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SPLINE FUNCTIONS AND STOCHASTIC FILTERING

By CHRISTINE THOMAS-AGNAN

Université Paul Sabatier (Toulouse ITI) and Université des Sciences
Sociales (Toulouse I)

Some relationships have been established between unbiased linear
predictors of processes, in signal and noise models, minimizing the predic-
tive mean square error and some smoothing spline functions. We construct
a new family of multidimensional splines adapted to the prediction of
locally homogeneous random fields, whose ‘“m-spectral measure” (to be
defined) is absolutely continuous with respect to Lebesgue measure and
satisfies some minor assumptions. By considering partial splines, one may
include an arbitrary drift in the signal. This type of correspondence under-
lines the potentialities of cross-fertilization between statistics and the
numerical techniques in approximation theory.

1. Introduction. A frequent problem in many sciences is to reconstruct a
function f: R? — R from possible noisy measurements y, of f(¢,) at a finite
number of given irregularly spaced data points ¢, i = 1,...,n, of R¢ d € N*.
The smoothing spline functions are among the purely numerical techniques
developed for this approximation problem. On the other hand, some prefer to
explain the data with a stochastic model by considering that the observations
y; constitute one realization of a stochastic process Y(¢), observed at discrete
points ¢;, blurred by an additive noise ¢;. By making additional assumptions on
this model and using a given prediction technique, one gets a predicted random
process Y(¢) which depends upon the random variables Y(t,); substituting the
data y; for Y(¢;) then gives the desired approximation of f. But it turns out
that some connections have been observed between these techniques in the
sense that they yield the same solution in certain conditions: see Dolph and
Woodbury (1952), Dubrule (1983), Heckman (1986), Kimeldorf and Wahba
(1970a, b), Kohn and Ansley (1983), Matheron (1981), Salkauskas (1982),
Thomas-Agnan (1987) and Watson (1983). This establishes a natural corre-
spondence between types of concrete splines and the prediction by cer-
tain techniques of some types of processes. In some of these studies, the
predicted random process is obtained by Bayes estimation, that is, Y(¢) =
E(Y®)Yy,...,Y,), where Y, is the random variable Y(¢,) + ¢;. In other works,
the predicted random process is obtained by the best linear unbiased estima-
tion method (BLUE hereafter). These two predictors coincide in the Gaussian
case, and we will mainly focus on the second point of view here.
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In Section 2, we construct a new family of concrete multidimensional
splines called a-splines. We use the Fourier transform, in suitable spaces, to
build a measure of smoothness for functions and we give explicit formulas for
their computation. In Section 3, we present the stochastic filtering technique
and recall some facts about locally homogeneous random fields. In Section 4,
we prove the correspondence between partial a-splines and the prediction of a
large class of processes connected to locally homogeneous random fields. We
discuss a few examples [details can be found in Thomas-Agnan (1989)]. Finally
the Appendix presents the technical proofs of some lemmas used in Section 2.

While this better understanding is already satisfactory from a theoretical
point of view, it could also lead to a cross-fertilization of these techniques [see
Kohn and Ansley (1987)].

2. Construction of a-splines.

2.1. Abstract partial splines. There are several types of multidimensional
spline functions. We will restrict attention here to those which can be obtained
as the solution of a quadratic optimization problem in a Hilbert space. More-
over, there are several types of partial splines. They are generally decomposed
additively into a parametric and a nonparametric component, these two func-
tions depending upon ¢ € R? through the whole or only part of the variables
(¢4,...,ty) [see Heckman (1986), Laurent (1980), Wahba (1986) and Shiau,
Wahba and Johnson (1986)]. We will use here the following definitions from
Laurent (1988).

The function f to be approximated will belong to the space & of functions
from R to R, equipped with the pointwise convergence topology. The spline
function we consider to approximate [ will be the solution of one of the
following quadratic optimization problems. Let H be a subspace of & equipped
with a structure of Hilbert space (on R or C), its scalar product being denoted
by (-, ). Let L,,..., L, be n linearly independent continuous functionals on
&, Y=1(y,...,5,) be a vector of R", A a positive real number and J be a
seminorm on H. Let w,,...,wg be K, K € N, given linearly independent
functions on R?. Then the interpolation problem is

" Min J(h),
hEH,OkER,k= 1,...,K,Li(h+ ZOkwk)=yi,i= 1,...,n.

The smoothing problem is

Min f (Li(h + L 64w,) -y,.)2 +AJd(h),

i=1

(2)
heH,0,€R, k=1,...,K.
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Under additional assumptions on o/, L,,..., L,,wy,...,wg, Laurent (1988)
proves the existence and uniqueness of the solution of these optimization
problems; the corresponding solutions will be called interpolating partial splines
for (1) and smoothing partial splines for (2) (‘‘inf-convolution’ splines in
France). Similar definitions without the parametric part ¥ 6,v, lead to ordi-
nary (nonpartial) splines. Usually, the seminorm J(-) is a smoothness crite-
rion and problem (2) expresses the balance between the smoothness of the
spline and its fit to the data.

The data y; in our problem being measurements of f(¢;), we assume
moreover that H is a reproducing kernel Hilbert space; we recall that it is a
Hilbert space of functions on R?¢ in which, for all ¢ of R?, there exists an
element R,(-) in H, called the representer of evaluation at ¢, such that for all
f in H, f(¢) =(R,("), f(-)) and that the kernel of H is the function R:
R? X R? — R defined by

(3) R(s,t) = (R, R,) = R(s) = B(?).

The concrete splines are obtained by choosing specific Hilbert spaces and
seminorms. In particular, we recall two important cases. The thin-plate splines
(or multidimensional D™-splines) are constructed in Beppo-Levi spaces with
the seminorms:

(4) Y (',’;)umh I1Z,,

1Bl=m

where for a multiindex 8 = (8,,..., B,) € N¢, we denote by |8| the sum ¥ g;,
by ('g) the multinomial coefficient m!/I1B,! and by D? the differential opera-

tor 8!8l /axP1 .. dxBe [see Meinguet (1979)]. If L is a linear differential opera-
tor, L-splines are constructed with the seminorms || Lk||7, [see Kimeldorf and
Wahba (1971)].

2.2. Criterion of smoothness. Some authors [see Duchon (1977) and
Klonias (1984)] have used the idea of building a smoothness measure for a
function in suitable spaces on the asymptotic behavior of its Fourier transform
(hereafter denoted by %). For periodic functions, Thomas-Agnan (1990b)
introduces seminorms which are weighted /,-norms of the sequence of Fourier
coefficients, leading to a generalization of periodic D™-splines. A similar
generalization of Duchon’s splines in dimension 1 is developed in Thomas-
Agnan (1990a), where the smoothness of a function f is measured by a
weighted L,-norm of Ff. Our goal here is to construct a multidimensional
version of these splines. This new family of concrete splines called «-splines
will include as particular cases: the thin-plate splines (or multidimensional
D™-gplines) and some L-splines.

The first challenge is to specify the Hilbert spaces adapted to work with this
type of seminorms. Even though we want to deal with functions of & which
are at least continuous, it appears more convenient for the construction of
these spaces to consider that they belong to the space .'(R?) of Schwartz
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tempered distributions (real-valued here) for which a theory of Fourier trans-
form is known [see Schwartz (1966)].

2.3. Construction of the spaces. We will say that an element A of .#'(R%)
is represented by an element [ of & (or alternatively that / is a representer of
h) whenever the map which associates to an element ¢ of .#(R?) (the space of
infinitely differentiable functions with fast decay at ) the real number
[e(®)I(¢) dt, defines an element of .#’"(R?) which coincides with &. We denote
by z* the complex conjugate of a complex number 2. Let m be an integer and
a be a function from R? to C verifying the following assumptions:

(A1) a(w) # O for all w € R%.

(A2) a(w) = a(—w)*.

(A3) |a| ™2 is locally integrable. :

(A4) There exists a ball B of R? centered at 0, such that @ — |a(w)] " 2||lw| 2™
belongs to L,(R? \ B).

Then let &,, be the space of real-valued elements h of .'(R?) such that,
for all B € N satisfying |8| = m, ¥ (DPh) is a locally integrable function and
aF(DPh) belongs to L,(R?).

LemMA 2.3.1. Under assumptions (Al) through (A4), any element of &,
is represented by a continuous function.

Proor. There exists an infinitely differentiable function ¢ vanishing in a
neighborhood of 0 and equal to 1 on R? \ B. By (A4), for & in &,,, and any S
such that |8| = m, we have £(w)o PF(DPh)Xw) € L,(R?). Using the following
property of Fourier transforms [see Schwartz (1966)]:

(5) F(DPR)(0) = (2mie)* Fh(w),
where w” denotes I1¢_ 0%, one gets that the map o — £(w)F h(w) € L(R?),

and therefore % (&7t l: ) is represented by a continuous function. On the other
hand, (1 — £&(w))& h(w)), being compactly supported, has a Fourier transform
represented by a continuous function. Hence, by reciprocity of % in .#'(R%),

h=F(¢Fh + A - Fh) is also represented by a continuous function. O

We will identify from now on any element of &,, with its continuous
representer. By a similar argument, one can establish a connection between
the growth rate of ||w|™™|a(w)| =1 at © and the number of square integrable
derivatives of elements of &,,,.

LEmMA 2.3.2. Under assumptions (Al) through (A4),

(6) J(h) = T (% )les Do),
Bl=m
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defines a seminorm in &,,, whose kernel is the space &, of polynomials on
R whose total degree is less than or equal to (m — 1).

Proor. It clearly follows from (A1) and the fact that an element of . "(R9)

satisfies DPh = 0 for all B such that |B| =m if and only if h € &, [see
Schwartz (1966)]. Note that the dimension of &, is M = (d e 1). 0

THEOREM 1. Under assumptions (Al) through (A4), &,,, is a reproducing
kernel Hilbert space.

For the proof of Theorem 1, we need the following definition [see Meinguet
(1979)]. .

DEFINITION. A set of M = (¢* 7~ 1) points of R%: x,,..., x,, such that for
all (yy,...,ys) in RM, there exists a P in &, such that P(x,) =1v;, i =
1,...,m, is called a &, unisolvent set.

To construct a scalar product in &,,, we will use a &, unisolvent set
Xq,- .., X (there always exists one). Its choice is arbitrary and the reproducing
kernel of &,,, is independent of this set, even though it occurs in the formula
giving the kernel.

Proor. The technical proofs of Lemmas 2.3.3 to 2.3.7 are to be found in
the Appendix. Using Lemma 2.3.2 and the above definition, it is clear that, if u
and v are elements of &,,,

M

(N @)= T u@)o) + L (7 )(@F (D), aF(DP0)),,

i=1 IBl=m

defines a scalar product in &, ,. Let &)1, be the set of elements of &),, such
that h(x;) =0 for all i = 1,..., M. Being the orthogonal of &, in &,,,, for
the above inner product, &}, is closed and it is clear that &, is the direct
sum of &, and &}, Hence, &}, is isomorphic to &,/%, which is
complete, being a Beppo-Levi space [see Deny and Lions (1954)]. Therefore,
&, is complete and it remains to establish explicit formulas for the represen-
ters of evaluation in each subspace (R? for &, and R} for &},). The
representer R, will then be the sum R? + R}. In the finite-dimensional
subspace ,,, by unisolvence of x,, ..., ), there exist M polynomials P; such
that P,(x;) = §;;, where §;; is Kronecker’s symbol, for all i and j = 1,..., M.
It follows that

ij

(8) R}(s) = g P(t)P(s) = RJ(t) = R%(s,?).
i=1
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Let us recall some classical facts [see, e.g., Schwartz (1966)]. Let A™ denote
the mth iterated Laplacian

m __ m 2B

am= v (o™
|1Bl=m

In .~ (R%), the solutions of

(9) A™u =0, ue ' (R?

are necessarily polynomials of total degree less than or equal to 2m. They are
called polyharmonic polynomials and in particular, elements of &,,, satisfy
(9). There exists in #"(R%) solutions E of

(10) A™E = §,

where 8 is Dirac’s distribution at 0. They are called fundamental solutions of
the iterated Laplacian and are equivalently solutions in #'(R%) of

(11) lol*"FE(w) =1 forall w e R?.

Any two solutions of (10) or (11) differ by a polyharmonic polynomial and a
particular solution of (10) is given by

(12) E (%) = ¥, alal*™ ¢ In(llxl}),

when 2m > d and d even, for some known proportionality constant v,, ;, and
by

(13) Ep(%) = o, alx]

otherwise, for some known proportionality constant u,, ;. From now on, let us
denote by E,, any solution of (12).

|2m—d
b

LEMMA 2.3.3. There exists in ”'(R?) solutions of

(14) lol*"FE(w) =|a(w)| ™,
and any two solutions of (14) differ by a polyharmonic polynomial solution
of (9).

We denote by E,,, any solution of (14). Let us define a function 6, on R? by

M
(15) 0,(w) = exp(2mi(w,t)) — ;lPi(t)exp(2fn-i(w,xi)),

i

where (-, ) denotes the standard scalar product in R¢. Let K, be the
element of .#'(R%) defined by

(16) FK!, , =0,7E,,.
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LEmMa 2.34. Fordllt€R? Ki € &,,.

Then for any element u € &}, we can define an element v of & by
(17) v(t)= (%, T'K 1) mas

where 7! is the orthogonal projection onto the space &. .
LEMMA 2.35. v € A (RY).
LEMMA 2.3.6. u — v is the solution of (9).
Lemma 2.3.7. v € &,,.

By Lemmas 2.3.5 and 2.3.6, we conclude that u — v is a polyharmonic
polynomial of degree less than or equal to 2m. But Lemma 2.3.7 shows that its
degree is necessarily less than or equal to (m — 1). Finally since 6, ; = 0 for all
J =1,..., M, by definition of the P,, we have v(x;) = 0 and therefore v and
u — v belong to &}, N &,. Thus, for all u € &}, u(®) = (u,7'K!),,., and
m'K! =R}, O

We now give an alternate formula for the reproducing kernel in &}, which
will be useful for the computations of a-splines [it appears in Wahba and
Wendelberger (1980) for the thin-plate spline case].

COROLLARY.

R'(s,t) = E,(t —s) - g P(t)E, (x; —s)

i=1
(18) o o
— X P(S)E, (¢t —x) + X Pi(t)P(s)E,(x; - x;).
i=1

i;j=1
Proor. ¢'(s)=E,, (¢t —s) — LP(s)E,, (t — x;) defines a function of

"(R?), which clearly satisfies ¥y = 0,E,,, = FK:_; hence, y* = K, in
'(R%). On the other hand,

Krtna(s) = (ﬂ-oKfna’ R?)ma + (rlKrtna’ Rtl)ma
M
= X P(t)K} (%) + RY(s,0),
i=1

which is equivalent to (18). Note that one may also write

19 R(ont) - [ R

R | (@) [*llwl®™
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2.4. The optimization problem and its solution. It is clear from Section 2.3
that one can now define concrete partial splines as in Section 2.1 by letting H
be &, the seminorm being defined by (6). Denote by W the n X K matrix

with"giements w;; = w;(t), i = 1,...,n;j=1,...,K, and by P the n XM
matrix with elements p;; = P;(¢,). We make the following additional assump-

tion:
(A5) The n X (K + M) matrix (WP) has rank (K + M).

Note that (A5) implies n > (K + M) and rank(P) = M. In dimension d = 1,
for ordinary (nonpartial) splines, (A5) reduces to n > m. Note also that
rank(P) = m if and only if the set of points {¢,,...,¢,} contains a &£,
unisolvent subset.

We can apply classical results from partial spline theory [see, e.g., Laurent
(1988) or Bates, Lindstrom, Wahba and Yandell (1987)] to show that, under
assumptions (A1) through (A5), problems (1) and (2) have a unique solution in
&, ., and to write explicit formulas for their solution. For both problems, the

ma’

solution is of the form

K M n
(20) h=Y 0w, + ) {iP; + Y wR(¢;, )
k=1 j=1 i=1

j=
with 0 =(0,,...,0¢), {=({,...,¢y) and p = (uq,...,u,) satisfying the
linear system

Ku+Wo+P=Y,

(21) Wu =0,

Pu =0,
where the matrix K with elements k;; is defined by
(22) k;;=R(t;,t;)

for the interpolating problem, and by

for the smoothing problem.
For computational purposes, one can use the following lemma which gener-
alizes the corresponding well-known property in the thin-plate case.

Lemva 2.4.1. The solution defined by (20), (21) and (22) or (23) is
unchanged if one replaces in (20) R(¢;, ) by E,, (¢, — - ) and in (22) or (23)

. We note that a-splines provide an initerpolation method which is translation
equivariant, and moreover rotation equivariant when a is isotropic. It is clear
that thin-plate splines are obtained for a = 1 and L-splines for a equal to a
polynomial with no real root.
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3. Stochastic filtering.

3.1. Model and prediction method. The stochastic model we consider to
explain the data is the following.

Let Y(2), t € R¢, be a stochastic process with second moments (also called a
random field when d > 1). Let ,...,¢, be n random variables independent
from the process Y(¢), satisfying the usual assumptions for a white noise:

Ee, = 0; Eeie; =0, i+j; Ee?2 =02 i,j=1,...,n,

where E denotes mathematical expectation. The observations y, are explained
as one realization of the random variable Z; = Y(¢,) + ¢;. Moreover, the
process Y(¢) is often decomposed into the sum of a drift and a fluctuation:

(24) Y(t) = m(¢) + X(2),

where m(¢) is a deterministic component linear combination of a finite num-
ber L of known functions u; on R? with unknown parameters, and where the
process X(¢) has mean 0 and given covariance structure R(s, ¢) = E(X(¢) X(s)).

We furthermore specialize the stochastic model by assuming that the pro-
cess X(t) belongs to certain class of stochastic processes convenient for
statistical inference.

A theory analogous to the well-known theory of stationary random pro-
cesses has been developed by Yaglom (1957) and Guelfand and Vilenkin (1967),
in the context of generalized random processes. It has been exploited later by
Matheron (1973) in its theory of intrinsic random functions, restricting to the
case where the generalized processes with stationary increments of order m
are mere random functions (ordinary processes) with stationary increments of
order m. The interest of these processes is that one can develop a spectral
analysis of their second-order structure by Bochner-type theorems. The role of
the function R naturally related to the covariance structure of an ordinary
stationary process by R(s,¢) = R(s —¢) is taken here by the variogram or
structure function. It is defined, for an ordinary process with stationary
increments of order m, as any function V such that

n 2 n
(25) E( Yy ciX(ti)) = ) c,c;V(¢, — t})

i=1 i,j=1
for any (¢y,...,¢,) € (R?)" and any set of coefficients (c,,...,c,) satisfying
Xc;P(t;) = 0, for all P in &,. In the same way as the function R is even and
of positive type, the function V is even and conditionally of positive type of
order m. Guelfand and Vilenkin (1967) proved that the class of tempered
distributions U conditionally of positive type of order m is characterized by
the fact that their Fourier transform, in ./'(R?), satisfies the following
property: For any polynomial P with complex coefficients and total degree less
than or equal to (m — 1), |PI2F U is a positive slowly increasing measure.
Hence, for an ordinary process with stationary increments of order m, and
variogram V, one can define a positive slowly increasing measure by
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lwl*™F V(w); since it plays a role parallel to the spectral measure of a
stationary process, we will refer to it as to the m-spectral measure.
Now we can state the additional assumptions for model (24):

(B1) The span of u,,...,u; contains &,.

(B2) X(t) is a mean zero second-order ordinary process with stationary incre-
ments of order m and variogram V.

(B3) The m-spectral measure du, is absolutely continuous with respect to
Lebesgue measure.

(B4) (1 + [|tII®)~™ is integrable with respect to the measure du.,.

The rationale behind (B3) and (B4) is that we want the m-spectral measure
to have a density of the form |a| 2 with a function « satisfying (A1) through
(A4). Note that (B2) does not entirely define the process X(¢) since there exists
nontrivial such processes with variogram 0 (polynomials of degree less than or
equal to m and mean zero random coefficients); but they are the only
characteristics of X that play a role in the solution of the subsequent problem.
One could as well use Matheron’s ‘“(m — 1) IRF” without drift.

The predicted random process Y(¢) obtained by BLUE is the linear combi-
nation of the random variables Z;, which satisfies E(Y(¢)) = E(Y(¢)), for any
value of the parameters in m(¢), and minimizes the predictive mean square
error E(Y() — Y(¢))%

3.2. Computation of the prediction. To underline the equivalence in view
of the following paragraph, we use a similar notation.
Let Y#) = L2y, (OY() and T = (y,®), ..., 7,#)). Let w,...,wg, k& =
, K = L — M, be functions that span a subspace of the span of {u4,...,u,}
in ‘direct sum with Z,. Let W) = (w,@),..., wg(?)) and P(¢) =
(P(t),..., Py(t)Y, where P,,..., Py span &, as previously. Then the unbi-
asedness condition gives

(26) PT=P(¢t) and W'T=W(z).

Condition (26) is equivalent to saying that the set of (n + 1) coefficients
(yL(®),...,v,(8), —1) satisfies

% 7(0Q(8) - Q) =0,

for any @ € &,,, and hence the predictive mean square error is given by

n 2

E(f(t) - Y(1)) = E Z (1) X(t;) — X(2) + Z vi(2)e;

Z Yi()v;()V(t; - ¢;)

»J_

- L nOV(s 1) + a5 5.
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Hence, if we denote by K the matrix with elements k;; defined by

and by Z(¢) the vector (V(¢, — £),...,V(¢, — )Y, the vector T is obtained by
minimizing I"KT — Z’'(¢)I" under the constraints P'T' = P(¢) and W'T = W(z).
We are reduced to a quadratic optimization problem with linear constraints.
Now, if we denote by Q the n X n matrix K-X(I — P(P’K~'P)~'P'K!), easy
linear algebra shows that I' satisfies

I'Y = [QY - QW(W QW) 'W'ay | Z(s)
(28) +[(PE-P) PRy - w(Waw) " way)| P(r)
+[(waw) T 'way | w(s).
Note that T'Y is the result of substituting y, for Y(z,) in Y(z).

4. The equivalence. Now we can state and easily check the equivalence
result corresponding to our particular conditions.

THEOREM 2. Under assumptions (B1) through (B4), the BLUE of Y(t) in
model (24), when one substitutes the data y; for the random variable Y(t,), is a
partial a-spline of order m, where the functions w, of (2) span a subspace of
the span of {u,,...,u} in direct sum with &,,, where the smoothing parame-
ter A of (2) is the variance of the noise o2, and where the function « is related
to the variogram V by

(29) lol*"FV(0) =|a(w)|> foral o € R%.

Different methods have been used for similar problems. We choose here to
simply check that the solutions of both optimization problems, which we have
characterized in Sections 2 and 3, are identical. An algebraic point of view
could be taken as in Matheron (1981) and Kimeldorf and Wahba (1970a). In a
particular case, one can take an even more elegant approach which could
possibly be generalized: When m(¢) = 0 in (24), it is not difficult to see that
these optimization problems are dual problems in the sense of convex opti-
mization duality [see Ciarlet (1982)]. Note that the presentation of the filtering
problem as an optimization problem in a Hilbert space dates back to Parzen
(1961).

. PrRoOF. We already remarked that the density of the m-spectral measure
duy of X with respect to Lebesgue measure can be written |a| 2, with a
function « satisfying (A1) to (A4). Hence, V satisfies (29) which implies that V
is one of the fundamental solutions of (14). Therefore, (20) and (28) are
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similarly linear combinations of the same functions and it is enough to check
that the coefficients given in (28) satisfy the system (21), which is easy algebra.
O

In the theory of stationary processes, particular interest has been given to
those with a rational spectral density (the so-called ARMA process for discrete
time). In continuous and one-dimensional time, the general rational spectral
density can be written [see Yaglom (1962)]:

|Q(2miw)|?

30 w)=———,
(30) () |P(2miw)|®

where P and @ are real coefficient polynomials of degree p and g respectively,
and where all the 0’s of P have positive real part and the 0’s of @ have
nonnegative real part. By analogy in dimension d, one can call X(¢) an
isotropic ARIMA(p, m, q) process any second-order process with stationary
increments of order m, and m-spectral density of the form (30), where we
substitute ||w|| for w in the right-hand side, and satisfying m + p — ¢ > d/2.
The corresponding a function is then given by

|P(2miw)|
lQ(2miw)|”

A classical example is the correspondence between thin-plate splines in odd
dimension and the prediction of processes whose variogram is proportional to
lltllzkﬂ, which can be classified as ARIMA(O, 2 + (d + 1)/2,0). Furthermore,
(30) and (31) show that the family of splines obtained for (31) with constant P
is associated to the prediction of processes with a ‘“polynomial generalized
covariance” type of variogram [see Matheron (1973)], which can be classified as
ARIMA(0, & + (d + 1)/2, k — j) [see Thomas-Agnan (1989) for details].

(31) a(w) =

APPENDIX

ProOF oF LEMMA 2.3.3. Note that |a| "2 € '(R?) and that it is enough to
find a solution F in .”'(R?) to the division problem: loll>™F(w) = la(w)] 2.
Let T,,,_,(¢) be the Taylor expansion of order (2m — 1) at 0 of an element ¢
of A(R%), and let F be the following linear functional on A (R%):

(1 E() | #(@) = Tan_i(#) ()
F(¢) —j;xd( |a(w)|2 )( lwl?™ )dw

é(w) e(w)
+fu«( (@) ) ( ||w||2'") do

The fact that F belongs to .'(R?) follows from (A3) and (A4). Moreover, since

(32)
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T,,._ (- ?"¢) = 0, we have
¢(w)

F(l- IPmp) = [Rdl o)F

which shows that F solves the d1v1$10n problem. O

w)

ProOF OF LEMMA 2.3.4. For B € N? such that |8] <m, P(¢) =tF € &,
and hence by (8), P(¢) = (R?, P),,, = ¥ P(x;)P(¢t) which easily implies
that
(33) D*6,(0) = 0.

Therefore, F#(DPK! ), which by (16) is equal to the map: o —
@2riw)Po,(w)FE,, (w) can be represented by the locally integrable function:
® - (27rzw)’30,(w)la(w)l ?|w||”2™. Furthermore, a.#(D?K® ) is then repre-

sented by the function: w —» 27iw)?(w)a*(w)” 1Ilwl|_2m which lies in L,[R?).
O

Proor oF LEMMA 2.3.5. Using (33) and the Taylor formula, there exists a
neighborhood V,, of 0 such that, for all w € Vj;:

m

|6,(w)| < —— sup (D#,)(0).

Bl=m
Let @ be defined by

M
tP— Y xPP,(t)|.
i=1

Q(t) = sup (D?6,)(0) = sup
|Bl=m |Bl=m

On the other hand, for w € R? \ V,, we have

M
10(0)| <1+ gllPi(tH =5(2).

Therefore, we have

o)< ¥ (’;;)[Q(t)j;lla(w).?'(Dﬁu(w)ﬂ|a*(w)|_1dw

|1Bl=m
+S(t)/ a(w).?'(DBu(w))l la*(0)] ol ™ dw|.

This shows that v is a locally 1ntegrable function, and the growth rate at « of
@ and S being a polynomial rate completes the argument. O

ProoF oF LEMMA 2.3.6. For y € N? such that |y| > m, since the total
degree of P, is less than or equal to (m — 1), we have, for ¢ € A (R?),

fRdo,(w)Dw(t) dt = (27iw)" Fo(w).
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Therefore, using the proof of Lemma 2.3.4, we get

[Rdev(t)q;(t) dt = P ( )[ [a(w)(2mio)’ Fu(w)]

(34) [

(2miw)" P Fo* (w) ] 4

a(o)lol*™

Hence, since FA™v = ¥ _ m( ) Fv,

[ Amv(ye(t) dt = IBI{:m(’Z;)Ld[a(m)(Zwiw)ﬂyu(w)]

a(w)

= /RdAmu(t)go(t) dt. O

(2miw)? Fo* () l do

Proor oF LEMMA 2.3.7. By (34), if |y| = m, ¥ D"v can be represented by
the function
{ (2miw)?™”

o T ()@ F(Dru)(w)]

|Bl=m

)l nz'"] = D).

Therefore v € &,,, follows from u € &,,,. O

PrOOF OF LEMMA 2.4.1. If P'u =0, we have Tpu,R(¢,,¢) = Zu,; R(¢;,¢)
and using (18):

Y wR(8,t) = Y py
i=1 i=1

Ema(ti - t) - % I:Ti(t)Ema(ti - xj) .
Jj=1

Let {} = {; — Zp; E,, (t; — x;). Then we get
M

n M n
Y 4P+ ¥ wR(t, ) = LGP+ L Bt~ )
i=1 Jj=1 i=1

j=1
and evaluating thisat ¢ = ¢; for j = 1,...,n gives
P;+ Ku =P{' + K,
where K'! is the matrix with elements k}; = E,, (¢, — ¢;). O

REFERENCES

BATES, D., LINDSTROM, M., WAHBA, G. and YANDELL, B. (1987). GCVPACK—routines for general-
.ized cross-validation. Comm. Statist. Simulation Comput. 16 263-297.

CarLET, P. G. (1982). Introduction a 1’Analyse Numérique matricielle et a l’optimisation.
Masson, Paris.



1526 C. THOMAS-AGNAN

DENY, J. and Lions, J. L. (1954). Les espaces du type de Beppo-Levi. Ann. Inst. Fourier
(Grenoble) 5 305-370.

DorpH, C. L. and WoopBURY, M. A. (1952). On the relation between Green’s functions and
covariances of certain stochastic processes and its application to unbiased linear
prediction. Trans. Amer. Math. Soc. 72 519-550.

DuBrULE, O. (1983). Two methods with different objectives: Splines and kriging. J. Internat.
Assoc. Math. Geol. 15 245-257.

DucHon, J. (1977). Splines minimizing rotation invariant semi-norms in Sobolev spaces. In
Constructive Theory of Functions of Several Variables, Oberwolfach 1976 (W. Schempp
and K. Zeller, eds.) 85-100. Springer, Berlin.

GUELFAND, I. M. and VILENKIN, N. Y. (1967). Les distributions, applications de 1’analyse har-
monique (Dunod, ed.) 4.

HEeckMaN, N. (1986). Spline smoothing in a partly linear model. J. Roy. Statist. Soc. Ser. B 48
244-248. .

KIMELDORF, G. S. and WaHBA, G. (1970a). Spline functions and stochastic processes. Sankhya Ser.
A 32 173-180.

KIMELDORF, G. S. and WaHBA, G. (1970b). A correspondence between Bayesian estimation on
stochastic processes and smoothing by splines. Ann. Math. Statist. 41 495-502.

KiMELDORF, G. and WAHBA, G. (1971). Some results on Tchebicheffian spline functions. J. Math.
Anal. Appl. 33 82-95.

Kronias, V. K. (1984). On a class of non-parametric density and regression estimators. Ann.
Statist. 12 1263-1284.

KoHNn, R. and AnsLEY, C. F. (1983). On the smoothness properties of the best linear unbiased
estimate of a stochastic process observed with noise. Ann. Statist. 11 1011-1017.

KoHN, R. and AnsLEY, C. F. (1987). A new algorithm for spline smoothing based on smoothing a
stochastic process. SIAM J. Sci. Statist. Comput. 8 33-48.

LAURENT, P. J. (1980). Spline functions using inf-convolution. International Workshop on Approx-
imation Theory. Technion, Haifa, Israel.

LAURENT, P. J. (1988). Inf-convolution splines. Technical Report RR 749-M-IMAG, Grenoble.

MATHERON, G. (1973). The intrinsic random functions and their applications. Adv. in Appl.
Probab. 5 439-468.

MATHERON, G. (1981). Splines and kriging: Their formal equivalence. In Computer Applications in
the Earth Sciences: An Update of the 70s (D. F. Merriam, ed.). Plenum Press, New
York.

MEINGUET, J. (1979). Multivariate interpolation at arbitrary points made simple. J. Appl. Math.
Phys. 30 292-304.

ParzeN, E. (1961). An approach to time series analysis. Ann. Math. Statist. 32 951.

SarLkauskas, K. (1982). Some relationships between surface splines and kriging. In Multivariate
Approximation Theory. II. Internat. Ser. Numer. Math. 61 313-325.

SCHWARTZ, L. (1966). Théorie des distributions. Hermann, Paris.

SHiau, J. J., WaHBA, G. and JoHNsoN, D. R. (1986). Partial spline models for the inclusion of
tropopause and frontal boundary information in otherwise smooth two and three-
dimensional objective analysis. J. Atmospheric Oceanic Tech. 3 714-725.

THOMAS-AGNAN, C. (1987). Statistical curve fitting by Fourier techniques. Thesis, Univ. California,
Los Angeles.

THOMAS-AGNAN, C. (1989). Smoothing noisy data by two equivalent techniques. In Data Analysis,
Learning Symbolic and Numeric Knowledge (E. Diday, ed.). Nova Science Publishers,
New York.

THOMAS-AGNAN, C. (1990a). A family of splines for nonparametric regression and their relation-
ships with kriging. Statistics 21 533-548.

THOMAS-AGNAN, C. (1990b). Smoothing periodic curves by a method of regularization. SIAM J.
Sci. Statist. Comput. 11 482-502.



SPLINE FUNCTIONS AND STOCHASTIC FILTERING 1527

WaHnBa, G. (1986). Partial and interaction spline models for the semiparametric estimation of
functions of several variables. In Computer Science and Statistics: Proceedings of the
18th Symposium on the Interface. (T. J. Boardman, ed.) Amer. Statist. Assoc., Washing-
ton, D.C.

WanBA, G. and WENDELBERGER, J. (1980). Some new mathematical methods for variational
objective analysis using splines and cross-validation. Monthly Weather Rev. 108
1122-1145.

WarsoN, G. S. (1983). Smoothing and interpolation by kriging and with splines. Technical Report
241, series 2, Dept. Statistics, Princeton Univ.

YacLom, A. M. (1957). Some classes of random fields in n-dimensional space, related to stationary
random processes. Theory Probab. Appl. 2 273-320.

Yacrom, A. M. (1962). Theory of Stationary Random Functions. Prentice-Hall, Englewood Cliffs,
NJ.

. UNIVERSITE PAUL SABATIER
118 ROUTE DE NARBONNE
31400 TouLOUSE, FRANCE



