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ROBUST BAYESIAN EXPERIMENTAL DESIGNS
IN NORMAL LINEAR MODELS

By A. DasGupra! anp W. J. STUDDEN2

Purdue University

We address the problem of finding a design that minimizes the Bayes
risk with respect to a fixed prior subject to being robust with respect to
misspecification of the prior. Uncertainty in the prior is formulated in
terms of having a family of priors instead of one single prior. Two different
classes of priors are considered: I'; is a family of conjugate priors, and a
second family of priors I, is induced by a metric on the space of nonnega-
tive measures. The family I'; has earlier been suggested by Leamer and
Polasek, while I', was considered by DeRobertis and Hartigan and Berger.
The setup assumed is that of a canonical normal linear model with indepen-
dent homoscedastic errors. Optimal robust designs are considered for the
problem of estimating the vector of regression coefficients or a linear
combination of the regression coefficients and also for testing and set
estimation problems. Concrete examples are given for polynomial regres-
sion and completely randomized designs. A very surprising finding is that
for T, the same design is optimal for a variety of different problems with
different loss structures. In general, the results for I, are significantly
more substantive. Our results are applicable to group decision making and
reconciliation of opinions among experts with different priors.

1. Introduction. A major problem in the general domain of statistics is
the derivation of an experimental design optimal with respect to some criterion
consistent with the goal of the study. Typically, the optimality criteria consid-
ered by workers in this general area have focused on long-run (frequentist)
performance of a design, such as the mean squared error over repeated
sampling: the well-known criteria of A, D and E optimality are examples of
this kind. It is not unusual though for the experimenter to have nonnegligible
prior information about the parameters in the system, information that is
sufficiently significant to be of some use but not quite so sharp and precise as
to be quantified in terms of a single “prior distribution.”” The purpose of this
article is to address the question of which design should the statistician

-recommend in the scenario of a collection of plausible, Bayesian prior distribu-
tions. This article thus focuses on some experimental design problems from a
“robust Bayesian” viewpoint. The subject of robust Bayes methods has, by
itself, been a major research area in the recent past; for general exposition and
specific results, we refer the reader to Berger (1984), Berger and Berliner
(1986), DasGupta and Studden (1989) and Wasserman (1989).
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There now exists a vast body of statistical literature on optimal experimen-
tal designs (with primarily long-run performance criteria); the pioneering work
is due to Jack Kiefer. See Silvey (1980) for many references.

The study of experimental designs in a Bayesian framework has been
comparatively limited; some of the important references include Pilz (1979,
1981), Verdinelli (1982), Bandemer (1977), Chaloner (1984) and Ball, Smith
and Verdinelli (1989). In this article, optimal experimental designs are derived
for the problems of estimation, prediction or testing a null hypothesis in the
canonical normal linear model setup when the prior for the parameters
belongs to a family of distributions T

Consider the usual linear regression problem where Y,,; ~ N(X6, o?I),
where X, ., is the design matrix of nonstochastic constants; for ease in
exposition, assume o2 > 0 to be known; o2 comes out as a proportionality
factor in all risk expressions relevant to this paper and consequently will be
ignored in all risk formulas. The design aspects of the problem enter through
the experimenter’s choice of the rows of the design matrix X from an available
set 2. The vector of regression coefficients 0,,, is assumed to have a prior
distribution 7(0) belonging to a suitable class T.

Two different classes of priors will be considered; the first of them is

(1.1) I, = {m(08):0 ~ N(p, 0%3), p fixed, Il <37 < kI};

here 0 <! <k and by A > B we mean that A — B is n.n.d. or nonnegative
definite. The idea here is that conjugate priors are mathematically attractive
and also often provide a rich enough class of priors for a comprehensive
Bayesian analysis of the data; the mean of the prior is kept fixed but not the
variance—covariance structure because the location of the unknown parame-
ters is usually much easier to elicit subjectively than it is to elicit the higher
moments and the strengths of the correlations. Also, as we shall later see, the
design problems are reasonably tractable with a family of priors such as (1.1).
The family of priors (1.1) was first suggested and used by Leamer (1978, 1982)
and Polasek (1985). For an extensive discussion, see DasGupta and Studden
(1988).

Normal priors, by definition, are symmetric and unimodal. Moreover, in
(1.1) the mean p was kept fixed [although we could vary the prior mean as
well; see DasGupta and Studden (1988)]. An alternative family of priors that
also enjoys mathematical tractability, and yet at the same time allows the
mean as well as the variance—covariance to change and in addition includes
asymmetric and multimodal priors is the family of priors

(1.2) I, = {m(0): L(0) < aw(0) < U(0) for some a > 0};

L(0) will be taken as the density of N(p, 023), p, 02 fixed and U(8) = kL(0)
for a suitable £ > 1. The first works with this family of priors are DeRobertis
(1978) and DeRobertis and Hartigan (1981). They define T, slightly more
generally using L and U as arbitrary measures. The class I, is a metric
neighborhood of the prior L. A discussion of the metric is given in DeRobertis
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(1978). This is further discussed in DasGupta and Studden (1988). The prior
L(8) = N(n, 023,,) will be seen to play a special role in robustness questions.

For ease of exposition we will consider what is now commonly called the
approximate design theory. All the design aspects will enter through the
“information matrix” M = X'X which can be written as M =X'X=
nY p;x;x;, where x; are the rows of X and np;, = n; are integers. The
approximate theory allows the p; > 0 to be arbitrary, subject to X p; = 1, and
in fact permits M = nfx'x du(x) where u is an arbitrary probability measure.

The general aim of the paper is illustrated using I';. Interest centers around
the Bayes risk, under ordinary squared error loss, given by

(1.3) r(S, M) =tr(M+31" ",

Let ®(M) denote some measure of robustness [see (1.5) and (1.6)] of the
design M. Useful ®(M) will of course be related to r(Z, M). The design M
will be chosen to minimize ®(M). A restricted optimization problem is also
considered. If 3, corresponds to a special or favored prior, let

(1.4) ®y(M) = tr(My +371) .
Then ®(M) is minimized subject to the condition
(1.5) Po(M) < (1 +¢)Po(M,),

where M, minimizes ®y(M), and ¢ is a fixed (usually small) positive number.
For the class I, the functional ® is chosen as either ®;, ®, or ®; defined
below. Letting r(3) = inf,, r(3, M), define

(16) ®,(M) = sup "1
. = sup ——.
' ser, T (2)

Here 3 €I, means the normal prior in I’} indexed by 3. Minimizing &,
corresponds to choosing the design to minimize the maximum inefficiency. The
results we have for ®, also apply to a similar “regret” formulation using
(M) = sups r[r(Z, M) — r(2)].

The functional ®,(M) is defined as

(1.7) . ®y(M) =te(M + )" —tr(M + k)7L

For priors in T}, tr(M + 371)7! lies between tr(M + kI)~! and tr(M + II)~};
so ®,(M) denotes the range of the Bayes risks.
The functional ®4(M) is given by

(1.8) Dy(M) = Ao (M~ — (M + kI) 7"}

and is related to the diameter of the set of Bayes estimates when [/ = 0.
Motivation for this is given in Section 2. A more general definition would be
Apad(M + 1I)"Y — (M + kI)™Y} but only (1.8) will be discussed in the sequel
since the conclusion of Theorem 2.1 may fail for this more general definition.
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It is shown in Section 2 that ®,, ®, and ®; are nondecreasing and convex
in M, the partial order on M being in the sense of positive definiteness. Some
simple invariance properties are discussed and some examples are given.

For an arbitrary prior = € I', the Bayes risk, denoted by r(w, M), will not
have an expression as in (1.3) except for the normal priors such as L(8) =
N(p, 023,y). The results in Section 8 for I', have two important aspects. The
first is that we can handle some natural functionals ®,(M) defined through
the posterior distribution given 7 and y. As indicated later, these functionals
are actually independent of y. The second is that several ®, are minimized by
the same design M that is best for the above normal prior L(0). To illustrate
this, let S, for a given M and y, be the set of smallest Lebesgue measure
among all S satisfying

inf P(0€S|y)>1-a.
Tely

The Lebesgue measure of S, is independent of y and the minimizing M is the
one that minimizes the determinant |[M + 35| ~'. This material is based on
results in DasGupta and Studden (1988).

For estimating a fixed vector ¢’0 several appropriate ®,(M) are defined and
it is shown that the same M minimizes all of them and that this design
corresponds to minimizing ¢'(M + 35')"'c. This is discussed in Section 4.

2. Normal priors with a fixed mean. In this section we consider the
class I'; defined in (1.1) and the functionals ®;, ®, and P,.

THEOREM 2.1. The functionals ®,, , and P are decreasing and convex
on the cone of nonnegative definite matrices.

Proor. It is well known that the risk 7(3, M) is decreasing and convex in
M for a given 3. Both of these properties are preserved under taking a
supremum so the statement holds for ®,. For ®,, welet M, = (1 — a)M; +
aMy, =M, + a(M, — M,), 0 < a < 1, and follow the usual argument showing
that g(a) = ®,(M,) satisfies g'(a) < 0 if M, — M, > 0 and that g"(a) > 0.
To thisend let A =M, — M;,, A=(M,_,+ 1)}, B=(M,+ kI)™!, C = AAA,
D = ABA to obtain

g'(a) = —tr AAA + tr BAB
and
g"(a) = 2[tr AAAAA — tr BABAB]
= 2[tr ACA — tr BDB]
=2[tr C(A + B)(A — B) + tr(BCA — ACB) + tr(C — D)BB].

Since C > D and AB = BA the last two terms in the above expression for
g"(a) are nonnegative. The first term is also nonnegative since A + B and
A — B also commute. This shows that g”(a) > 0. The fact that g'(a) <0
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follows from the same argument taking C =D = A > 0. The functional
O, (M) = k[A,(k +A,)]"L, where A, is the smallest eigenvalue of M. The
result then follows by standard arguments. This proves the theorem. O

The motivation behind ®; comes from the fact [see DasGupta and Studden
(1988)] that the Euclidean diameter D of the set S of all Bayes estimates of 0
under I is given by

D2 =v'(Ay— A))v - Dy,

where v = X'(y — Xp), A, = M~ ! and A; = (M + kI)~!. A general expression
for D with bounds 3, and 3, on 3 is given in the above reference. The
problem in working with the D or D? is that D depends on y and conse-
quently an expected value has to be taken in order to address a design
problem. If we assume that [ =0 so that the normal prior N(p,3) has
3~ ! < kI, a direct computation then shows that

ED? a ®g(M) = Ao {M~1 — (M + kI) 7Y},

where the expectation is taken when 37! = kI. The functional ®4(M) would
appear to give less robust designs since the expectation is taken with respect to
the most precise % in I,. It does not seem likely that sups.r, EyD? is
attained for 3~ ! = kI as one would desire in this case.

Before giving some applications we indicate that I'; defined with bounds %1
and /I for 37! is amenable to some simple invariance arguments. Suppose
that the set of possible information matrices M is closed under a group of
matrices A acting on M by AMA' If, in addition, the group is a subgroup of
the orthogonal group so that A’ =A"! or AA =1 then simple arguments
show that ®; satisfy ®(M) = ®,(AMA). If P, is convex and the group is
finite or compact, any minimizing M can then be replaced by an invariant one.

ExampLE 1. Consider the simple linear regression model EY = 6, + 6,x,
where —1 < x < 1. It is well known that any M can be increased in the sense
of positive definiteness by using a two-point design that samples only at +1.
Since ®,, , and ®; (used when [/ = 0) are decreasing, we restrict ourselves to
such designs. The matrices M under consideration are thus of the form

M= n(i i), where |c| < 1. The invariance considerations mentioned above

imply that all criteria are minimized by the two-point design with weight 1 /2
at x=t+lorc=0.

We now turn to the restricted optimization criterion described in
(1.5). Let 35! = [:; :‘;] It is easy to check that the design M, minimizing

®y(M) =tr(M + 357! is given by ¢ = ¢, = —ro/n provided |rol <n. If
II <351 < kI this is the case if n > (¢ — 1)/2. Also the smallest Bayes risk
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under 3, equals
2n+r; +ry
c(n+r)(n+ry)’

Then ®y(M) < (1 + £)®y(M,) if and only if

Po(M) =

€
(2.1) (ne +ry)’ < T (rHr)(ntry) =d (say).
&
Since ®;,, i =1,2,3, are convex in ¢ and symmetric about 0 each of the
restricted minimizations occurs at the root of the equation with equality in
(2.1) which is closet to 0, if of course ¢ = 0 is not already between the two
roots. The required value of ¢ in all three cases is c¢* given by

1
;(—ro+ vd) if ry >0,

1
;(—ro— \/J) if ry <0,

(2.2) c* =

where d is defined in (2.1). If r, = 0 then ¢ = 0 is between the two roots. One
can check that ¢ = 0 is between the two roots if

s

(n+r)(n+ry)) —re’

823():

Thus if £ > ¢, the solution is ¢* = 0; otherwise c* is given by (2.2).

ExampLE 2. Consider a completely randomized design with p treatments
and suppose the treatment means 6,,6,,...,0, have a prior 7 € I'. The
information matrix M is now a diagonal matrix with elements n; = number of
measurements on the ith treatment. For the case p = 2, a complete solution
is easily given as in Example 1 for general 3;'. We omit the details. Symmetry
considerations using the permutation group show that all three of ®,, ®, and
®; (for I = 0) are globally minimized by n, = n/p.

The restricted minimization for ®, appears very difficult so we consider
only @, and ®;. For arbitrary p, assume that 35! = R, is diagonal with
dlagonal elements r; and assume without loss of generality that 0 < r;, <r, <

. It is known (and simple Lagrangian arguments will show) that
¢O(M) s minimized when R?+r)2=C,ifi<i, and n?=0ifi>i, for
suitable Co and i,. Furthermore if n > pr, — 3r;, then n? + r,=(n+3r)/p
for all ;. Note that n}> -+ > n? > Intultlvely, one makes the posterior
precisions n; + r; as equal as possible (starting with the smallest r;).

The minimum of ®, subject to (1.5) amounts to mov1ng the n? in the
“direction” of n /p. Lagrangian arguments show that n*, i = 1,..., p, form
the required solution if equality holds in (1.5) and for some u > 0,

(2.3) (n¥+1)72 = (n* + k) 2+ u(nt +r) % =C*,
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where

2.4) nC* = tr(M* + II) "2M* — tr(M* + kI) " 2M*
+utr(M* %+ Eo‘l)_zM*.

The condition on C* in (2.4) will force £ n*¥ = n. In solving these equations we
actually solve (2.3), (1.5) and L n} = n for u, C* and ni,n},...,n%.
Let
@9 — o}
n(e) = Tg’

where @) is the value of ®, at the minimum for ®, and ®% is the value at the
constrained minimum. Thus 1007(¢) is the percentage gain in robustness for a
sacrifice of 100¢% in the subjective Bayes risk. We remark, and it is not very
hard to show, that for ¢ near 0, the value of n(e) is approximately

(n+Xr)s,
"7(3 ) = —ag—_—_‘/;’
where s2 =p 1LP ((a; - @)% @=Xa;/p and a; = —-(nY + 172 +
(n% + k)72 Thus the percentage gain is considerable for small . As an
example, for n =25, p=2, r;=1=1, r,=k =9, ¢ = 0.02 corresponds to
n(e) = 0.14, which represents a 14% gain in robustness for a 2% sacrifice in
risk. At this point 7, and n, have moved from n? = 16.5 and n% = 8.5 (where
nd +r; =nY +r,=175) to nt = 14 and n% = 11. For fixed n, the constant
multiplying Ve appears to be increasing in p. This provides further confirma-
tion that there is generally more gain in robustness for fixed &, for larger
values of p, i.e., more parameters in the model. For n = 15 the constants are
approximately 1.3, 1.7 and 2.6 for p = 2, 3 and 5 respectively.

The analysis for ®;(M) = A (MM + kI)™!) is very similar. For p = 2
the restricted problem can again be handled for general 3;'. For general p
assume as above that 3;! = R, is diagonal with 0 <r, <r, < -+- < r, SO
that nd>n%> -+ > ng and ®,(M,) = [ng(k + ng)]‘l. For illustrative pur-
poses assume r,_; <7, and n is large enough so that 0 < n% <n%_;. For ¢
sufficiently small in (1.5), Lagrangian arguments show that the constrained
solution n} satisfies n} +r, = Xy and n¥ +r, =Xy, i =1,...,p — 1, where
XNy and X are determined by X n* = rn and equality in (1.5). The general
solution is to set n% +r, =X, for i >i, and X, for i <i, for some i,
depending on ¢. The details are omitted.

3. Priors inside a density band. In this section, we consider construc-
tion of optimum designs when the family of priors 7 is given by (1.2); for
example, 7 is assumed to be proportional to a function lying between L and
U = kL for some k > 1, where L is the density of a N(p;023,,) distribution.
In contrast to the family of priors (1.1), the mean and variance-covariance
structure all change simultaneously as the prior varies in the family (1.2). To
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give the reader a flavor of how diﬁ'erent the prior means can be, we consider
the model Y ~ N(X0, 0?I) when o2 = 1 and L is N(p, I). The prior mean of
each 6, is in the range u; + y(&), where v(k) for various values of & is given
below:

31 k 2 3 4 5 6 8 10
(3.1) v(k) 0.276 0.436 0.549 0.636 0.707 0.817 0.901.

Thus, for example, if 6, has mean 0 and variance 1 under L, then the prior
mean varies between +0.549 for k£ = 4. The nice feature of our results in this
section is that the design which is Bayes with respect to L will be seen to have
a number of robustness properties as well.

For a general prior 7 € T, the Bayes risk r(m, M) or the posterior risk does
not have a closed-form analytical expression and the corresponding functionals
are unmanageable. The class I,, however, has some nice robustness proper-
ties.

As mentioned in Section 1, the family of priors I, is a metric neighborhood
of the prior L = N(p,o23,). Consequently, L is a natural choice for the
specific prior with respect to which one would like to be nearly Bayes; up
to a proportionality constant the Bayes risk under the prior L is ®y(M) =
tr(M + 351

It is shown in DasGupta and Studden (1988) that, in the present setup, the
Euclidean diameter of the set of Bayes estimates of 8 (for squared error loss)

equals D; = 2y(k)y/®,( M) , where

(3.2) Oy( M) = XM +351) 7

and y(k) is a fixed constant [see DasGupta and Studden (1988); some values
for y(k) were given in (3.1)].

The very attractive feature of this result is that D;, is independent of y and
therefore unlike in Section 2, we do not need to take an expected value of Dy,
(or its square). The idea here is that if at the design stage we somehow knew
what the y data would be, then a Bayesian design should be geared toward
optimum performance for this fixed data. A value of D; independent of y
enables us to do this.

A reasonable restricted optimization problem would then be to minimize
®,(M) subject to (1.5). Since both of these functionals are decreasing and
convex, we have a relatively neat scenario in this case.

ExampLE 3. Consider the completely randomized design with p treatments
considered in Example 2. Again let 37! = diag(ry,...,r,). The problem here
is to minimize A __ (M + 351! subject to ¢O(M) = tr(M + 3ot being
near its minimum. In this example the mlnlmum of both functionals is
attalned for the same set of n},nd,...,n%. These values are such that
n? + r; = A, and are described in Example 2. Thus the Bayes risk under the
prior L for estimating the vector of treatment means and the squared diame-
ter of the set of Bayes estimates are minimized simultaneously (i.e., at the
same design).
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In classical design theory considerable importance is placed on the determi-
nant of M~'. The corresponding Bayes quantity is

(3.3) (M) =|M + 351"

This is related to other Bayesian quantities as proved in DasGupta and
Studden (1988). For a fixed design M let S be the set of smallest Lebesgue
measure such that

(3.4) inf P(0 € S|ly) >1—«;
mET,

here 0 < a < 1is fixed. The set S exists and is simply a Bayes confidence set
for the prior L = N(p, 0255?) for a suitable confidence coefficient y < «, that
is, P(6 € Sly) =1 -y > 1 — a. Since the posterior distribution of ® under
the prior L is N(M + 3517 'X'(y — Xp),(M + 3517, it follows that S is
the p-dimensional ellipsoid

(3:5) S={0: (0 —v)yA' (0 —v) <xI_,(p)},

where A = (M + 357, v = AX'(y — Xp) and x?_,(p) is the 100(1 — y)th
percentile of the y? distribution with p degrees of freedom. Since the Lebesgue
measure of S is proportional to ®,(M), the following theorem is proven.

THEOREM 3.1. The design minimizing the Lebesgue measure of the set S
satisfying (3.4) is the Bayes D-optimal design with respect to L, that is, the
design minimizing ®5(M).

ExampLE 4. Consider the quadratic regression model E(y) = 6, + 6,x +
6,x? and suppose —1 < x < 1; also let L be the N(p, a?3,,) prior where p is
arbitrary but fixed and 35! = diag(r,, r,, r3). Then standard monotonicity and
convexity arguments and calculus give that the Bayes D-optimal design is of

the form
1 0 ¢
M=n|{0 ¢ 0],
c 0 ¢
(3.6) 5
ro —r ro —r r r, +r
CRThL|z L) e B (220
n n n n

where ¢ = ¢; = 3
This amounts to sampling at 0 and + 1, where the proportion of observations
at each of +1 is c/2. For example, if the prior variances of 6,, 6,, 6, under L
are 3, 5 and 1, and if n = 9, then c¢ is approximately 0.72. Notice that the
optimal design converges to the classical D-optimal design as n — . The
corresponding value of c, say, c,, that minimizes ®,(M) is the root of a cubic
equation. For any specific prior 3, this ¢, can be calculated. In considering the
restricted minimization of ®45(M) subject to (1.5) the two values c, and c5 can
be compared. From the convexity of ®,(M) equality would occur in (1.5) for
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two values of c. If ¢, < cj [in (3.6)] then the restricted minimization of ®,(M)
would occur for the larger of the two values giving equality in (1.5). This is
assuming that ¢ is sufficiently small. A similar comment holds for ®,(M).

L)

4. This section is slightly different and is concerned with the estimation of
a fixed arbitrary linear combination ¢’0, still for the case I',. This enables us to
work out optimal designs for estimation of specific regression coefficients, the
mean response at fixed levels of the regressor variables or for the extrapolation
problem. The prior of main concern is again taken to be L = N(p, o23,,). For
this prior the Bayes risk for squared error loss is proportional to

(4.1) Dg(M) = ¢/ (M +351) e

Some designs for specific vectors ¢ and 3, are given in Chaloner (1984), Pilz
(1979) and El-Krunz and Studden (1991). The minimization of (4.1) has
interesting robustness implications. We give below four other natural criteria
which are equivalent to minimizing ®4(M). The first two criteria concern
estimation and rely on results from DasGupta and Studden (1988). The next
two concern testing.

C;: For any vector ¢ and design M, let p, and o, denote the posterior mean
and the posterior standard deviation of ¢’0 under a fixed prior = € I', and let

(42) Sc = {("'c’ ac): ™E 1—“2}

The criterion C; is to minimize the range of p, or o,. These ranges are
actually independent of y [see DasGupta and Studden (1988)].

C,: For any vector ¢ and design M, let I, be the set of smallest Lebesgue
measure such that

(4.3) inf P (c0elly)>1-a.
mely

The criterion C, is to find the design minimizing the Lebesgue measure of I.

C, and C,: Suppose we want to test the hypothesis that for a fixed vector
¢, ¢'0 is smaller than or equal to its prior expected value under the basic prior
L, that is, H,: ¢'0 < ¢’p. Consider this as a decision problem with a zero—one
loss L(H;,a;)=$;;, i, j = 0,1, where a; denotes the action “accept H;” and
8,; denotes the usual Kronecker delta. The criterion C; is to find the design
that minimizes the posterior Bayes risk (of the Bayes test) with respect to L.
Finally, the criterion C, is to find the design minimizing the range of the

posterior probabilities of H, that is,
(4.4) sup P, (Holy) — inf P,(Hly).
mEL2

meETl,

THEOREM 4.1. The criteria C,, Cy, C5 and C, are all equivalent to minimiz-
ing (M) =c'(M + 35 e
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Proor. The results for C; and C, rely on results from DasGupta and
Studden (1988). It is shown there that the set S, is actually given by

45)  S.=Ve(M+351) e -8, + (¢(M +351) 0,
where v = X'(y — Xp), and
(4.6) S, ={(nx,0x): X~f, ¢ <af < k¢ for some a > 0}

where ¢ denotes the standard normal density and py, oy denote the mean
and standard deviation of X. The important point here is that the set S does
not depend on either y or M. The result for C; is then immediate.

The proof for C, is similar to that of Theorem 3.1 and is omitted.

The proof for C; follows. Assume without loss of generality that p = 0.
Since the loss is zero—one, for a fixed design M, the Bayes test under L takes
action a if and only if P,(H,ly) > P,(H,ly). Consequently, the posterior risk
equals g(p) = min(p, (1 — p)), where p = P,(H,ly) (note p will depend on the
design M). Notice g(p) is symmetric about p = ; and also unimodal with
mode at 3. Now, since the posterior distribution of ¢’ under L is N(¢'v, ¢'Ac),
where v and A are as in the proof of Theorem 3.1 (with p = 0), it follows that
p = ®(—c’'v/ Ve'Ac). Here @ denotes the standard normal c.d.f. Let M;(y)
denote the marginal of y under the prior L and M,(¢) denote the marginal of
t = ¢'v/ ve'Ac under L. Then the Bayes risk of the Bayes test under L is

(4.7) EML(y)(g(p)) = EML(,)(g(CI)(-—t))).
Trivially, M,(¢) is the N(0, 72) distribution, where

¢S M(M+3:0) e c'3,c
(4.8) pa - SEM( o) ©_ .

¢(M+35") e ¢(M+3;") e B

We now need the fact that if Z ~ N(0,72) and g(®(Z)) is any symmetric
unimodal function of Z with mode at 0, then E[g(®(Z))] is decreasing in 7.
This follows since E[g(fb(Z))] 2[58(®(2)n(z;0,72) dz, g(®(2)) is decreas-
ing and 2n(z;0,7%)I,,, has a monotone likelihood ratio. Combining this
with (4.8), it follows that (4.7) is increasing in ¢'(M + 35 1)~ 'e. This completes
the result for C,.

To derive the optimum design for the criterion C,, let A = {0: ¢'6 < 0}.
Then

sup P_(H,|y) sup/ dm(0)y)

TEl, mel,"A

(49 [ an(aly)

= sup

v [ dn(oly)

where 7(8|y) denotes the posterior of 6 given y resulting from 7 € T',. Here
1n(8ly) = am(0) f(y|0), where a > 0 is such that L < aw < kL, and thus de-
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notes the ‘“unnormalized” posterior. Clearly, L(0)f(yl|0) < am(0)f(yl|0) <
kL(0) f(yl0). It is easy to see that the ratio in (4.9) is maximized by choosing
am(0) = kL(B) if 6 € A and L(0) if 0 ¢ A implying Sup, cr, P.(Holy) =
kp/[kp + (1 — p)], where p = [, dE(0]y).

Similarly, inf, ., P.(Holy) = p/[p + k(1 — p)] and consequently,

supP, (H,|y) — ilﬂl_fP'rr(HOIY)

(4.10) _ (k* - 1)p(1 - p)
(1 +(k-Dp)(k—(k-1)p)’

The right side of (4.10) is easily seen to be symmetric about p = 1/2 and
unimodal with mode at p = 1/2. Thus the expected range of the posterior
probability of H, (under the marginal distribution of y induced by the prior L)
is increasing in ¢'(M + 35 1)~ e. This follows by a repetition of the argument
used to prove that (4.7) is decreasing in ¢/(M + 351~ 'c. The theorem is now
proved. O

5. Concluding remarks, other models and generalizations. In the
present article we have taken a novel approach to designing an experiment
when we want to use the available prior information but also want to guard as
much as possible against possible misspecification of prior information. Our
results allow consideration of several meaningful criteria and especially en-
couraging are the findings in Section 4 that the user can use the same
optimum design for a variety of design situations and that this design corre-
sponds to the basic prior L.

Much more has to be done. Other ways to model prior information have to
be considered. The case of an unknown error variance was not considered in
this article to keep the setup simple. However, most results of this paper are
also valid when the error variance o2 is unknown and an appropriate inverse
gamma prior is used for 2. The practically useful cases of heteroscedastic
and/or correlated errors will be considered elsewhere.
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