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SECOND ORDER ANALYSIS OF TWO-STAGE RANK TESTS
FOR THE ONE-SAMPLE PROBLEM

By WILLEM ALBERS

University of Twente

In this paper we present a rank analogue to Stein’s two-stage proce-
dure. We analyze its behavior to second order using existing asymptotic
expansions for fixed sample size rank tests and recent results on combina-
tions of independent rank statistics.

1. Introduction. Consider the problem of testing H,: § = 0 based on a
sample from a sequence X;, X,,... of independent identically distributed (iid)
random variables (rv’s) from a continuous distribution function (df) F(x — 0),
where F(—x) =1 — F(x) for all x. For the special case F(x) = ®(x/c), in
which @ is the standard normal df, Stein proposed a by now well-known
two-stage t-test [see, e.g. Lehmann (1986), pages 258-260] which makes it
possible for each given alternative to guarantee at least a given power,
independent of the unknown scale parameter o. But for rank tests, which,
being distribution-free, already have a level independent of F, it would be even
more worthwhile to have a power independent of certain aspects of F, such as
the scale parameter. Consequently, the purpose of the present paper is to
obtain a rank analogue to Stein’s procedure and to study its behavior to second
order, using the results on asymptotic expansions for one-sample rank tests
from Albers, Bickel and van Zwet (1976) (denoted by ABZ henceforth).

Although ABZ provides an excellent starting point, the derivation of expan-
sions for the two-stage case still poses tedious technical problems. Therefore
we shall use a device which simplifies matters considerably. Instead of evaluat-
ing the rank statistic for the total sample, we let the two-stage character
persist in that we evaluate separate rank statistics for the initial and the
second sample. These two statistics are then combined to a final test statistic
in an optimal manner.

At first sight this approach might seem to lead to an inferior procedure, but
fortunately this is not the case. A similar device was applied successfully by
Albers and Akritas (1987) in the context of censored rank tests. Moreover,
Albers (1988) studied the effects of splitting to second order and demonstrated
that for rank tests the loss incurred can typically be compensated by as little as
a single additional observation. In Section 2 we shall collect the results from
that paper which are relevant for the present application.
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The desired expansion is obtained in Section 3 along the following lines. A
suitable conditioning argument allows application of the results from ABZ to
each of the two separate rank statistics. The conditional expansions thus
obtained in their turn lead through application of the results from Section 2 to
a conditional expansion for the combined statistic. The final result follows by
taking expectations. A specific choice, closely related to Stein’s procedure, is
considered in Section 4. Finally, some examples and the conclusions of a small
simulation study are presented. The results indicate that the proposed two-
stage rank procedure works quite well. In particular, it performs much better
than the simple version based on mere first order approximations.

2. Combined rank tests. Suppose that in testing a certain parameter 6
the total sample of size n has been divided into r (r > 2) subsamples of sizes
n,, v=1,...,r, for each of which a suitable statistic 7, has been evaluated.
Then it is of some interest to obtain the best combination T'* of these T, and
to evaluate the loss with respect to the standard statistic T which would have
been used if the total sample were undivided. For one-sample rank statistics
we typically have for certain u and o2 that T, is AN(un,,o%n,), where
“AN” stands for asymptotically normal. As ¥7_, n, = n, it immediately
follows that Y7_,T, is AN(8un,o?n). But obviously T itself is also
AN(un,o?n). Hence T* = ¥ 7_,T, and the loss incurred is negligible to first
order. Note that this result extends to the case of two-sample rank statistics,
provided that the two samples of sizes m, and m, = n — m, are divided such
that m,,/m, =m,,/my,=n,/n,v =1,...,r holds to first order.

In view of the above it makes sense to compare the performance of T* and
T to second order, which requires asymptotic expansions to o(N~1!) rather
than mere asymptotic normality results. Suppose that the df G of a
suitably standardized version S = (T — {)/B for certain n and § satisfies
sup,|G(x) — G(x — n)| < 8, where

p
(2.1) G(x) = ®(x) + ¢(x)kZ=:Okak(x),

in which ¢ = @', H, is the Hermite polynomial of degree k¢ and the b, are
coefficients, which for convenience are supposed to satisfy |6,| < 1. Moreover,
suppose for each T, similar results are available, which will be denoted by
adding subscripts v wherever appropriate. Then T* = ¥7_,T, has a standard-
ized version S* = L]_,y,8,, where v, = B,/(L;_,B2)"/? satisfies ©]_,y2 = 1.
Now it is not difficult to show [see Albers (1988) for details] that the df G* of
S* satisfies, for example,

sup,

G*(x) — é*(x - i

v=1

)
(2.2)

(el 55 0]
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where

G*(x) = ®(x) + ¢(x) kE Zr byt H,(x)
=0v=1

(2.3)
p p r
- X X
k=01=0 v=1
v<g

bkvblg‘YVk+ 17’? 1Hk+l+1(x) .
1

T M

Unfortunately, this result does not seem to be very useful, as G*x - Z7_ym,)
in (2.3) differs widely from G(x — n) in (2.1) and hence in no way suggests G*
and G, and thus T* and T, to be close. Nor does it help to observe that b,, is
related to b, = b,(6, n) through b,, = b,(6, n,) and that for 7, and §, similar
results hold. It does help, however, to check for which k2 (and ) one of the
following criteria holds:

(2.4) bi(0,n,) = ¥ ™Mb, (6,n),

(2'5) bk+l+1(0’nv) = _{1 - 8(k’ l)/2}bk(07nu)bl(0’nu),

where 8(-, - ) stands for Kronecker’s delta. For such % and [, the correspond-
ing parts of G* and G indeed agree, for example, under (2.4), we obtain that
Tr_1b,(0,n,)yE 1t =b,(0,n)7_1y2 = b,(8,n). It turns out that for the sim-
ple case where T is the sample sum, (2.4) or (2.5) holds for all & (and 1). Hence
G* = G, which should be the case as T* = T and thus G* = G. An explana-
tion of the at first peculiar form of the two criteria is easily obtained by looking
at the expansions of the characteristic functions for this case. See once more
Albers (1988) for details.

Summarizing the above, we have shown how to derive from the expansion
G in (2.1) for T the expansion G* in (2.3) for T* and how to eliminate
apparent differences between these two using criteria (2.4) and (2.5). Next we

apply these results to one-sample rank statistics. Let X;,..., X, be iid rv’s
with continuous df F(x — 6), such that F(—x) = 1 — F(x) for all x. Denote
the order statistics of |X,|,...,|X,Iby0<Z, < --- <Z, andletV, = 1if the

X; corresponding to Z; is positive and V; = 0 otherwise. Finally, introduce the
exact scores a; = a;, = EJ(U,,,) for a continuous function J on (0,1) and
order statistics U;., < --- < U,., of a sample of size n from the uniform
distribution on (0,1). Then the one-sample linear rank statistic for testing
H, =6 =0is given by '

(2.6) T=1Y aV,.

Jj=1
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An expansion G(x —n) to order n~! for the df G(x) of S = (2T -
X" _1a;)/(L7_,a%)'% both under H, and contiguous alternatives 6 =
O(n~'/%), is available from Theorem 4.1 of ABZ, which we shall now quote.

First we give the conditions on the df F and the score function ¢J. Let 2 be
the class of twice continuously differentiable functions @ on (0, 1) that satisfy

Q"(¢)
Q'(¢)

lim sup#(1 - ¢t)

t—0,1 2

Let .7 be the class of df’s on R' with pesitive densities that are symmetric
about zero, four times differentiable and such that, for ¢, = fO/f, W(t) =
Y (F- (1 +8)/2), m =6 my=8,my;=1% m, =1, wehave ¥, € 2 and

limsup [~ [v(x +y)[" f(x)dx <2, i=1,...,4.
y—0 " -

Let / be the class of nonconstant functions J on (0,1) that satisfy J € 2
and [jJ*(¢) dt < «. Moreover, we define using the convention that integration
will be over (0, 1), unless stated otherwise,

(n) n'/29[J ¥,
mn) = - ———3;2 >
(J72)"
. (Y - 6v ¥, + )
o 6(/J¥,)° ’
o 5 oM [[J(s)‘I’i(s)J(t)\I'i(t)(s Nt st dsdr
, 2(/J¥y)
B = [T, B — JJ*
fOB(I(IY) P 1g(jg2)
A ev((Un) W(T) | Tho(I(U)
bO(n) = ]‘J-\P - 2 ‘
1 fJ
Finally, let

(2.8) G(x)=d(x) + Mﬂ nwwwn+2nmf“mmuﬁ
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Then we have:

LeMMA 2.1. LetF e #,J € _Fand 0 <0 < Cn~Y2 for some C > 0. Then
T from (2.6) satisfies
2T~ Xj-1a <x

( ?=1a3)1/2 =

P =o(n7h).

- G(x — n(n))

sup
X

Proor. This result is contained in Theorem 4.1 of ABZ. O

Inspection of (2.7) and (2.8) shows that the terms involving n~n(n)®~® all
satisfy (2.4) if we replace y, by ¥, = (n,/n)'/2. As it can be verified that
Y, — %, = o(n~12), it follows that G* and G agree to the desired order for all
these coefficients. In a similar way one checks that ©7_,y,n, =n + o(n~1).
Hence the only difference between G*(x — X7_,y,n,) and G(x — ) to order
n~! is caused by the b,(n)-term. In fact we obtain that

(2.9) G*(x) =G(x) + ¢(x)%{ Zrll;o(ny) - 50(n)} +o(n™h),

[see Theorem 3.2 of Albers (1988)].

To make this result more transparent, we translate it into terms of defi-
ciencies. It follows from (2.9) that the deficiency d, of the test based on T*
with respect to the one based on T, which simply equals the additional number
of observations required by the former test to match the power of the latter
based on n observations, is given by d, = £7_,b6,(n,) — by(n) + o(1). If, for
example, F is logistic and J(¢) = ¢ (i.e., Wilcoxon scores), d, — (r — 1)/2.
Hence one additional observation already suffices to pay for two additional
subgroups. A simulation study for this case shows close agreement with these
theoretical values. If F is normal and J(t) = ® (1 + ¢)/2) (i.e., normal
scores), we have to pay a penalty i(loglogn + y) + o(1) for each addi-
tional subgroup, where y is Euler’s constant lim, (X% ,i™! - logk) =
0.577216... .

For the application in the next section the one-sample case suffices. In
passing we note that in Albers (1988) the cbnsiderably more complicated
two-sample case is covered as well. Here the number of terms is much larger
and some of these terms are of order' n~'/2 rather than n~!, which necessi-
tates the use of (2.5) in addition to (2.4). Nevertheless, the final result is again
relatively simple to interpret. ,

3. The expansion for the two-stage test. In the two-stage situation we
have an initial sample of size m and a second sample of size N — m, in which
N=N(X,,...,X,,) in general. We shall require that N = N(Z,,), where
Z,, is the vector of absolute order statistics of the first sample. This ensures
that the two-stage test remains distribution-free, since the ranks and Z,,, are
independent under H,. As announced, we shall not consider a single rank
statistic T' of the form (2.6) for the total sample, but instead analyze T* =
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T, + T,, where T, and T, are separate rank statistics for the first and second
samples, respectively.

The first step toward an expansion for the df of T* consists of conditioning
on Z,. As T, depends on the first sample only through N = N(Z,,), it is
immediate that conditionally this statistic is independent of 7', and moreover
has the same distribution as T' from (2.6) for sample size N(z,,,) — m. Hence
Lemma 2.1 directly applies to T,.

For T, the situation is less simple, as it obviously depends on Z,,, in a
more complicated way than T,. Hence, rather than the final result from
Lemma 2.1,we shall have to use as our starting point the expansion condi-

tional on Z,,, (Theorem 2.1 of ABZ), from which G is derived. This condi-
tional expansion has to be modified in such a way that the combination results
of the previous section become applicable. This is achieved by dividing it into a
deterministic part, for which we can simply use G(x — n(m)), and a stochastic
correction part, which keeps track of the dependence on Z,,,.

To be more specific, in analogy to (2.6), define a,; and V; jforj=1,...,m
and a,; and V,; for j=1,...,N —m. Let P,; = P(V,; = 1|Z,)) and m,; =
EP, ;. The leading term in the conditional expansion is ®(x — L7",a,;@2P,; -
1)/(E7,a3)"?), from which the leading term for the deterministic part is
obtained by replacing P,; by ;. The difference is then expanded in powers of
L71ay(Py = myy)

1/2
m 2
(E710%;)

(3.1) U=
Let

K(x) = G(x) + ¢(x){ —2U + | -2(U? - EU?)

1 I7ef{(2Py, - 1)° - E(2P; - 1)°)

H
2 E.;"L:la%j l(x)
2 Em=1(191'(P1 - 771')
+§ J ”;] 2J 3/2 el Hz(x) .
(Z-10%))

We then have:

Lemma 3.1.  Under the assumptions of Lemma 2.1, T, satisfies

P 2T1 - Z;’l:lalj Z K
sup o172 =%lm)| — (x —n(m))
¥ (E710d))

=o(m™1) + 0( Y 12P; —1° + |U|3),

j=1
except on a set of 2,,,-values with probability o(m™1).
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Proor. See Albers (1989), Lemma 2.2. O

It is the term involving U which has to be handled with care. On one hand,
it has zero expectation and as such disappears eventually in ABZ. But on the
other hand, it is in probability of order m ~!/2 and hence here it will produce a
nonnegligible interaction term with N = N(Z,,)).

Conditional on Z,, = z,,, the situation now is as follows: T, and T, are
independent, Lemma 2.1 applies to T, for sample size N(z,,) — m and
Lemma 3.1 applies to 7,. Application of (2.1)-(2.3) and in particular of
(2.7-(2.9), then leads to a conditional expansion for T* = T; + T,. The result
is the expansion G(x — n(N)) from (2.8) for sample size N, with, in the first
place, the correction for splitting from (2.9) with r = 2, n; = m and n, = N —
m, and, in the second place, a stochastic correction part, of which the only
term that matters is the one involving

Liyay;( Py — ;)

1/2°
2 N- 2
(Zm a3, + EYmad))

(3.2) U=

To be more precise, we introduce, adapting the convention that summation
involving a;; or a,; runs from 1 to m or N — m, respectively,

- 1 - -
H(x) = ®(x) + ¢(x){ S N"n(N)(bo(m) + bo(N — m))

3
+N 1Y o(N)® ?b,H,(x) - 20
k=0

(3.3) (—2{Say(Py — 7)) + 2B(Zay, (P — 7))
+izad,{(2P,; - 1)’ - E(2P}, - 1)’}

+ H(x
Tai; + Laj; (%)
2 Tad (P, —my;)
+§ ZJ . 2 ;/2H2(x) .
(Ea1j+2a2j)

Then we obtain:

LemMA 3.2. Let F€ % and J € . Suppose that 0 <8 < Cm™'/% for
some C > 0 and N satisfies P(1 + ) < N/m <e ) =1—o0(m™") for some
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€ >0.Then T* =T, + T, satisfies
2T* — Zalj - Eazj <x

P <
(Za%j + ):azzj)l/2

sup — H(x - n(N))

Zim
(3.4) x ™

=o(N71) + O(ZI2P,; — 1I° + |0P),

except on a set of z,,,-values with probability o(m ™).

ProoOF. See Albers (1989), Lemma 2.3. O

_ Under the hypothesis we have 6 =0, n(N) =0, P,;=3, m;; =3 and
U =0 in (3.2). Hence under H, the expansion H(x — n(N)) in (38.3) boils
down to ®(x) + ¢(x)N~'bgHy(x). Hence the test based on S* = (2T* —

miay; — Ve, ) /(27,63 + £V "a3)'? has critical value £, = £, +

o(N~1), where

(3.5) £, =u,— N"'b,Hy(u,),

with u_, = ® (1 — a). Not only does this result agree with that for the fixed
sample case, but moreover (3.5) also shows that, once T* has been standard-
ized to S* through the conditional mean and the conditional standard devia-
tion, the remaining dependence of the critical value of the conditioning is very
limited. In fact, replacement of N~! in (3.5) by, for example, (EN)~! will
typically result in changes of o(m~1!). Consequently, the unconditional distri-
bution of S* can be used in studying the behavior of the exact conditional test
to o(m~1).

In view of the above, the next step consists of taking the expectation with
respect to Z,,, of the conditional expansion for S*. To ensure that a second
order analysis is possible (and moreover, that it makes sense to go beyond first
order results) we need a condition like: For certain ¢ > 0 and 8 > 1,

(36) P((L+e)<N/m<e')=1-0o(m™t), EIN-ENI”®=0(m?).

Let r > (1 + 2¢)m and define n(r) = —r'/20[J ¥, /([J?)'/2. Moreover, let G,
be G from (2.8) with n and n(n) replaced by r and n(r), respectively. Finally,
define U = (N/r)/2 — 1, and

— - 1 _ . -
H(x) = G.(x) + &(x){ 577 'n(r)(bo(m) + bo([r] = m) —by([r]))

_ 1 —
(8.7) —n(r)EU = on(r)*ETU?H,(x)

I E[OL ] 04 (04(2y) — Enn(2y))]
I, ’
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where [r] denotes the largest integer less than or equal to 7. Then we finally
arrive at:

THEOREM 3.1. Let F € F and J € £. Suppose that 6 = O(m~/2) and N
satisfies (3.6). If r is chosen such that r = EN + o(m'/?), we have

(3.8) sup |[P(S* <x) — H(x — n(r))| = o(m™1).

Proor. Here we shall indicate the steps involved. For details, consult
Albers (1989). We need to show that the expectation of H(x — n(N)) in (3.3)
produces H(x — n(r)) in (3.7) to the desired order o(m~1). Since n(N) =
n(rX1 + U), expansion of E®(x — n(N)) explains the leading term ® in H,
as well as the terms involving EU and EU 2. Moreover, condition (3.6) ensures
that the term with E|U|? is o(m™1).

As concerns the second order part, we note in the first place that it is easily
verified that replacement of N by r causes negligible differences in those
terms which involve 7(-) or b4(-). The remaining terms in (3.3) all have a
numerator with zero expectation. If they are moreover Op(m 1), their contri-
bution to H(x — n(r)) clearly is o(m ~') and thus these terms vanish. The sole
exception is U from (8.2), which is of order m~'/2 rather than m~! in
probability. Replacement of the denominator in (3.2) by NYVZ([J?)1/2 =
ri/%(1 + UX[J*)'/? causes a difference of o(m~1), while expansion of the
resulting expression in terms of U produces a leading term which indeed has
expectation zero, as well as a mixed term involving U, which corresponds to
the last term in (3.7). [Note that 2(P,; — ;) to first order equals —6(y(Z, ;)
- Ellfl(le))]

It remains to show that the set of exceptional z,, -values, which is required
to have probability o(m ~!), causes no trouble. This verification requires some
care, but otherwise can be executed completely along the lines of ABZ. O

The interpretation of this result is straightforward: (3.7) begins with the
fixed sample size result for n equal [to o(m!/2)] to EN, followed by a
correction term to account for the splitting and three terms involving U due to
the sample size being random. The first two of these three terms simply result
from expanding E®(x — n(N)). The complicated last one reflects the interac-
tion between the two stages of the procedure.

4. Tests with guaranteed power. Theorem 3.1 in the previous section
enables us to select N = N(Z,,,) such that the power of the test based on S*
satisfies m*(km~1/2) = 7w, + o(m 1) for given k and m,. We shall concentrate
on the situation corresponding to Stein’s procedure, but the general case can
be dealt with in exactly the same way. Hence F € {F(-/0), o > 0} with
[*x2dF(x) = 1. As [J¥, = [J W, /o, the condition 7*(km~1/2) = 7, will be
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met to first order for
m(u, —u,)’o%J?

(KfJ\i’l)2

(4.1) r=

where u_ = ® (1 — 7).

An 1n1t1a] estimator N, is obtained by replacing o2 in (4.1) by a suitable
estimator S S2 . Essentially we use the sample variance, but as N should depend
on Xy,..., X, only through Z,,, = (Zy,... , Z1,,), we shall select the modi-
fied version S2 =m™ 'L Z}; = m‘l):,’" 1X2 Now a correction term £, is
added to Ny, selected through (3.7) such that it precisely cancels the lower
order terms. The final touch then consists of setting, again denoting the
largest integer less than or equal to y by [y],

(4.2) N = max(m, [N, +f, + 3]).

Consult Albers (1989) for the actual evaluation of f. and the corresponding
proof. For sake of brevity we just present some explicit examples. Write
2 2
m(u,—u,) [~ K
N=max(m,[cl—(2—z—(8,2n— )

K

m

(4.3)

1- + u?
Uove i),

><(1+c2
m

Then we achieve m*(km~/2?) =, + o(m™!) for the normal case F=a,
J@) = o XA +)/2) if we choose ¢,=1, c,=4% and cg= 3loglogm
+ %log log{N,] — m) + y + ju? + 1. For the logistic case F(x) =
(1 + exp(m3~ 1/23c)) 1 and J(¢) = t, we need ¢, = (8/m)% ¢, =4/5 and cg3 =
(5u2 — 3u u, +u+2)/10 + 6/7% + 1. A small simulation study for the
latter example shows a quite satisfactory agreement with the theoretical
results. With 10* simulations for each case, 0.01 <« < 0.05, 0.5 <7; < 0.9
and 10 < m < 20 we find that the realized power typically falls short of the
prescribed 7, by approximately 0.01. By contrast, the simple first order
solution, for which ¢, = c; = 0 in (4.3), is rather bad as it leads to power
values which are typically about 0.10 too low.

To conclude this section, we briefly compare the normal example above to
Stein’s procedure. There N = max(m,[S2/c] + 1, where S2 is the sample
variance and ¢~ ' =m(¢, _;,—t,_1, 1_‘_)2/K , in whlch -1, is the upper
a-point of the t(m — 1)- distribution. After some calculation we obtain for the
expected difference between the sample sizes of the rank procedure and Stein’s
procedure the expression

Lloglog m + 3loglog([N;] —m) + y + zu? + i
—(ua - u")20'2(%ui + uau'rr)/K2a

which will typically be quite small.
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