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ESTIMATING A SMOOTH MONOTONE
REGRESSION FUNCTION!

By ENNO MAMMEN
Universitit Heidelberg

The problem of estimating a smooth monotone regression function m
will be studied. We will consider the estimator m g; consisting of a smooth-
ing step (application of a kernel estimator based on a kernel K) and of a

- isotonisation step (application of the pool adjacent violator algorithm). The
estimator m g; will be compared with the estimator m ;g where these two
steps are interchanged. A higher order stochastic expansion of these esti-
mators will be given which show that mg; and m ;g are asymptotically
first order equivalent and that m ;g has a smaller mean squared error than
mg; if and only if the kernel function of the kernel estimator is not too
smooth.

0. Introduction. The problem of estimating a smooth monotone regres-
sion function m will be studied. Two estimators mg; and m ;g are compared.
mg; consists of two steps: (i) smoothing of the data by a kernel estimator; (ii)
isotonisation of the data by the pool adjacent violator algorithm. The estimator
m g is constructed by interchanging these two steps. Estimates similar to m ;g
or to mg;, respectively, have been studied for instance by Cheng and Lin
(1981), Wright (1982), Friedman and Tibshirani (1984), Mukerjee (1988) and
in the context of estimation of a monotone density or failure rate function by
Barlow and van Zwet (1969, 1970). For an application, see also Hildenbrand
and Hildenbrand (1985).

We consider the asymptotic stochastic behavior of these estimators at a
fixed point x,, where the function m is assumed to be strictly monotone and
smooth. If the bandwidth of the kernel estimator is chosen in the optimal
order n~1/5 the usual kernel estimator mg is monotone with probability
tending to 1 and therefore equal to mg; (Theorem 1). As a kernel estimator,
however, mg is an estimator whose construction is only motivated by the
smoothness of m, whereas m ;g is a modification of m g taking care of the
information that m is monotone. It will be shown that mg;(x,) and m ;5(x,)
are of order n~2/% and that they are asymptotically equivalent in first order.
But mg;(x,) — m;g(x,) is of the only slightly lower order n=8/15 =
n~2/5p=2/15 (Theorem 2). In simulations reported in Section 5, we will see
that the difference between mg; and m ;4 cannot be neglected for moderate
sample sizes. This shows that for a satisfactory comparison of mg; and m g,
an asymptotic higher order analysis is necessary. In Theorem 3, we will give
stochastic higher order expansions of m g;(x,) and m ;g(x,). These expansions
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SMOOTH MONOTONE REGRESSION 725

entail that m,q(x,) has always a smaller variance and a larger bias than
m g (x,). Furthermore, this result implies that mainly it depends on the kernel
function K of the chosen kernel estimator if one should prefer the estimator
mg; or mg: If the bandwidth of the kernel estimator m g is chosen such that
the mean squared error is asymptotically minimized, then m ;4(x,) has asymp-
totically a smaller mean squared error than mg,(x,) if and only if
JK2(¢t) dt] [t?K(¢) dt[K'(¢)> d¢]~! is smaller than a universal constant.

1. Assumptions. For simplification, we will assume that x, = 0 and that
the design points x; are at equal distance: x;, =i/n (i = 0,+ 1,..., + n). The
model is

(1.1) yi=m(x;) +e (—-n<i<n),
where

the random variables ¢; are i.i.d. with E¢; = 0 for —n <i <
(1.2)  n. The Laplace transform E exp(te;) is assumed to exist for
|¢| small enough.

Furthermore, the regression function m: [—1, 1] - R is assumed to be suffi-
ciently smooth and monotone:

(1.3) m is two times continuously differentiable.

(1.4) m'(x) > 0forx € [—1,1] and m'(0) > 0.

For the kernel K: R — R which is used in the construction of the estimates
mg, Mg, Mg; We assume

(1.5) K is continuous.

K is a symmetric probability density function vanishing
outside of a compact set. Furthermore, outside a finite set of
points K is two times continuously differentiable with
bounded second derivative.

(1.6)

2. Construction of the estimates. For a sequence of bandwidths 4,
the estimates mg, m;, mg; and m ;g are defined as follows (for simplification
we do not indicate in the notation that these estimates depend on n.) In the
case of equidistant design points, the kernel estimator may be defined as

(2.1) m(x) = Z k(52

-_— n

mg; is defined as the L,(—1, 1])-projection of mg onto the monotone func-
tions

(2.2)  [(msi(x) —mg(x))’dx= inf [(g(x) - mg(x)) dx.

£ monotone

The estimate mg, is a slight modification of an estimate introduced by
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Friedman and Tibshirani (1984). A similar estimate has been proposed by
Wright (1982) [see also Barlow and van Zwet (1969, 1970)]. The estimate m ;g
is constructed by interchanging the smoothing step and the isotonisation step

I Y

ni=-n n

1
(2.3) ms(x) = nh

where (Y;*) is the least-squares projection of (Y;) onto the monotone tuples
{(Z):Z_, < --- < Z,} (isotonic least squares regression):

—n =

n

(2.4) Y (W -Y) = inf Y (Z-Y):

- Z, monotone i=—n
The linear interpolation of (Y;*) will be called m,. The estimator m g has
been proposed in Mukerjee (1988). The asymptotic distribution of the process
(Y;*: —n <i < n) is given by Groeneboom (1985, 1989). For a further discus-
sion of isotonic regression, we refer to Barlow, Bartholomew, Bremmer and
Brunk (1972). We want only mention that ¥,_, Y;* is the greatest convex
minorant of ¥, _, Y; and that

1 v

> Y,

v=i u<i U — uj=u

(2.5) Y,* = min max

12

Furthermore, (2.2) implies that [*; mg;(¢) dt is the greatest convex minorant
of [*, mg(¢)dt and that

1

vV—u

(2.6) mg;(x) = inf sup

V=X U<x

[ms(t) dt.
u
3. Results. It is well known that for two times continuously differentiable

regression functions optimal choices of the bandwidth A, of the kernel
estimator m g are of order n~1/%, Without loss of generality, we assume

(3.1) h,=n"15

For this choice of bandwidth the derivative of mg is a consistent estimate of
m'. This will show the statement of the following theorem.

THEOREM 1. Assume (1.1),...,(1.6), (3.1). Then mg;(0) = m4(0) with
probability tending to 1.

In the next theorem, we show that m g;(x,) and m ;g(x,) are asymptotically
equivalent in first order but that mg;(x,) — m;g(x,) is of the only slightly
lower order n~=8/1% = n~2/5,-2/15 The proof of Theorem 2 (and Theorem 3)
will be based on the following representations: by Theorem 1 we get, with a



SMOOTH MONOTONE REGRESSION 727
probability tending to 1

msi(0) = n® [* 7 K(n'/%s) dPy(s),
mus(0) = mgy(0) = n¥/% [~ K(n/%s) d(Pg - P,)(s)

-1/5
= —n2/5 f_"n_l/sK’( nl/5s)(P:(s) — P,(s))ds
where P, is the partial sum process, defined by P,(s) =n"'L Y, se

i<ns “i

[-1, 1], and where P/ is the convex minorant of P,. Results in Prakasa Rao
(1969) and Kiefer and Wolfowitz (1976) suggest that the distance between P,
and P¢ is of order Op(n~2/3) at fixed points. Moreover, the results in
Groeneboom (1985, 1989) suggest that, for fixed M > 0 and s, € (—1, 1), the
process {n¥*[P(s, + n~3s) — P (s, + n=1/3s)]: s € [-M, M ]} converges in
distribution to a nondegenerate limiting process. If this process is sufficiently
mixing, this would give that

n8/15(mzs(0) — mg;(0))

— —n—1/15fn2/15 K’(n‘2/15s)n2/3(P,f(sn_1/3) _ Pn(sn_l/a))ds

— n2/15

has a nondegenerate limiting distribution.

THEOREM 2. Assume (1.1),...,(1.6), (3.1). Then
(3.2) ms(0) = mg(0) + Op(n=%").
In the next theorems, we will give a stochastic higher order expansion of

mg; and m;g. This expansion will be used in the next section for an asymp-
totic comparison of the bias and variance of mg; and m .

THEOREM 3. Assume (1.1),...,(1.6), (8.1). Then there exist independent
random variables U, , and U, , wzth EU, , = 0 and EU, , = 0 such that for
some universal positive constants c,, ¢, and cg, the followmg hold:

(3.3) mg(0) =m(0) + B, + Uy, + op(n=2?),
(34) m;s(0) =m(0) +B,+6,+(1—¢,)U, + U2,;L + 0p(n=2/3),

where
B, = Ems(0) — m(0) = 3m"(0) [¢2K(¢) dtn %" + o(n~¥/"),

(3.5) 6, =cya?3m"(0)m'(0) *>n-2/3,

£, = cza4/3m'(0)“‘/3f(K'(t))2dt([K?(t) dt)—ln"“/“’.



728 E. MAMMEN

Furthermore, n?/°U, , and n%'U, , are asymptotically normal with vari-
ances oK 2(1,‘) dt and clcrlo/ 3(m’(O)) 4/ 3/(K'(¢))? dt, respectively.

The consequences of Theorem 3 will be discussed in the next section.
Theorem 1 and 3 do not hold if K is not continuous. Cons1der for instance the
rectangle kernel Kgp(x) = 31(lx| < 1). Then mg(0) = 3n'/5(P(n~?) —
P(—n"%%) and m4(0) = %n1/5(P°(n‘1/5) — Pi(- n‘1/5)) This gives
m ;5(0) — mg(0) = Op(n~"/1%) because of P:(s) — P,(s) = Op(n=2/3).

THEOﬁEM 4. Assume (1.1),...,(1.4), (1.6), (38.1). K is assumed to be contin-
uous only outside a finite set of points and to make at these points jumps
A, #0@G=1,...,2I). Then

(3.6) mg(0) = mg(0) + 0p(n™51%),
(3.7 ms(0) = mg(0) + Op(n™"/1%).

There exist universal positive constants ¢, and cs and independent random
variables U, , and (E,,V,,) with EU, , =0, EV, , =0, E, = Op(n™?/1%)
and E(E,) = c5o?/3m'(0)~2/3L 2L | A2([K2(t) dt) " 'n~2/1 such that the fol-
lowing hold:

(38) mg(0) =m(0) + B, + Uy, +o0p(n™%"%),

(3.9) ms(0) =m(0) + B, + (1 - E)U; , + Vy,, + 0p(n™%"),

where ﬁn = Em5(0) - m(0) = sm"(0)[t2K(¢) dt n=2/5 + o(n~2/5). Further-

more, n?/°U, , is asymptotically normal with variances o*K*(t)dt and
n"/ 15V has a nondegenerate limiting distribution with variance

C 0,8/3 /(O) 2/32 A2

4. Interpretation of the results.

REMARK 1. Theorem 3 can be used to calculate the second order asymptotic
variance (as. var.) and bias (as. bias) of m;4(0) and mg;(0) for the kernel
K,(t) = (1/h)K(t/h)—this would correspond to the use of the kernel K with
bandwidth A, = hn~'/5 in the case of n observations [see (3.1)].

as. var.(ms(0)) = Uz%sz(t) dtn=*5,
as. var.(m;5(0)) = a"’%[KZ’(t) dtn=/3
+ (¢ — 2c2)0-10/3m (0)-4/3 f(K (t)) dtn=16/15,

as. bias(mS,(O))2 = B2,

as. bias(m 5(0))" = B2 + 030'4/3’”"(0)2"1'(0)_4/3h2ft2K(t) dtn=16/15,
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The simulations of the next section suggest that ¢, < 2c,. Therefore,
isotonising the observations leads to a variance reduction and a larger bias.
Furthermore m;g(0) has a smaller asymptotic mean squared error than
m ¢;(0) if and only if

R[tK (¢) dtm"(0)®  2¢, — ¢,
< .
o YK'(t)* dt cg
In the special case where h is chosen such that the asymptotic mean squared
error of mg(0) and m g;(0) is minimized [roughly this may be the case if the

integrated mean squared error is nearly minimized and m"(s) varies not too
much], this is equivalent to

JK?(¢) dt - 2¢, — ¢,
[£2K (t) dt(K'(¢)® dt ¢s

Note that the left-hand side depends only on the chosen kernel K. This term is
large for smooth kernel K. This suggests not to isotonise the observations (i.e.,
to use mg) if K is smooth (see also Section 5).

REMARK 2. If K is discontinuous and fulfills the conditions of Theorem 4,
then m ;5(0) and mg;(0) have the following second order asymptotic variance
and bias if the kernel K,(¢) = (1/h)K(¢/h) is used (i.e., h, = hn~1/%):

1
as. var.(mg;(0)) = azz/Kz(t) dtn=4/5,

1
as. var.(m;g(0)) = a2sz2(t) dtn=4/%
+ (cq — 2¢5)0%3m'(0) "¥2 ¥ AZp~14/15,

as. bias(mg;(0))” = as. bias(m,s(O))2 +o(n"1%18) = B2 + o(n~=?%).

The simulations of the next section suggest that ¢, < 2c5. Therefore isoton-
ising the observations leads to a variance reduction. Furthermore m ;5(0) has
always a smaller asymptotic mean squared error than mg;(0). For small
sample sizes this should be carefully interpreted because of the small differ-
ences of the orders of convergence.

REMARK 3. Theorems 3 and 4 are examples that higher order stochastic
expansions should be carefully interpreted. In Theorem 3, 5, and ¢,U, , are
of smaller order than U, ,. Therefore, m 5(0) = g8, + m(O) + U, + U2 "
0p(n~%1%) with U, , and U, , independent. But nevertheless, m 5,(0) = g, +
m(O) + Uy, + 0p(n~8/1%) has a larger asymptotic variance than m ;5(0).

REMARK 4. If m is increasing but m'(0) = 0, then mg(0) is no more
asymptotically equivalent to m g;(0). Then the random bandwidth of m; (i.e.,
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the distance between neighboring wedges of Sf) is significantly larger (at least
of stochastic order n~/7) than n~'/® [see Wright (1981), Leurgans (1982)].
Simulations suggest that then isotonisation of the observations leads to a bias
reduction and a variance reduction [compared with m g(0) or m g,;(0)].

REMARK 5. The assumptions that the design points are equally spaced and
that K has compact support can be weakened. Furthermore (Y;*) and m g
can also be weighted least squares estimators.

REMARK 6. For the validity of the theorem it is not necessary to assume
that m is monotone on the full interval [—1,1]. For instance, it suffices to
assume that m is monotone in a neighborhood of 0 and bounded away from
m(0) outside this neighborhood.

REMARK 7. An analogous result for the estimation of (locally) isotone
densities can be derived in a straightforward way.

5. Some simulations. We have carried out 100 simulations for the
following regression functions:

mq(x) = exp(x/2) (0<x<1)
my(x) = exp(x) (0<x<1)
mg(x) = exp(2x) (0<x<1)

m4(x) = const. (0<x<1)

The n random variables ¢; are assumed to have a Gaussian distribution
N(0, 1). The design points are taken equispaced on [0,1] x; :== i/n. n is taken
as 200. For the triangle kernel K, (u) = (1 — |u|)*, the mean squared error
MSE(m ) = E(m ,(x,) — m(x)? of m, = m;g, mg;, mg and m; has been
estimated for x, = ;. Furthermore, the proportion Ig; s1s of cases has been
evaluated where the squared error of mg; was less than the squared error of
mg. The results are summarized in Table 1. For every row of Table 1, the
same 100 Monte Carlo simulations have been used. The differences of the
mean squared error of m; for the same regression function are due to
(pseudo) random fluctuations. The bandwidth 4, for the smoothing step of
mg; and m;g which minimizes asymptotically the integrated mean squared
error (IMSE) of the kernel estimator m g are larger than 0.5 for m; and m,
and equal to 0.22 for m.

Furthermore, we have carried out 5000 simulations to estimate the con-
stants in Théorem 3 and Theorem 4. For the estimation of ¢;, ¢, and ¢3 in
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TABLE 1
Monte Carlo estimates of the mean squared error at x, = § for mg;, mg, mg and m

h, MSE(mg,) MSE(mg) Isi/1s MSEGmg) MSE(m,)

m, 0.357 0.0094 0.0074 0.32 0.0097 0.0145
my 0.45 0.0068 0.0063 0.45 0.0068 0.0122
my 0.181 0.0147 0.0106 0.32 0.0161 0.0247
my 0.363 0.0088 0.0079 0.48 0.0088 0.0202
mgy 0.45 0.0101 0.0099 0.56 0.0101 0.0262
mg 0.078 0.0332 0.0304 0.46 0.0347 0.0564
mg 0.156 0.0215 0.0204 0.49 0.0215 0.0522
mg 0.45 0.0431 0.0454 0.86 0.0431 0.0558
my 0.45 0.0072 0.0055 0.38 0.0073 0.0078

Theorem 3, we have estimated the expectation and the covariance matrix of
(mg(xq), m5(x,)), where m(x) = x% (0 < x < 1) is estimated at x, = 0.5 by
n = 60 observations. We have used the quartic kernel Ky(x) = $5(1 — x?)?
with bandwidth %, = 0.4 and the Gaussian kernel K (x) = ¢(x) with band-
width A, = 0.15. The variance of the observations has been chosen as o2 =
(0.2)? or equal to (0.6)2. The results are summarized in Table 2. The last line
of Table 2 can be compared with [K?d¢[[t2Kdt/(K)?dt]™! for different
kernels K. One gets 2.0 (for the triangle kernel K;), 2.3 (for the quartic
kernel K,) and 2.0 (for the Gaussian kernel K). This suggests to use mg;
and not m ;g for these Kernels (see Remark 1). But note that m, does not
behave better in the case of undersmoothing (see Table 1). For the estimation
of ¢, and c¢; in Theorem 4, we have estimated the expectation and the
covariance matrix of (m g;(x,), m ;g(x,)) for the regression function m(x) = x
(0 < x < 1) at x, = 0.5. We have used the rectangle kernel K (x) = 31(lx| < 1)
with bandwidth &, = 0.4 for n = 60 observations. The variance of the obser-
vations has been chosen as o2 = (0.2)% or = (0.6)%. The results are summa-
rized in Table 3. These simulations suggest that ¢, < 2c; and that m ;g(0) has
always a smaller asymptotic mean squared error than mg,;(0) if a discontinu-
ous kernel is used (see Remark 2).

TABLE 2
Monte Carlo estimates of the constants c,, ¢, and cg in Theorem 3

o =02 o= 02 o= 0.6 o= 0.6

K=Kg K=Kg K=K, K=Kg;
¢ 0.11 0.11 0.09 0.08
Cy 0.27 0.31 0.19 0.15
c3 0.50 0.48 0.42 0.34
2¢, — ¢, 0.43 0.51 0.29 0.22

(2cy — ¢y)/c3 0.86 1.07 0.68 0.62
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TABLE 3
Monte Carlo estimates of the constants c4 and c5 in Theorem 4

=02 c=04
cs 0.14 0.11
cs 0.21 0.16
2¢c5 — ¢y 0.28 0.21

6. Proof of the theorems.

Proor oF THEOREM 1. Choose ¢ > 0 small enough. We will show

(6.1) inf m'g(x) > 0 with probability tending to 1.
—E<X<E

(6.2) sup mg(x) < inf mg(x) with probability tending to 1.
x<-—¢ x=z€

(6.1) and (6.2) would imply the statement of Theorem 1. But (6.1) and (6.2)
follow from

(6.3) sup |m®(x) — m®(x)| =0p(1) fork=0,1.

-l<x<1
(6.3) follows from Lemma 5.2 in Miiller and Stadtmiiller (1987) for two times
continuously differentiable kernel K [see also Chapter 11 in Miiller (1988)].
For kernels K fulfilling (1.5) and (1.6) statement (6.3) can be proved along the
lines of the proof of this lemma. O

ProoF oF THEOREM 2. Theorem 2 follows directly from Theorem 3. O

Proor oF THEOREM 3. For the proof we will use strong approximations of
the partial sum process j — L, _;Y;. By Komlés, Major and Tusnady (1975),
there exists a sequence of two-sided Brownian motions W,, starting at W,(0) =
0, constructed on the same probability space as the ¢;’s and a constant C with

1 k
(6.4) lim sup sup (\/EW,,(k/n) -y 5) <C,
n logn 1 kcn i=1
1 . k-1
(6.5) lim sup sup (\/EW,,(—k/n) -y s) <C.
n logn i pen i=0
Put
(6.6) S,(s) fs()d+1W()f l1<s<1
) s)= | m(s)ds + —W,(s) for-1<s<]1,
n 0 ﬁ n
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where [§ -+ is defined as — [0 -+ for s < 0. Then

1 k j logn
—n<j,k<n|M j—j4+1 n n n

1 * k j log n

68 s |- % Yi*—(sz(—)—sz(i)) =0p( c )
—n<jk<n|M j=j+1 n n n

where f°¢ denotes the greatest convex minorant of a function f. By partial
summation one can easily deduce from (6.7) and (6.8)

(6.9)  mg(0) =n'/ [ "_Z;K(nl/ﬁs)sn(ds) + 0p(n~*5log n),

(610) my5(0) = n¥/® [" K(n'/%5)S5(ds) + Op(n~*logn).

Now let

(6.11) T,(5) = 8.(5) = =8:(5) X,
where

(6.12) X, = n!/10 j_"n/ ;K(nl/5s)Wn(ds)
and

-1
S n—1/5
(6.13) gn(s)=(nl/m/_n_vsK(nl/st)dt)(n1/5 J _1/5K2(n1/5t)dt) .

-n

Then T,(-) and X, are independent because of

1
E(X,(T.(s) — ET,(s))) = —‘/’ITE(Xn(Wn(S) ~ 8a(8)X,)) = 0.

Define

(6.14) U, , = n"¥°X,,

(6.15) Uy, = ni/ ]_'":;K(nl/és)(T,f(ds) — m(s) ds),
1 .

(6.16) E,= —n' [" 7 K(n7%5)(84(5) - £3(5)) ds,

where g*(s) = (V(s) — U(s))[$)g,(s) ds and U(s) < V(s) are the two wedges
of S; (i.e., points, where the slope of S: changes) nearest to s (g7 is the
derivative of the linear interpolation of g, restricted to the wedges of S?).
Theorem 1 yields

(6.17) mgr(0) =m(0) + B, + Uy , + op(n™2/3).
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Furthermore, on the set A, = {the wedges of S¢ and T, coincide}, one gets
[see (6.10), (6.11) and (6.15)]
ms(0) =m(0) + B, + Uz, - E, X,
(6.18) + %nvs f_"n/ ;K(nl/ss)g,’,(s) dsX, + op(n=%?)
=m(0) + B, + (1 — n¥°E,)U, , + U , + 0p(n™%?),
where in the last equation (6.19) has been used

(6.19) %nl/s [_"”l ;K(nl/ss)g;,(s) ds = %nlﬂo.
For the theorem it remains to prove

(6.20) P(A,) -1,

(6.21) n?%E, — ¢, = op(n~ 1),

6.92 n®/18U, . is asymptotically Gaussian with expectation
(6.22) 15/ 155 "and with variance c¢,0'%/3(m'(0))~*/3/(K'(t))? dt.

Proof of (6.20). g, , and g, , are defined by
(6.23) g, :(s) =n'/1° f . K (n'/%) dt/ f “'K2(t)dt forls| < 2n"1/5,

where K (s) = [ (K'(¢))* dt and K, (s) = [ (K'(¢))” dt. g, , and g, , are
convex functions and g, = &, 1 — &, 2- Now let for a small enough a, = n®"1/2
and Sn += S + angn 1+ Q,8n,2 and Sn -= Sn ngn 1 ngn 2° Then
with probablhty tending to 1, X, < n® and therefore (@8, +)” has more wedges
than S¢ and T,y and furthermore (S, _)° has less wedges than S¢ and T. So
it remains to show that every wedge of (S, ) is a wedge of (Sn _) (w1th
probability tending to 1). This follows if S, _ restricted to the set of wedges of
(S, .)° is convex (with probability tending to 1). We will show this by proving:

~1/5 n=1/5) are greater than

(i) All changes of slopes of (S, ,)¢ in (—n
b, = n~7/15~= (with probability tending to 1).

(i) All changes of slopes of 2 a,(g, 1 + &,2) = S, _ [restricted to
the set of wedges of (S, ,)°] are smaller than b, (w1th probability tending

to 1).
For the proof of (i), note that

With probability tending to 1, (Sp, +)° has less than
n®/2nl/3-1/% wedges in [—2n~1/5,2n"1/5],

Furthermore, from the first equation on page 103 of Groeneboom (1989), one
can show by integrating a bound of the right side:

(6.25) P(the next change of slope after s is smaller than bn~'/%) < const. b.

(6.24)
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Therefore
P(all changes of slopes of (S, ,)° in (-=n~'/% n"1/%) are
greater than b, = n~"/1579)
> (1 — const. n'7/15“”“1/3)"“/2)'1/3_1/5 -

For the proof of (ii), note that
(6.26) gy ;= 0(n1).

Furthermore, from the proof of Lemma 6.2 in Prakasa Rao (1969) it can be
seen that P ((W(s) + s2)° has no wedge in [0, c]) < const. exp(—c3/32). This
implies

The maximal distance between two neighboring wedges of

(S, ) is of order Op(n~'/2log(n)).

(6.26) and (6.27) imply that the maximal change of the slope of 2a (g, ; + &, 5)
[restricted to the set of wedges of (S, )] is of order

Op(a,n®'°"1/%log(n)) = Op(b,)

(6.27)

for a small enough.
Proof of (6.21) and (6.22). First we prove the asymptotic normality of
U, . = mys(0) — mgr(0) + E, X, + 0p(n™/?)

=U,, +o0p(n7%?%) = IjZ,n + Op(n=%/1%),

where
Ty, = n/® [* 7 K(n/ot)(S5 — 8,)(dt)
15 .

= —n2/5 f_n_l/sK(nl/st)(S"(t) — S, (t))dt

and
UZ,:n = Ijz’n + 8nUl,n'

Define

ti = —n_1/5 + in—4/15(logn)2
Put

7 = n14/15f‘i K'(n/5t)(8,(t) — S(¢)) dt.

i-1

Then one gets

1
n®BU; = ¥ Z; +0,(1).

i=1
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Now define

z, = n'/1 [* K(n¥/51)(S,(t) - Si(t)) dt,
tz—l

where for s € (t,_,,¢,), the function S¢(s) denotes the greatest convex mino-

rant of S,(s) restricted to (¢,_,, ¢;). Now note that

0 < S(s) — Si(s) <8,(s) — Si(s)
and
sup S,(s) — S5(s) = o0,((log n)n~-2/?)

—n~Vi<s<n1/5

[see Kiefer and Wolfowitz (1976)] .
This and (6.27) imply that

sup |Z, - Z,| = op((log n)2n_1/l5)
l<i<I

.

and that
I
nd¥U, = Y. Z, +0p(1).
i=1

For the proof of asymptotic normality of n8/'°Uj ,, first note that the Z;’s are
independent. Furthermore, bounds of the variance and the fourth central
moment can be calculated by an application of the following two inequalities
[suppose m'(0) = 1]

E(M(5)*|U(s) = u,V(s) =)
(6.28) \
< const.(k,e)exp((% +¢)[n'3(v — u)] ),

(6.29) supEexp((% —&)[n*3(V(s) - U(s))]g) < const.(¢),

where £ > 0 and where U(s) < V(s)~are the two wedges of S¢ nearest to s
and where M(s) = sup[n2/3(S,(t) — Si(#)): U(s) <t < V(s)].

(6.28) follows from the following upper bound of the conditional density of
M(s)

P(M(s) €dt|U(s) =u,V(s)=u+n"'/%)

< const. ) exp(%&g/k2)a'k_1¢((t - 250,3)/0'k)(t/0k)3 dt,
k>1
where o2 = 15 /k2.

This bound can be derived from formula (11.10) in Billingsley (1968) by an
application of the Cameron-Martin-Girsanov formula [see also the proof of
Lemma 2.1 in Groeneboom (1989)]. The proof of (6.29) can be based on an
upper bound of the right-hand side of the first equation on page 103 of
Groeneboom (1989) [see also (6.25)].
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Now one can show by application of (6.28) and (6.29) that for s; < s, < s5 <
sy € (840

EA,(5,)A,(s;) < const.n™*/3 exp(—const. n'/3(s, — s,)),

EAn(Sl)An(S2)An(s3)An(s4)
< const. n "% exp( —const. n'/3(s, — s, + 54 — 53)),

where A (s) = S,(s) — §5(s) — E(S,(s) — §¢(s)). The first inequality can be
proved by introducing two new processes S, ; and S, , with the same
distribution as S, and such that S, (s) = S,(s) for s <s,, = (s; + 5,)/2 and
S, o(s) = 8,(s) for s > s, and such that the processes S,,(S, (s) — S,(s,,):
s >s,,) and (S, (s) — S,(s,,): s <s,) are independent. Now define A*(s,)
and A%(s,) as A, (s,) and A, (s,), but with using S, ; (or S, ,, resp.) instead of
S,. Then the first inequality follows by estimating EA,(s))A,(sp) —
A%(s)A%(sy) = EA,(s,)A,(s;). The second inequality follows similarly. These
two inequalities give bounds for the moments of Z; which show the asymptotic
normality of U, ,. The mean and variance of U, , can be calculated using that

EUZ, = n~2/5 [* Km0 E(S,() — S3(0) dt + o(n ),
var Uzﬂn = E(UZ”,n)2 + O(n_4/3)’

-1/5 -1/5
— p4/5 fn j‘n K’(n1/5s)K'(n1/5t)

S VTS VA
XE((S5—8,)(s)(S5—8,)(t)) dsdt + O(n=%3).
The proof of (6.21) is straightforward [see (6.29)]. O

Proor oF THEOREM 4. First we prove (3.6). Note that m g(x) is a weighted
average of a kernel estimate [with a kernel fulfilling (1.5) and (1.6)] and of
kernel estimates with rectangle kernels (with different bandwidths). There-
fore, because of Theorem 1, we can assume without loss of generality that K is
the rectangle kernel K(x) = 3$1(|x| < 1). Choose 0 < § < 15 and put m¥%(x) =
mg(x*), where x* is the element of y,Z lying next to x for y, = n~8/1%"2
First note

sup |Em%(x) ~ Emg(x)| = o(n™%1%)

-1l<x<1

and
k
sup n 8 g = Op(n_17/3°‘5/2 Vlog(n) ) = 0p(n=81%).
k—j<ni/15-5 i=j
This implies

(6.30) sup [m§(x) —mg(x)| =o0p(n*").

—-1l<x<1
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We will show
(6.31) supm¥(x) <m¥%(0) < J:Izlf(;m§(x) with probability tending to 1.
x<0

This implies

(6.32) P(m%(0) = m¥%,(0)) > 1 for n — o,
where m¥%;(x) = inf,, , sup, ., (v — w)~Ym¥%(¢) dt. Using (6.30), one gets
(6.33) - m%1(0) = mg;(0) + op(n=%%).

This shows (3.6). It remains to show (6.31). First note that for ¢ small enough
and n large enough,

n'® inf |Em%(x) — Em¥%(0)| > ¢

lx|>n—1/5

and

e 1Emy(x) ~Emy)|
Yo <lx|<n=1/% ||
Therefore it suffices to show
(6.34) n'/® Supl/5|m§(x) - m%(0) — (Em%(x) — Em%(0))| = 0p(1)
lx|>n~

and
(6.35)
|mg(x) — m5(0) — (Emj(x) — Em3(0))|
sup =0p(1).

y, <lxl<n=1/5 |x|

Proof of (6.35). Choose x with y, < |x| < n™1/5, Then there exist a set I
(with at most 2xn elements) and s; € {—1, 1} (for i € I) with

p ) =m0 = (B0 ~En ) )
X

S:E:
=p(n—4/5 y 2% C)
iel *

(6.36)

tb‘i #{i:s;=1)
< exp( —tC){EeXp(mT/)}

g te, #i:s,=—1)
X exp __xn4/5 ,

where ¢ = pxn®/® (with a p chosen small enough). Now note that for a
constant C,, because of (1.2), E exp(ue;) < 1 + Cyu? for |u| small enough and

3/5
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that ¢/(xn*/®) - 0. Therefore the last term of (6.36) can be bounded by

IA

2
exp(—tC + #ICO{ﬁ} )
< exp(—xn®*{Cp — C,2p%})
exp(—n!/17%{Cp — C,2p?}).
With the same arguments one can show

P(‘ mi(s) =m0 = (Bi(s) - En )|, ‘)

X

IA

(6.37)
< 2exp(—n1/15_‘s{C'p - Co2p2}).

(6.37) implies (6.35) because v,Z N {x: vy, < |x| < n~1/%} contains at most
2n3/5 elements. (6.34) can be shown with similar arguments.

(3.7), (3.8) and (8.9) can be proved with similar arguments as in the proof of
Theorem 3. O
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