < k. Then

F'z(y: 0) = 'Ft(y: 7)/alicz+1
= [Hiy]t[Hi(Xin'taiz + ‘Tkz+1Vi)Hit] _I[Hiy]~

For i = k, U; and V; are invariant to o; for 1 <i < k, U, and o¢,,V; depend on
o only through o2 ,,...,02,02,,. And F,, (y,0) =F,, (y)/0Z,,. So (iii) is
true. O

(3.2)

_In light of Lemma 3.1, we subsequently write F(y,v,,...,¥;) and
F(y,02.1,...,0? for F(y,y) and F.y, o), respectively.

Alternative descriptions of S(y: y) and S(y: o). Results (3.1) and (3.2)
lead to a sequential approach to calculating S(y: o) and S(y: y). Con-
sider for example S(y: y). Letting 62, = F,,((y)/r},,, define S(y: y) =
{y: ¢;r;62.1 < F(y,vp,...,v) <d;r;62, ). Then S(y: y) = N*S,(y: y).

Note that, according to (3.1),

(A3'3) Fi(y,v) = (Hky)t{Hkaxlingyk + HkHli}_l(Hky)a

where H, is any matrix whose rows are a basis for U,. Recall that U, is
independent of vy, so y, appears in (3.3) only as a coefficient of the symmetric
positive definite matrix H, X, X} H}. Choosing H, to satisfy H, H} = I, there
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exists an orthogonal r, X r, matrix O, and a diagonal positive definite matrix
D, such that

(3.4) Fy(5,7) = (0. Hyy){Dyyi + 1} (0, Hyy).
It follows that the values of y, represented in the set

S(y:v) = {73 k021 < Fu(3,7) < dk"ka'kzﬂ}
form an interval. As discussed by Harville and Fenech (1985), the end points of

this interval can be computed efficiently by making use of representation (3.4).
Note also that

Fyp (¥ Yk Ye-1)
-1
= (Hk—ly)t{Hk—IXk—Ith—IHI:—I'Yk—l + Hk—IVk,—lHl:—l} (Hy_1y)-

Here the rows of H,_, are any basis for U, _,, which depends at most on y,,
while V, _, depends only on y,. And so y,_, enters (3.5) only as a coefficient of
the symmetric positive definite matrix H, ,X,_,X}_;H}_,. Choosing H, _,
to satisfy H,_,V,_,H}_, = I, there exists an orthogonal r,_, X r,_; matrix
O, _, and a diagonal positive definite matrix D,_, such that

(3.5)

(3-6) Fk—l(y17k77k—1) = (Ok—1Hk—1y)t{Dk—1‘Yk—1 + I}_l(ok—lHk—ly)‘

For vy, fixed, y,_, enters (3.6) only as a coefficient of D, _,. And so the values
of the vector (y,, y,_,) represented in the set S,(y: y) N S,_{(y: y) are those
obtained by associating with each vy, represented in S,(y: y), the interval of
v,_, values defined by

. ¢ ~1
Cho1Th-10%41 < (Oh_1Hy_19){Dy_1v4—1 + I} (Op_,H,_,y)
< dy 116841

By continuing in this way, this nested description can be extended to any of
the sets

Sp(y:y) NS,_(y:y) N - N8Si(y:v), l1<i<k,

including in the case i = 1, S(y: y). These descriptions lead in a natural way
to an algorithm—to be described at the end of this section—for calculating
these sets. /

A similar computationally useful description of the set S(y: o) is as
follows. Letting S,(y: o) = {0: a; < F(y,0?,,,02,...,69) <b}, S(y: o) =
N **1S.(y: o). Note that the values of o2, ; represented in the set

F,
Spi1(y:0) =010, < k—+;(z‘)‘ = bk+1}
Or+1
consist of the interval F,  (y)/b,.; <021 < F, . (y)/a,1. Now S,(y: o) =
{o: a, < F(y,0?,, 02 <b,} or equivalently S,(y: o) ={0: a,02,, <
F,(y,7,) <b,o?,,). And so the values of (d7,,,07) represented in the set
S,.1(y: @) N S,(y: o) are those obtained by associating with each o2,
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represented in Sk +1(9: ), the interval of values of o2 defined by a,0?,; <
F.(y,7v,) < b,a?, .. Further,

Sp_1(y:0) = {0'3 ap_1 = Fk—l(yya'kz+la 0’1?,%2—1) =< bk—l]

= {0'3 Ay 1081 < Fy 1(3, 70 vho1) < bk—10'1e2+1}~

And so the values of (¢ ,, 0, 02, ) represented in S,_(y: ¢) N S,(y: ) N
S, +1(y: o) are those obtained by associating with each (02, , o?) represented
in S,,(y: 0) N S,(y: o), the interval of ¢2_, values defined by

2 2
Cr 101 < Fp (¥, Ve Vio1) <bp_107, 1.

All sets of the form N *:1S (y: o) admit such a nested description, including as
the special case i = 1, S(y o).

Two results on calculations. To exploit the descriptions of the sets S(y: o)
and S(y: y) given in the preceding subsection, we require a representation of
the function F(y,y,,¥s_1,.-.,7;) that makes simple the calculation of the
interval of vy; values satisfying I < Fi(y, v, v4_1,---»¥) < for y,v4, ..., ¥is1
fixed. The following theorem provides the requisite representation.

THEOREM 3.1. For 1 <i <k, let P[X} |]=X} (X} V7IXF )XV,
and define T; = X!V, '[I — P[X} |lland C, = T, X

() The matrix C; is symmetric nonnegative definite of rank r;.
(i) Taking O, to be an m; X r; matrix and D; an r; X r, dtagonal matrix
such that C; = O D,0}, where O‘O =1,

B F(y:7ksVe-1o---»%) = (Di_l/zofTiy)t{Di'Yi + I}_I(Di_l/zoitTiy)-

ComMENTS. C, and T, are independent of vy, and, for 1 <i <k, C; and T,
depend on y only through y;,,,...,7,. So vy, enters expression (3.7) for
F(y, Yk» Ye—15 - - - » ¥;) only as a coefficient of the matrix D;. The matrix P[ X} |]
is the projection matrix for C(X}* ;) with respect to the inner product x‘V,y;
see Lemma Al.

Proor. It follows from C; = X/(I — P[X} DV, (I — P[X} DX, that C,
is symmetric nonnegative deﬁmte of rank r;. Now,

TVT! = T{X,Xty, + V})T! = T, X, X!Tty, + TV,T} = C2y, + C,.

So (D7 Y?O{XT,VTXO0,D;*/?) = Dy, + I, implying that the rows of the r, x
n matrix D'/ 2O‘T are hnearly independent. Further, a direct appllcatlon of
Lemma A 2 1nd1cates that the rows of T; span U,, and hence that the rows of
D;'720!T; are in U,. Thus, the rows of D;'20!T, are a basis for U,. We
conclude that

F(YsYesYe-10-->%) = (Di_l/zoitTiy)t{DiYi + I}_I(Di_l/zoitTiy)' ]
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In using expression (3.7) to evaluate F;(y, ¥4, Ya—1,---»¥) for y, v, ..o, %41
fixed), we form the vector T,y and the matrix C; from the expressions given in
the following theorem.

THEOREM 3.2. For fixed i, 1 <i <k, let (H,a) be any solution to the
system

(3.8) (X*‘IV_lX,* 1)(H a) = (X,*‘lV X,, X,?"_‘M_ly).

Then C, = X!V, 'X, — X!V, )X} \H and T;y = X}V ly - XVIIXF a
Proor. That a solution to system (3.8) exists follows from well-known

results on generalized least squares equations. Suppose that (H,a) is any

solution to this system. Then X}V, NX; - X}* H) =0, which since X; =

X* H + (X; — X ;H) implies that X" H=P[X} ]X;. By Lemma ‘Al

then X* H=X* (X¥VIX* )X *th_ 1X.. Substituting this expression
for Xi"‘_lH into X VX, - X V 1IX* H, we obtain

X!V, 'X, - X[V, 'P[X},]X, = C,.
A similar argument shows that T,y = X/V; 'y — X}V X} ja. O

To evaluate C, and T,y (for y, vy, ..., ;. fixed) from the expressions given
in Theorem 3.2, we first evaluate the matrix

XHVoXy, XHVUX, XHEV Ty
X/VoXx X/V7X; XVily

The following theorem gives a formula that can be used to evaluate
XV Y X}¥, y) recursively.

XV X y) =

THEOREM 3.3. For1<j<k -1,
XXV (X, y)
(3.9) =XViA(X]y)
Y XA K (T + 7 XV XK ) XL VEA(ES ).
Proor. Identity (3.9) is an immediate consequence of the identity
Vit=Vi4 - 7j+1Vj_+11Xj+1(I + Y1 j+1VJ+1XJ+1) 1Xf+1Vj_+11

[Henderson and Searle (1981)]. O

Since V, = I, formula (3.9) reduces, in the special case j =k — 1, to

XE Vil Xi_vy)

-1
HAXE L y) — e XEL X+ v XE X)) X(Xi_y)-
By using formula (3.10), X!V, 1(X¥_,, y) can be determined from the array

(3.10)
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X¥(X},y). More generally, by repeatedly using formula (3.9) (with j =
kE—1,...,i), XV -UX, y) can be computed recursively (in %2 — i steps)
from X}Y(X},y).

Algorithms. The proposed algorithms operate on the elements of the array
X¥(X}¥,y) and produce the set S(y: y) in % steps and the set S(y: o) in
k + 1 steps.

The first step of the algorithm for producing S(y: v) consists of (i) comput-
ing C, and T,y from the formulas of Theorem 3.2, (ii) using the iterative
algorithm of Harville and Fenech (1985), in conjunction with representation
(3.4) for F,(y,v,), to compute the lower and upper end points, say /, and u,,
of the interval of y,-values that satisfy the inequality c,r,62,; < F.(y,v,) <
d,r,62,,, and (iii) imposing a grid of equally spaced values of y,, say v,(1) <

-+ < y,(s,), on the interval [{,, u,].

The second step of the algorithm consists, for the ith of the y,-values
YD), ..., v4(sy), of () computing X} V, 1(X¥ |, y) from formula (3.10) and
then computing C,_, and T, _,y from the formulas of Theorem 3.2, (ii) using
Harville and Fenech’s iterative algorithm, in conjunction with representation
(3.6) for F,_{(y, ¥4, vr_1), to compute the end points, say {,_,(i) and u,_ ),
of the interval of y,_,-values that satisfy the inequality

Cho1T-100+1 < Fo (3, 72(0)s Yao1) < dpoimi— 16,
and (iii) imposing a grid of equally spaced values of y, _;, say y,_,(i,1) < --- <
Yi—1li, 85 _(D)], on the interval [I, _ (i), u,_(],i=1,...,s,.

Continuing in this way, we obtain after & — 1 steps, a grid of (& — 1)-
dimensional points [y,(ig,...,0,), ¥5(is, ..., 24), ..., ¥,(ip)], where 1<i, <
Sollgy.vyip) 1 <ig<s3(iy,...,04),...,1 <1, <s,, that covers the set of
(ygy - - -, v3)-values represented in the set N £S,(y: y). The kth and final step of
the algorithm consists, for the point with index i,,...,i,, of (i) computing
X'V Y X}, y) recursively from formula (8.9) and then computing C; and T,y
from the formulas of Theorem 3.2 and (i) using Harville and Fenech’s
iterative algorithm, in conjunction with representation (3.7), to compute the
end points of the interval of y,-values that satisfy the inequality

11671 < Fu(y, ve(80)s Yoo 1(Bem1sn) - ¥o(B2y - 82) 5 ¥1) < dyri6Ey g,
i2 = 1,...,32(i3,...,ik),i3= 1,...,83(i4,...,ik),...,ik = 1,...,Sk.

An algorithm for producing S(y: o) can be obtained by modifying the
algorithm for producing S(y: y). The output of these algorithms can be used
to display graphically S(y: o) or S(y: y), as illustrated in Section 4, or
projections of S(y: o) or S(y: v).

4. An example. In this section we illustrate the nature of the set S(y: y)
by applying our algorithm to the subfamily of mixed models consisting of
two-way additive random effects models:

(4.1) Yijp =M ta;+B;+ e,



CONFIDENCE SETS FOR VARIANCE COMPONENTS 1781

TaBLE 1
Cell sample size

Data set 11
2 3 1 4 1 3 1 1 3
3 2 1 4 2 1 3 1 4
1 1 1 3 3 4 4 3 4
2 1 4 4 4 3 4
1 1 1 2 3 4 4 4 4
1 4 3 4 4 4 4
2 3 4 1 2 1 3 4 1 2
1 1 2 1 1 1 1
2 3 1 1 2 1 1
Data set I1I
3 2
1 4
3 3
2 4
1 4
3 3
4 2
1 1
1 2 3 1

where u is an unknown constant, the «;, B; and e; it are jointly 1ndependent
normal va.rlables with zero means and Var(a )=0f >0, var(B;) = o2 >0,
Var(e”k) 02>0.Herel<i<Il,1<j<Jandl<k <m”,1fm” 0, cell
(ij) in the two-way table is empty. Let n = XX m,;. Assume that the design is
connected. Writing (4.1) in the form (1.1) with the random effects ordered as in
4.1), dim(U)) =1 — 1, dim(U,) =J — 1 and dim(Uy) =n — I —J + 1. This
subfamily (4.1) covers a wide range of mixed models, from balanced models
which have no empty cells to sparse models with few occupied cells.

For model (4.1), consider the vector y = ('yl, vy),, where vy, = 0?/0%. We
computed S(y: y) without complication for various simulated data sets. We
present graphs of the results for three such data sets.

The first data set, called data set I, was generated by a simulation program
from model (4.1) taking y, =5, y,=2, =9, J=12 and m;; =4. By
deleting cases from this data set, two other data sets were obtamed (data sets
II and III). The cell sizes for data sets II and III are given in Table 1 (where a
blank is to be interpreted as an empty cell).

Figure 1 displays the confidence set S(y: y) for data sets I, IT a.nd III; each
set has a confidence level of 81%. The horizontal boundaries of all three
confidence sets are straight lines, as follows from the definition of S(y: y).

If—as in the case of data set I—the data are balanced (i.e., m;; = m), then
the confidence set S(y: y) is the same as that produced by the ANOVA



1782 A. P. FENECH AND D. A. HARVILLE

Yo =(5.2)

FiG. 1.

method. The sum of squares in the ANOVA are SS, =XILX (3, —7 )%
SS, = XY (y,;—-75.)? and SS; = XXX (y,;, — ¥;.— ¥;+¥.)% For balanced
data, those sums of squares are statistically independent, with SS,/(Jmo?2 +
o2) ~x¥I1-1), 8S,/(Imo}+02)~xJ—1) and SS;/0%~ x*n—1I-
J + 1), in which case

MS, /M.
(42) S(yiy) = {7; ¢ < M5,/MSs MS,/ M55 _ 2},

< Cy <
Jmy, +1 VT2 Imy, + 1

where MS, =S8S,/(I -1), MS,=8S,/(J - 1) and MS;=SS;/(n -1 —
J+ 1.

For data sets II and III, the vertical boundaries of S(y: y) are not straight
lines. The curvature in the vertical boundaries of S(y: y) for data set II is so
slight as to be imperceptible in Figure 1. For mixed models of the form (4.1),
S(y: y) differs noticeably from a rectangle only in cases of extreme imbalance.

5. Some remarks.

1. Generally there is more than one way to express a particular mixed
model as a special case of the general mixed linear model (1.1). For example, in
the additive two-way crossed model (4.1), the elements of B; in (1.1) could be
the effects of the first factor or, alternatively, the effects of the second factor.
Except for those situations where the spaces U, associated with the identified
sets of random effects are unchanged by the different possible orderings of
these effects (e.g., balanced additive models), the sets S(y: o) and S(y: y) will
vary with the order in which the effects are assigned to B4, ..., B;.

2. Harville (1988) defined a function, say g(y), of y to be X*-invariant
[under model (1.1)] if g(y + X*b) = g(y) for every vector b (of appropriate
dimension) and every value of y. An X-invariant statistical procedure (a
statistical procedure that depends on y only through the values of X}-
invariant statistics) is such that its statistical properties do not depend.on B,
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oron o2,...,02 or yy,...,7. It is clear that, for any fixed value of o, F(y, o)
is X}* ;-invariant. Similarly, for any fixed value of y, F(y,o) is X} -in-
variant.

The set S(y: o) is one in a general class of exact 100(1 — a)% confidence
sets for o, which we now describe. Lettlng o, represent the true value of o,
define F*(y,0) =y'B(a)y, i=1,...,k + 1, to be quadratic forms (in y),
whose matrices Bl(a-) , B, +1(o) may vary with o and that have the
following three properties:

G) Fr(y,op),..., F¥ (y, 0,) are jointly independent
(i) F*(y, op) ~ 2(r*) for some positive integer r*, i =1,...,k + 1;
(iii) for any fixed value of o, F*(y, o) is X* j-invariant, i =1,..., %k + 1.

Define S*(y: o) to be the set S*(y: 0) = {o: a; < F*(y,0) < b, for 1 <i <
k + 1}. Then clearly S*(y: o) is an exact 100(1 — a)% confidence set for o.

The proposed set S(y: o) can be derived by limiting attention to sets of the
general form S*(y: o) and by successively choosing B, . (c), B,(c),..., B{(o)
to maximize r;*, ,, ry, ..., r{, respectively [i.e., by choosing B, (o) to maxi-
mize ry,;, choosing B,(o0) to maximize ry given that B}, (o) has been
chosen to maximize r;*,; and in general choosing B (o) to maximize r}* given
that B,, (o), By(0),..., B;, (o) have been successively chosen to maximize
rE L, ..., rk¥, respectively]l. To see this, observe that, for any fixed value
of o, F*(y,0) is expressible as a quadratic form in HJ(o)y,..., H,,(o)y
[Harville (1988), Section 4].

3. Hartley and Rao (1967), Section 9, constructed a pivotal statistic G(y, y)
for exact inference on y. There is a simple relationship between G(y,y) and
our pivotals G,(y, v); specifically,

k

k
(5.1) G(y,v) = Z r;G(y,7v) Z r;.

1
For example, if the model is (4.1) and if m; j = m, then
+
Jmy, +1 Imy, + 1

where w, =(I - 1)/(I +dJ — 2), wy = (J - 1)/(I +dJ — 2) and Hartley and
Rao’s confidence set for vy is

Y Jmy, + 1 Imy, +1

G(y,7) =

)

(5.2) =43,

where the q; > 0 are selected percentiles from the appropriate F distribution.
The confidence set (5.2) is quite different from S(y: v), (4.2), which (in this
special case) is rectangular. In particular, |y| may be unbounded over (5.2), and
(5.2) may have infinite area.

4. Calculating the 100(1 — @)% confidence set S(y: y) requires the con-
stants ¢; and d; satisfying P{c, < F, <d, for1 <i <k} =1 — a; see (2.3). In
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the special case r; = - = r,, these constants can be obtained from published
tables [Johnson and Kotz (1972), Section 40.8]. More generally, they can be
determined iteratively by employing numerical integration or simulation.
Moreover, an approximate 100(1 — a)% confidence set for y can be obtained by
replacing ¢; and d; in (2.3) with e; and f;,, where Ple, <F, <f} =1 — a;)
with [T#(1 — @;) = 1 — a. In the special case where the e;’s are all assigned the
value 0, Kimball’s inequality [Miller (1981), page 101] implies that this region
is conservative, that is, its probability of coverage equals or exceeds (1 — a); in
the case of balanced classificatory models, this region simplifies to that pro-
posed by Broemeling (1969).

5. The proposed confidence sets for @ and y can be modified to obtain exact
confidence sets for 02,02 ,,...,07,, and for v,,y,,1,...,¥s, as is evident from
the discussion in Section 3.

6. By following the approach described, for example, by Spjotvoll (1972) and
Khuri (1981), the proposed confidence region for the variance components
oZ,...,02,, or variance ratios y,,..., ¥, can be transformed into a generally
conservative confidence region for a function of the variance components or
variance ratios or, more generally, for a family of such functions.

7. Note that, by using general relationships between confidence regions and
tests of hypothesis or significance, the proposed procedure for forming confi-
dence regions can be used to test, against appropriate alternatives, a null
hypothesis of the general form

L2 =2 2 _ =2 iy = -5
Hy:of =01,...,0441= 0441 O Hy:yy =%1,..,% = Vs

where the &2 and 7y, represent specified constants.

APPENDIX

For any matrix G, G~ denotes a matrix satisfying GGG = G. Let A be a
symmetric positive definite matrix, in which case (x,y) = x’Ay is an inner
product for the vector space R™.

LEmMA Al. Suppose X is an n X k matrix whose column space is V. Then
the projection matrix for V using x‘Ay is

P[V] =X(XAX) X'A.
Proor. Omitted.

Lemma A2. Suppose X, and X, are n X my and n X m, matrices, respec-
tively. Let C(X))* and C(X,X,)* denote the complements of C(X,) and
C(X,X,), respectively, within R™ with respect to the Euclidean inner product.
The row space of the matrix X{A™! — X{A7'X(XEAT'X) X A7 is the
complement of C(X,, X;)* within C(X,)* with respect to the inner product
x'Ay.

ProoF. Omitted.
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