102 DISCUSSION

I suppose the message here is that no single adaptive regression technique
can perform uniformly best on all examples, which echoes the point made by
Professor Friedman in Section 2.
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I like MARS. It looks like a good tool for pulling out the most useful parts of
large interaction spaces. Most of my comments are directed at accounting
issues: How many degrees of freedom are used in knot selection? How can the
cost be lowered? At the end, there are some comments on how one might apply
MARS to models for which fast updating is not available.

My main interest in MARS stems from work in computer experiments. In
these applications, smooth functions of fairly high complexity are evaluated
over high dimensional domains with no sampling error. I plan to use MARS on
such functions evaluated over Latin hypercube designs [McKay, Conover and
Beckman (1979)]. Some theory for linear modeling of nonrandom responses
over such designs is given in Owen (1990).

When there is no noise, one expects that a larger number of knots might be
warranted. It then becomes worthwhile to lower the price of a knot somehow.

Degrees of freedom in broken line regression. Consider the broken
line regression model

(1) Y, =by+ bit; + B(t; — 0), + &, i=1,...,n,

where ¢, <t, < -+ <t, are nonrandom with ¢, = 0 and L ¢ = no?, ¢; are
independent N(0, 1) and b,, b,, B and 6 are parameters. Taking 8 = 0 in (1)
yields a one-segment model. Taking 8 # 0 and ¢, < 8 < ¢, yields a two-seg-
ment model. This model has been studied by Feder (1967), Hinkley (1969),
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Davies (1977, 1987) and Knowles and Siegmund (1989). All these authors
point out that nonstandard asymptotics apply when B = 0. In particular,
estimation of B and 6 uses up more than 2 degrees of freedom in that case.
Hinkley (1969) reports that approximately 3 degrees of freedom are used,
based on a simulation in which the potential knots were uniformly spaced.
When B # 0, the standard asymptotics, that is 2 degrees of freedom, are
relevant [Feder (1967), Part 2).

This suggests that when the evidence that 8 # 0 is extremely strong, that
fewer degrees of freedom should be charged than when the evidence is
borderline. Of course, for small B8 # 0 and finite n, the nonstandard asymptote
might be the more accurate one.

Following Davies (1987), we consider testing whether the line breaks at 6
via .

@) 2(0) = V-2(0) ¥, &t - 6)
i=1

where
=Y -Y- t,-t_i/'—/of,
V(6) = Ry — le1 - izR%I
- n no;
and
(3) Ry =Ru(0) = ¥ 6t~ 0)}.

The null distribution of Z(6) is N(0,1) for ¢, < 6 < ¢,_;. To test whether the
regression line breaks at all, we consider the supremum of Z(6) or of |Z(9)|
over an interval. The null covariance of Z(6) and Z(¢) is

p(0,0) = V-12(0)V™1/2(¢)

@ < Rai0.6) = RO () = RO R
where
(®) Rovo0,8) = £ (6= 0)..(t;= 6)..

Bounds for

P( sup Z(0)>c)

0,<0<6,

may be derived from the expected number of upcrossings of ¢ by Z. For
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example,
1 1 0,
(6) P(mpﬂ@>dsmwyh—mw_&fﬂﬂmw,
60<0<0, . 27 2 0o

where ® is the standard normal distribution function and

2

(7 p1:(0) = p(6,0)

) -

Davies (1977) gives (6) as his (3.7), except that he uses

2

d
(7) p1:(8) = _wl’(d’,e)

b=

Definitions (7) and (7') are equivalent when both derivatives exist (since the
process has constant variance). For broken line regression neither exists but
the problem is easily handled: Replace (¢; — 6), by ¢.(¢; — 6), where

0, x < —g,
g.(x) = 8+x+x2 "
AX) =V —+ -+ —, lal<e
4 2 4e’ ’
x, x>e

for small positive ¢ in (1), (2), (3), (5). The function 6, is Friedman’s piecewise
cubic approximation to x, which in this case is piecewise quadratic. Now
3%0(8, ¢)/30 3¢ exists and is continuous so (6) follows from (3.3) of Leadbetter
(1972). The right side of (6) is continuous in ¢ > 0 when this substitution is
made. If we take the limit as £ | 0, we get

L(v(e)\* | 1, I
p1a(0) = “ %\ V(o) +V7(0)[ Ry — ;Roo - WR10 )
where
1% ¢ V(6) = 2R 2R R 2 R,,R
"= — = + — + — ,

a0 01T oo g ot
with
(8) Rjo = Rjo(e) = Z tzJ

£,>0

One could also take the sum in (8) over ¢; > 6; it makes no difference in (6)
because the integrand is only affected at finitely many places.
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Since beth positive and negative B are of interest, we write

P( sup IZI>c)=P( sup Z>c)

0,<6<6, 0,<056;

X[2—P( inf Z<—cl sup Z>c)}

0p<0<0, 0p<6<0,
(9) < 2P( sup Z > c)
0p<60<0,

1 1 P
=P(x§ > 02) + = exp(— Ecz)f "p{2(0) de
L)

1 .o ‘
= P(x& > c*) + ;feolpif(@) do P(x& > c?).

For a given set of ¢;, p;; can be computed and the integral in (9) can then be
numerically evaluated. Updating formulae are easy to derive for the R .
Assume that ¢, = 0 and X t? = n, that is, 0,2 = 1. The integral of pl{? is
invariant when a nonsingular location scale transformation is applied to the ¢;
and to the limits of integration. Suppose we want p,(6,) for ¢, < 6; < 6, <

- <0,<t, , Let s;<s,< --- <s,.,, be obtained by pooling and sort-
ing the data points ¢; and the evaluation points 6,. Let D, be 1 if s, arose as a
data point and O if s; arose as an evaluation point. With this set up,
Ry(s) =n—1, Ry(sy) = —nt;, Rio(s;) = —¢t;and Ri((s;) =n.For2<i <
n+m, Rols;) = Roo(s;_1) — D;, Ros;) = Ro(s;_1) — (s; — s;_ ) Roo(s;_1),
Rio(s;) = Ryo(s;-1) — D;s; and  Ryy(s;) = Ryy(s;_1) — (s; — s;_ ) Ryo(s;_ ).
Now p;; can be computed on noting that R,(8) = R;,(8) — 6R,,(6) and the
values corresponding to evaluation points can be extracted. At an evaluation
point 6; that coincides with a data point ¢;, p;,(6;) will depend on the order in
which the two points appear in the list of s;.

For uniformly distributed ¢, we can find a simple approximation to (9). Let
t;=(G —0.5)/n — 0.5 so 0 = (n® — 1)/(12n%) = §; and approximate R;, by

R, (9) = nj:/zuj(u - 9)* du

and similarly for R01, o1- Use V and § to denote the corresponding changes to V
and p. Some calculus gives

V(o) = %(% - 02)3

and
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and so
P( sup |Z| >c)
0p<6<0,
3 o deé
<P(x2. >c2)+ — [ P(x32, > c?
(X(1) ) Gy [90 (- 02)1/2 (X(2) )
V3 T 140,
2 2
=P(X(21) > 02) + E(log % -y - logm P(X(z) >c )
Therefore for 0 < & < %,
V3 1-¢
(10) P( sup |Z| > c) < P(X(zl) > 02) + —log(—)P(sz) > 02).
lol<(1/2)—¢ m €

Knowles and Siegmund [(1989), Section 4] obtain (10) for uniformly spaced
t; and large n using the Hotelling—Naiman volume of tubes approach. For
large n, our ¢ corresponds to n'/2w in their notation. One substitutes their
equation (10) in their (6) and letting n — o, one gets the one-tailed (.e.,
sup Z) version of (10).

Figure 1 compares the bound in (10) to tail probabilities from chi-squared
distributions on degrees of freedom ranging from 1 through 4 by steps of 0.5.

0.00100 0.01000 0.10000

0.00010

0.00001

T T T T T
5 10 15 20 25

Fic. 1. Tail probabilities: The solid lines give (right) tail probabilities from chi-squared distribu-
tions on degrees of freedom 1 through 4 in steps of 3. The asterisks plot tail probabilities from
formula (10) using ¢ = 0.2, 0.05, 0.01, 0.0001.
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Fi1c. 2. Realizations of Z(0): Shown are 10 realizations of the Gaussian process with mean 0,
constant unit variance and correlation p, a continuous approximation to p of formula (4).

Chi-squared tail probabilities are plotted by lines, probabilities based on (10)
are plotted as asterisks. For Figure 1, ¢ = 0.2, 0.05, 0.01 and 0.0001 are used.

The points for ¢ = 0.01 fall close to the curve for X(23)- So searching the
central 98% of the range for # uses roughly 3 degrees of freedom under the
null hypothesis. Hinkley (1969) notes from simulations that roughly 3 degrees
of freedom are used. The relative error in these probabilities is less than 0.1
when the value of the bound (10) is between 0.05 and 0.005. While the tail
probability in (10) is not in the chi-squared family, it would appear that if one
were to approximate it in the chi-squared family for purposes of model
selection, that 3 degrees of freedom would be a reasonable choice. Using 3
degrees of freedom might even be a little conservative since it would be
common to search over less than the central 98% of the range.

The choice ¢ = 0.2 corresponds to searching the central 60% of the range
and uses approximately 2 degrees of freedom under the null hypothesis. It also
uses (asymptotically) 2 degrees of freedom under the alternative g = 0, [0] <
0.3. So it might be reasonable to make all splits in the central 60% of whatever
range is being searched and charge 2 degrees of freedom.

Figure 2 shows 10 realizations of the Gaussian process Z(6) on (- 3,1
with covariance given by p. The mean is 0 and the variance is 1 over the whole
range. The process turns more rapidly (correlations are smaller) for large 6],
S0 more upcrossings occur near the edges.
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Fic. 3. Comparison of pi{% and pi{% The jagged curve is pi{? from formula (4) with n = 25.
The smooth curve is the continuous approximation §i{2.

Figure 3 compares 51/ and p}{2, where the latter is computed for n = 25.
The steep parts of the jagged curve are meant to be vertical. Since (10) only
uses integrals of pi{?, the continuous approximation using p should be reason-
ably accurate, especially if each limit of integration is near the midpoint of two
consecutive ¢;’s.

Now suppose that ¢, is the (i — 0.5)/n quantile of the distribution with

density
(11) f(x)=e>*"1 x> -1.

This is the unit exponential distribution shifted left one unit so as to have
mean zero. For this distribution, Roy =Ry =e™*7% Ry, = (0 + De 7",
Ry =2e"'"%and R, =(2 + 6)e 1% for 6 > —1. The function ; tends to &
as § > » and § is asymptotic to (3)(1 + #)2 as § > —1. So searching for a
breakpoint in an interval of given length should cost more if that interval is
near the left edge of the predictor space than if it is near the right edge.
Perhaps this is to be expected because there tend to be more points ¢; per unit
length at the left end. Figure 4 plots 51{%(F~%(u))/f(F~%(u)) versus u, where
[ is the density in (11) and F is the corresponding distribution function.
Asterisks are used for 112 taken from the exponentially distributed ¢; and the
smooth curve is for 5112 taken from the uniform distribution. If one decides to
search over the range between two sample quantiles, then the null probability
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Fic. 4. Comparison of uniform and exponential designs: The smooth curve is the continuous
approximation (p{%(p) assuming a uniform distribution of design points. The asterisks are
p1{%6)/f(8), where § is the continuous approximation to p for design points from the exponential
distribution f given by equation (11). The x axis is F~X0), where F is the appropriate distribution
(uniform or exponential).

of an upcrossing is very close under an exponential design to what it is under a
uniform design. Bounds like those in (10) based on the uniform design would
be conservative for an exponential design, since the asterisks lie below the
curve in Figure 4.

Equation (1) is a model for the problem of deciding if and where to bend a
line. If a variable has not yet entered one might consider

(12a) Y, =bo +B(¢; —0), +s
or
(12b) Y, =by+B(6—t), +e,.

Note that (12a) at 6 = ¢, and (12b) at 6 = ¢, are the same (affine) model and
that (12a) at 8 = ¢, and (12b) at @ = ¢, are both the constant model.
For the model in (12a), we take

Z(0) = V-172(9) f 8,(t;,—0),,
i=1
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where §, =Y, — Y =¢;, — £ and V(8) = R, — R2,/n. The correlation is
1
p(8,¢) = V_I/Z(G)V_1/2(¢)[R01,01(0,4’) - ;Rm(a)Rm(d’)],
with
. 1, Vi) )’
Pu(o) =V=(9) Ry — ;Roo - Z m)_ .

For a uniform spacing of ¢;, one finds
121/2(1 — A) V2
A(4-31) 7

"1/2(0) —

where A = A(0) = ; — 6.
If B = 0, then

1
P( sup |Z(9)| >c) sP(X(zl)>c2) + —fol p172(0) dOP(X(2)>c )
—(1/2)<6<6, =172
Since the process Z can be “glued onto”” another one for testing 8 # 0 in
(12b), the null probability of splitting the constant model is bounded by

2
(13) P(x3 > ¢?) + —/"‘ F(0) d0 P(xd, > ).

For searching the central 98% of the range, the coefficient of P( X<2 >c?)in
(10) is approximately 2.53. If one considers model (12a) over all but the
rightmost 1% of the range and (12b) over all but the leftmost 1% of the range,
the corresponding coefficient is approximately 2.64. So the degrees of freedom
used up in deciding whether to split a constant regression are much the same
as those used in splitting a linear regression.

In the backward stepwise part (Algorithm 3), how many degrees of freedom
should be charged when a knot caused two regressors to be added to the model
and one of them gets dropped? I would guess from the analysis of (12a) and
(12b) that the full charge for the knot should be assessed, but from Friedman’s
talk at Interface '90 it seems that half the charge for the knot is assessed.

An alternative to restricting the search to a central subinterval, such as the
central 60%, is to search the whole interval, but apply a penalty that increases
as the potential knot location nears the end of the range. Davies [(1977),
equation 3.3] quotes an upcrossing bound for P(sup,Z(6) — c(6) > 0) for
continuously differentiable c¢(8). For the process described by the continuous
approximation to the uniform design case, the upcrossing bound is especially
simple when ¢(6) = A + B log((0.5 + [6])/(0.5 — [6])), where A, B > 0. (This
¢ has a cusp, but the bound should still be applicable.) One finds that

(14) P(Sl;.p Z(6) — c(8) > 0) <2(®(B") - 1 + ¢(B)/B)P(x, > A?),

where B’ = 2B /3'/2 and ¢ is the standard normal density.
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Conclusions. It appears that Hinkley’s (1969) heuristic of charging 3
degrees of freedom for adding a line segment is reasonably accurate in a
variety of settings.

By restricting the search to a sybinterval it may be possible to reduce the
cost of breaking a line to 2 degrees of freedom. A smoothly varying preference
for central splits based on (14) could also be used to lower the cost of knot
selection.

The calculations in the preceding section are most relevant to splitting the
constant function B,. When splitting another basis function B, along vari-
able T, perhaps

I7i=Bm()(i)(b0+b1ti"I-B(ti_o)+)_'_“";z" i=1s"'1n1

should replace (1), or a similar change should be made to (12a) and (12b)
depending on context.

Finally, I would like to address Friedman’s comments on updating formulae
in Section 5.4. When searching a variable for a split point, it may not be
necessary to consider every value. The test statistic Z(8) should tend to have
very smooth sample paths. In the smoothly approximated uniform design case

min max p(6,¢) > 0.94.

161<0.4 {0, £0.2, +0.35)
That is the central 80% of the range can be effectively scanned by considering
only 5 points. Note that the realizations in Figure 2 tend to be quite smooth in
the middle. I would expect the true underlying function would also make a
smooth contribution to Z(8), perhaps smoother than that of the noise, though
I also expect pathological cases are possible. So after five evaluations one
should have a good idea where the maximum is and whether it is worth
including in the model. Then one could spend a few more evaluations on a
more local search, or wait until the backward stepwise algorithm has finished
to refine the search. When a knot is put at 0.2, the next step would involve
looking at five places between — 0.5 and 0.2 and at five places between 0.2 and
0.5. If this works it should be possible to extend MARS to robust regressions,
generalized linear models and the proportional hazards model. Davies (1977,
Section 5) has some suggestions on how to perform various tasks on represen-
tative points 6, and on picking those representative points.

Acknowledgments. I would like to thank Iain Johnstone and David
Siegmund for helpful discussions. In particular Professor Johnstone showed
me some unpublished work of his applying the Hotelling-Naiman volume of
tubes methodology to broken line regression and including a plot similar to
Figure 1.
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Clearly the fitting of functions of more than two variables is an important
problem, and it is nice to see that statisticians are willing to tackle it.
Mathematicians have tended to concentrate on the bivariate case (perhaps
because even there, much remains to be done). The recently published bibliog-
raphy [5] provides a fairly up-to-date list of what approximation theorists have
been doing. Some of this work does deal with the many variable case. In
particular, the papers [1], [2], [3], [4] and [11] deal with adaptive fitting of
piecewise polynomials, much in the spirit of the paper under discussion. These
papers also deal with the problem of giving error bounds.

Approximation theorists have also recently been interested in the problem
of approximating multivariate functions by sums of univariate functions. In
this connection I would like to cite [6], [7] (see also the bibliography [5]). Other
references can be found in the book [6].

Next, a few comments on the paper under discussion. I am a bit puzzled by
the assertion in Section 2.4.2 and later in Section 3.2 that lack of smoothness
of the approximating functions limits the accuracy of the approximation.
Generally it is true that lack of smoothness of the function to be approximated
limits accuracy, while for the approximating functions it is the degree of the
polynomials used which is critical. Similarly, I do not understand the discus-
sion of end effects in Section 3.7. The classical natural splines perform badly
near the boundaries precisely because they smoothly match linear functions
.there; i.e., they are constrained at the endpoints in the wrong way. The author
uses a basis of piecewise linear functions which are smoothed out to be C*. If
one does not need C! functions, it seems it would be better to simply use
linear splines to begin with. As far as I know, the approximation properties of



