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CHAINING VIA ANNEALING!

By M. Evans

Uni‘versity of Toronto

Chaining, in combination with adaptive importance sampling, can
provide an effective technique for the numerical evaluation of high-dimen-
sional integrals in the context of a posterior analysis. In many statistical
problems ways of applying chaining can be found which depend heavily on
the structure of the problem. In this paper we consider a very general
method of implementing chaining for arbitrary integrals. Also, we show
that chaining can be applied to solve global optimization problems and
prove several generalizations of a theorem of Pincus.

.

1. Introduction. We are concerned here with the numerical evaluation
of integrals

(1) [ f@)u(d),

where X is a metric space, u is a measure on the Borel sets and f: X —> R is
Borel measurable; typically X = R* and u will be Lebesgue measure. Such
problems arise in many fields and often it is very difficult to obtain reliable
methods of approximation. In the statistical context intractable high-dimen-
sional integrals are a frequent occurrence in Bayesian analyses.

A very general approach to the approximation of (1) is via importance
sampling. For this we suppose that I is a probability density on X, with
respect to u, which is easy to generate from and whose support contains that

of f. We then generate a sample x,,..., x5 from I and approximate (1) by
1 N
(2) N Z f(x)/1(x;).
i=1

By the strong law of large numbers (2) converges to (1) as N — «. If a poor
choice is made for I, however, then an adequate approximation may not be
obtainable within practical computation times. As dimension grows it becomes
increasingly difficult to make a good choice of I as this must be based on
properties of f. We note that the problem here is quite often not in choosing
an I which is in some sense optimal or close to optimal for the approximation
of (1), but in finding any I which gives an adequate approximation within
reasonable computation times.
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When our criterion is minimizing the variance of (2), the optimal choice of I
is

(3) |f(x)

/ J1£(x) n(dz);

see, for example, Rubinstein (1981), pages 122 and 123. It is rarely feasible to
generate from (3) but it does suggest that we try to choose I to mimic (3) as
closely as possible. In the following section we discuss a method of adaptively
choosing I from a family .7, as we sample. This leads to an approximation to
(1) and a choice of a member of I which best fits (3) according to a criterion
which we describe. Further discussion of adaptive approaches to high-dimen-
sional integration can be found in Lepage (1978), Friedman and Wright (1981),
Smith, Skene, Shaw and Naylor (1987) and Evans (1988).

The success of adaptive importance sampling depends, in part, on the initial
choice of importance sampler I; € . and it is often difficult to do this
successfully. The idea behind chaining is to start the adaptive importance
sampling at an integration problem (1) for which we know a good choice
I, € 7. Obtaining the best-fitting I, € # for this problem, via adaptive
importance sampling, we use I, as the starting importance sampler for a new
problem obtained by making a small change in the integrand and find the
best-fitting I, and so on. In this way we construct a chain to the problem of
interest. In Section 3 we show that any integration problem can be approached
in this way and in Section 4 relate this to global optimization problems. In
Section 5 we discuss some practical problems and issues associated with this
technique and present an example.

2. Adaptive importance sampling by matching characteristics. To
get around the problems associated with importance sampling, which we have
just discussed, we work instead with a class .7 of densities with respect to u
and adaptively choose I € #={I,|A € A} as we sample, to agree more and
more closely with (3). Of course for each element of .# we must have available
an algorithm for sampling.

To adaptively fit I, € .7 to (3), we let m(2A) be a vector of characteristics of
I, each of which can be computed via an expectation and let m* be the
corresponding vector for (3); for example, m(A) might consist of various
moments and the probability contents of various subregions of X with respect
to I,. Typically, the dimension of m will correspond to that of A so that misa
1-1 function. The fitting then proceeds as follows:

1. Select I, € .7 to start.

2. Generate x,,...,xy from I, and estimate m* by m,; using the obvious
estimates; e.g., if X = R! and the mean of I , is an element of m(A), then
estimate the mean of (3) by

(4) Ziax] £(x) /(%)
L f(x) |/ Ix)
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3. Find I, € .# which minimizes |th; — m(A)|* and call this I, .
4. Generate xy.,1,...,Xyy from I, and compute a new estimate m, of m by
combining the samples; for example, (4) becomes

x| f(x) |/ (%) + E v f(x;) |/, (x;)
Efv=1| f(x;) I/IAl(xi) + Z?£N+1I f(x;) |/IA2(xi)

5. Repeat step 3 using m, and continue until the process stabilizes.

(5)

Provided we have chosen .7 sensibly, we will have that th, - m* and in
practice this can be much faster than with straight importance sampling.
When things are reasonably stable we can begin to estimate (1) while continu-
ing to adaptively choose I, and combining our estimates as above.

For a discussion of the construction and fitting of families .# appropriate to
many statistical contexts, see Smith, Skene, Shaw and Naylor (1987) and
Evans (1988). Step 3 typically requires that we have constructed a table
containing at least some of the components of m(A). The fitting is then
accomplished by searching the table. The construction of these tables is
generally a good investment as they can be used for many different integration
problems.

Even if the family .7 is chosen appropriately; that is, a reasonable approxi-
mation to (3) exists in 7, the algorithm described above may fail if I, is far
from the best-fitting choice. This is particularly true as dimension rises and
space becomes sparser as it takes more and more function evaluations to
obtain meaningful information about (3). The technique of chaining described
in the next section was designed to get around this problem.

3. Chaining for integration. Chaining combines with adaptive impor-
tance sampling, as described in Section 2, to ensure that our computation does
not fail due to a poor starting point. In general chaining proceeds as follows;
we consider the integral (1) as a member of a class of integrals

(6) [ fo(x)n(dx),

where 6 € Q and (6) converges to (1) as 6 — 0, where f, =f. Further we
suppose that for at least one value 6; € Q we know a good starting choice
I, € 7 for the adaptive importance sampling of Section 2. We start at I, for
the integration problem given by 6,, find the best-fitting I, for this problem;
that is, stop when things are reasonably stable, then use /,, as the starting
value for the problem given by 6, where 6, € () is chosen to be a small step
away from 6, towards 0,, then find the best-fitting I,, for this problem and
continue in this fashion constructing a chain from 6, to 6, . If at any stage we
take too large a step, the process may fail and this is typically indicated by
unrealistically small fluctuations in the estimates of the fitting quantities. In
such a situation we go back one step and choose a smaller step-size. Typically,
we will choose the class so that, in some topology an ), (6) is continuous in 6.
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In Evans (1988) this approach was discussed for the posterior analysis of
linear models where high-dimensional integrals arise quite naturally. In that
context, and in fact in many statistical problems, the class {f,|0 € Q} suggests
itself very naturally and (6) will often have a statistical interpretation and use
as a marginal posterior probability or likelihood; see Evans (1988). In such
cases the family {f,|6 € O} depends heavily on the structure of the problem
and in general we can say that the greater this dependence the more efficient
the chaining will be. When presented with an arbitrary integration problem, it
is not clear how we should proceed to choose {f,|6 € Q). We present one
approach here which has obvious connections with the technique of simulated
annealing; see, for example, van Laarhoven and Arts (1987).

Given that we have decided on using .#= {I,|A € A} for the adaptive
importance sampling, we put Q = (0,%] X (0,%] X A and, assuming without
loss of generality that f(x) > 0 everywhere, define

(7 f(t,u,A)(x) =f1/t(x)1/«1/u(x)-

If f is not nonnegative everywhere, then we work with |f| and estimate (1)
using the best-fitting I € .# for |f|. Clearly, for fixed A,, when ¢ is large
enough, f, ,, is like I, in that region of X, where I, puts mass and it is
clear that the appropriate starting value for the evaluation of (6) for (7) is I, .
Having chosen (¢;, 1, A,), we then start the adaptive importance sampling of
Section 2 and find the best-fitting I, in . for f, . ,,. If we have chosen ¢,
too large, then I, may well be I, or very close to it which indicates we should
lower ¢ and restart. If we choose ¢, too low, f, ; ,, may not resemble I, in
the region, where I, is high so that I, may not be the appropriate starting
value for the adaptive importance sampling and the sampling may fail to
produce a meaningful choice for I, . Some experimentation with values of ¢
may be necessary to start and our criterion for success is a value for I,
different than I, but not wildly different.

Having obtained I,,, we now lower ¢ to ¢, < ¢, and obtain the best-fitting
I,, for f,, 1., starting the adaptive importance sampling at I, . If ¢, is too
much smaller than ¢,, then the process can fail to produce a meaningful choice
for I,  and we must raise ¢, towards ¢, when this happens. We discuss the
issues concerning determining failure in Section 5. We continue this process
constructing a chain (¢, 1, A,), (5,1, A,),...,(¢,, 1, A;), where £, = 1 and this
concludes the first part of the chaining. As ¢ is lowered in f, , , , the influence
of f in the product f;{'I,(x) becomes more prominent.

For the second part of the chaining, we start at f; , ,) where z; > 1 and
use I,  as the starting importance sampler. We find the best-fitting I, , for
fa,u,ry and then work with f,, ,, where u,>u;, and so on. As u
increases the influence of I, decreases in f;, ,, provided of course we
assume that the support of I, contains the support of f, as I}/*“(x) — 1 as
u — «© when I,(x) > 0. At the final step we obtain I,  as the best-fitting
member of .# for f, ), and of course this is best-fitting for f as well and we
can begin the computation of (1).
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Let I be a probability density with respect to u. For ¢ > 1, let v, denote the
probability measure with density dv,/du o f/I and for u > 1 let n, denote
the probability measure with density dn,/du o fI'/* provided of course
these functions are u-integrable. The following supports our fitting procedure.

THEOREM 1. () If f > 0, fI is u-integrable, supp f Csuppl, g: X > R is
such that E,[g] exists for all t > 1 and J&(x)I(x)u(dx) exists, then E, [g] —
E, [g] astll.

(i) If fand I are as in () and g: X — R is such that E, [g] exists for all
uz>1, then E, [g]l > E, [g] as u — «, where 7, is the probabllzty measure
with dn,./du (I  f.

Proor. (i) We have for ¢> 1 that |g(x)fY(x)I(x)| < Ig(x)I(x) +
lg()If(x)I(x) and |fY/*(x)I(x)| < I(x) + f(x)I(x). Then by the dominated
convergence theorem,

Je(x) /1) I(x)u(dx) > [g(x) f(x)n(dx)
and
[V 2) I(x)u(dz) > [F(x)I(x)n(dz) > 0astll.

This gives the result.
(ii) This proceeds as in (1) with slight changes. O

We immediately have the following corollary.
CoroLLARY 2. () v, =, v, ast 1. (i) n, =, N, as u > .

Proor. If g € C(x) the class of all bounded, continuous, real-valued func-

tions, then the hypotheses of (i) and (ii) regarding g are automatically satisfied.
O

In the idealistic circumstances where we could continuously lower ¢ and for
each ¢ exactly obtain the best-fitting I € .7, it is clear that the process will
work. The above represents a discrete approximation to the ideal and it may
fail if this approximation is too coarse. We discuss this further in Section 5.

4. Chaining for global optimization. We now show how chaining with
adaptive importance sampling can be used for global optimization problems. In
Bayesian contexts chaining can be used for the evaluation of posterior expecta-
tions and modes.

.+ For this we let f, I, u and v, be as in Section 3 but now allow # to range in
(0,). Also let u; be the measure with density du;/du = I, f* = sup{f(x)|
x € X} and put M, = {x|f(x) = f*}. We prove several generalizations of a
result due to Pincus (1968). In effect we show that, under certain conditions,
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the net {v,lt > 0} of probability measures converges weakly to a probability
measure concentrated on M/, obtaining by conditioning the probability mea-
sure with density o fI to this set.

We first consider contexts where M is singleton and f(x) is near f* only
when x is near this point. Let S¢ denote the complement of a set S, S the
closure of S, \ denote set-theoretic difference and B;(x) be the open ball in X
of radius & centered at x.

THEOREM 3. Suppose M= {x,}, =0, is continuous at x,, there exists
relatively compact open S containing x, and g, > 0 such that f(x) < f* — g,
when x € S°¢ and the support of u; contains x,. Then if g: X — R is continu-
ous at x, and E, [g] exists, then E,[g] - g(xy) ast — 0.

Proor. The boundedness of f and the existence of E, [g] implies the
existence of all the integrals we write below. Then

e P [ [ i) - gx)

®)
< [le(x) - 8o [ (o) | [ £/ (Dur ().

Since g is continuous at x,, there is a ; > 0 such that lg(x) — g(xo)l <&,
when x € B,(x,). Then (8) is bounded above by

ElfBﬁl(xo)fl/t(x)#I(dx) + fBgl(xo)lg(x) - g(x0)|f1/t(x)p,1(dx)
JFY (%) p(dx)
fBgl(x0)|g(x) - g(xo)lfl/‘(x),u,l(x)
stz(xo)fl/t(x);,LI(dx)

Clearly, we can choose &, so that B;(x,) € S. Thus S\ B;(x,) is compact

and f achieves its maximum there say f** <f*. Let &, = minfe,, f* — f**}.
Then f(x) <[* — &, for every x & Bi(x,). Now choose 8, so that f(x) >
f* — &,/2 when x € B;(x,). Then (9) is bounded above by

e + [ f*—e ]l/t /|&(x) —g(x0)|u,(dx)
! f*—ey/2 MI(Baz(xo)) .
Now specify £ > 0 and specify &, < &¢/2. Then specify 8,, 3, and ¢, as above

and finally specify 85 so that for ¢ € (0, 85) the second term in (10) is less than
€/2. Then (10) is bounded by ¢ and we are done. O

(9)

<g +

(10)

*We have the following immediate corollary.

COROLLARY 4. The net of probability measures {v,|t > 0} converges weakly
to the probability measure degenerate at x, as t | 0.
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Theorem 3 is established in Pincus (1968) for the special case that X is a
compact subset of R” and u; is the uniform probability measure on X.

For contexts where f does not have a unique global maximum in the sense
of Theorem 3 we have the following result.

THEOREM 5. Suppose that M; # ¢ and fand u; are such that there exists a

regular conditional probability given f, which we denote by 7, for s € R, and
the support of p; contains M;. Then if g: X — R is such that E, [g] exists and

(11) Gy(s) = [ g(x)7,(dx)
X
is continuous at s = f* then E, [g] > Em[g] ast - 0.

Proor. Let m denote the probability measure on R induced by u; and f.
Then

fee)w(de) - [e()m- ()|

1§18 (x) £/ (x)7,(dx) m(ds)
IfY (%) py(dx)

— [e(x)7p(dx)

(12)

. fo *sl/tIGg(s) — Gg(f*)lm(ds)
ffi*—a sl/tIGg(s) - G( f*)lm(ds)

157 m (ds)
+.l;)f*_6131/t|Gg(3) - Gg( f*)lm(ds)]/[)f*SI/tm(ds)~

Now choose 8, so that |G,(s) — G,(f*)| <&, when |s — f*| < &,. Then choose
8, < 8, and (12) is bounded above by

w _ s \1/t [T Gy(s) — G,(f*)|m(ds)
e+ (f ;) [2*_3281/tm(d8)

f*- 51]1/‘ {7 Ge(s) = Go(f*)|m(ds)
f* =8 m([f* = 85, f*])

and, as in Theorem 3, this can be made smaller than an arbitrary £ > 0 for all
t€(0,6,). O

(13)

581+[

We note that Theorem 5 does not imply Theorem 3. The hypotheses of
Theorem 5 are clearly satisfied in many practical contexts; for example, in
discrete contexts G, can generally be extended to a continuous function on all
of R via linear interpolation between those s values where G,(s) is given by
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the trivial definition of conditional expectation. The following is an immediate
consequence of the proof of Theorem 5.

CoROLLARY 6. If G,(s), as defined by (11), is continuous at s = f* for every
g € C(X), then v, >, 7+ as t | 0.

To use adaptive importance sampling with chaining to obtain M, we then
continue the chain (¢, 1, A,), (¢5, 1, Ay),...,(1,1,A;) adding (¢,,,, 1, A)),
(th491,A)),..., wherel > ¢, , >¢t,,o> - .If the family .7 is rich enough,
the I, should converge to a distribution concentrated on M,. For example if
Theorem 3 applies, X = R*, each I, € .# has all its second moments and .7 is
closed under rescaling, then I, should converge to a distribution which is
degenerate at M, = {x,}. Often the means and variances of I, are included in
m(A) so it is easy to monitor when this convergence is attained; see the
example of the following section. For contexts where we want to find where f
attains its global minimum we work instead with 1/f.

5. Comments on applications and an example. In many specific
contexts, where we are interested in integrating or calculating global optima of
a function, it is clear that algorithms will exist which are more efficient than
what we have described here. On the other hand, the preceding applies very
generally and it is very easy to implement. Also we could consider using this
approach to obtain a good starting point for an algorithm which is more
efficient when we have this kind of information; for example, using an iterative
improvement algorithm in optimization problems or multiple quadrature algo-
rithms in integration problems.

In particular, the literature on integration techniques seems devoid of
recommendations on how one should proceed to compute a reasonable approxi-
mation to an arbitrary high-dimensional integral; for example, Monte Carlo
approaches which rely on long computation times cannot be depended on to
always work. On the other hand, chaining via annealing does provide such an
approach and is applicable even when we have very little information concern-
ing f. Further we can assess the accuracy of a given approximation by
rerunning the chain inserting new steps between those of the original chain
and then comparing answers. A drawback of this algorithm is that it is not
amenable to contexts where we want answers quickly and with little involve-
ment with the computation. It seems best suited to situations where we have a
specific integral to compute and do not mind interacting with the program to
control the schedules of choices for ¢ and u. For example, we may be assessing
the accuracy of some other approximation procedure for (1).

The performance of chaining will certainly be influenced by our choice of . 7.
If, f is unimodal with reasonably elliptical contours, then the family .# of
k-dimensional normal distributions seems reasonable. In Evans (1988) a gen-
eralization of this family is discussed which is appropriate to various statistical
contexts. Other families are certainly possible; for example, in contexts where
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f is multimodal with finitely many modes then mixtures of multivariate
normals would be appropriate members of 7.

As with all algorithms in this area there is no guarantee that our procedures
will always work and it is a considerable problem to determine diagnostics
which will reliably indicate when failure has occurred. Chaining can, however,
be viewed as a technique for increasing our confidence in the accuracy of our
computations. In the problems where we have used chaining we have pro-
ceeded as follows; having selected 6,, a step in the chain, we estimate the
components of m* via adaptive importance sampling for several iterations and
when we observe that these estimates are stable we change 6. Of course, a
more automated approach is also possible based on the standard errors of
these estimates; that is, specifying a formal stopping rule. The failure of a step
in the chain occurs when f; is too unlike f; ; for example, the mass of f is
shifted far away from where the mass of f,  is located. Our criterion for
determining when this sort of failure has occurred is again to observe the
changes in the estimates of m*. If these changes are much smaller than
sampling variability suggests they should be, we know a failure of the above
kind has occurred and we replace 6, by something closer to 6;_,. This is clearly
not completely satisfactory but has worked well in a number of problems.

The approach we have presented for global optimization is an alternative to
simulated annealing via the Metropolis algorithm. It is difficult to make direct
comparisons but we note we have replaced the problem of an appropriate
choice of Markov process and acceptance criterion by the adaptive sampling
and appropriate choice of .. In many contexts this seems much easier to do.
Also our approach can be used for the evaluation of (1) which is not the case
with the Markov process approach. :

In many statistical problems f will be the prior times the likelihood and if
the likelihood dominates, then under very general conditions f can be approxi-
mated by a multivariate normal density at least locally near its maximum. If f
is exactly proportional to a multivariate normal, then so is f/? and if I is a
multivariate normal, then f/I'/* is also exactly proportional to a multivari-
ate normal. This is a partial justification for the use of these transformations
in statistical contexts. Particularly, when being used for integration, as dis-
cussed in Evans (1988), some other class of transformations can be much
more useful; for example, if [yg(x)u(dx) can be exactly evaluated, then
Jx(af(x) + (1 — a)g(x)u(dx) for a € (0,1) may be appropriate.

A slight generalization of chaining as described in Sections 3 and 4 was
found to be useful. Recall that at the ith stage the best-fitting importance
sampler was denoted by I A, Our chain then actually consisted of

(t1,1,10), (2,1, 45), .., (1,1, A ,41), (L, 64, A i0)5 o o5

“that is, we replace I, by I, at the first step and I, by I, at the next step,
and so on. While not, strictly speaking, having the support of the earlier
theoretical development this had the effect of speeding up the convergence.
Intuitively, this is supported by the fact that at as ¢ is lowered I, should be
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TaBLE 1
Schedule for location
Step t u Number of iterations
1 20 1 2
2 15 1 2
3 10 1 2
4 8 1 2
5 6 1 2
6 5 1 2
7 4 1 3
8 3 1 3
9 2 1 3
10 1 1 4.
11 0.9 1 2
12 0.8 1 2
13 0.7 1 2

concentrating its mass in regions where f is high and when u is raised I, is
becoming more diffuse.

We now consider a somewhat artificial example to illustrate the use of the
algorithm. For this we put £ = 20, p(x) = 1 + x2/2 and

k 1 1 .
(14) f(x) = il:[lp(xi - 20)E exp{— E(xi - 20) }

The integral of f is 3325.26 and it has a unique global maximum at 20 - 1.
For simplicity here we take .# to be the family of multivariate normal dis-
tributions N,y(p, 3), m(p, 3) to be the vector consisting of the means and
covariances and take N = 1000. Pretending we know nothing about f, we let
the starting I be the standard normal density on R?’, and note that the
behaviour of f near 0 contains very little information about its global be-
haviour. Actually a slight modification of our algorithm improves performance
here. For the first part of the chaining we restrict .# to the subclass { Ny(p, I)|
p € R?%} and only fit using the means.

Table 1 gives the schedule for the first part of the chaining. The number of
iterations indicates how large a sample was used at each step; for example, if
m iterations were used at a step, then the step used a sample of m X 1000
with the estimates of the means being updated every 1000. The schedule was
generated interactively by observing changes in the means from iteration to
iteration. At the end of this step all 20 of the estimates of the means lay in the
interval (18.82176, 20.33771).

Table 2 gives the schedule for the global maximization. For this we also fit
the variances and of course we estimate the global maximum by the mean
vector. For the ith step we used the variance matrix from the (i — 1)st step for
the first three iterations while estimating the variance matrix for the ith step
and started with the identity matrix. At the end of the chain all 20 estimates of
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TABLE 2
Schedule for global maximization

Step t u Number of iterations
1 1 1 3
2 0.8 1 3
3 0.6 1 3
4 0.5 1 3
5 0.4 1 3
TaBLE 3

Schedule for the integration_

Step t u Number of iterations
1 1 102 3
2 1 103 3
3 1 105 5
4 1 108 23

the means lay in the interval (19.90, 20.06) and hence we know all coordinates
of the global maximum with an absolute error of +0.1 and a relative error
of +0.5%. This level of accuracy was maintained for several more steps.

Table 3 gives the schedule for the integration. We fit the means and
variances as described for the global maximization step. Here fairly large steps
sufficed but this will not be the case in general. The estimate of (1) at the final
step was 3322.03 an absolute error of 3.23 and a relative error of 0.1%. For the
schedule given above no failures were observed at any of the steps. It is not
hard, however, to construct schedules for this example where a failure will
occur. This schedule was determined with very little experimentation. No
claim is made as to its optimality or its portability to other examples.

We note that the above example shows that the convergence can be slow.
The significance of the algorithm, however, lies in the fact that it provides a
useful tool for attacking general integration and global optimization problems
in statistics. Techniques for improving the efficiency are a subject for continu-
ing study. We also note that this provides a common algorithmic approach to
maximum likelihood and Bayesian inference methods.
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