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ON THE ASYMPTOTIC DISTRIBUTIONS OF
BANDWIDTH ESTIMATES!

By SHEAN-T'soNG CHIU
Colorado State University

The problem of automatic bandwidth selection for a kernel regression
estimate is studied. Since the bandwidth considerably affects the features of
the estimated curve, it is important to understand the behavior of band-
width selection procedures. The bandwidth estimate considered here is the
minimizer of Mallows’ criterion. Though it was established that the band-
width estimate is asymptotically normal, it is well recognized that the rate
of convergence is extremely slow. In simulation studies, it is often observed
that the normal distribution does not provide a satisfactory approximation.
In this paper, the bandwidth estimate is shown to be approximately equal
to a constant plus a linear combination of independent exponential random
variables. In practice, the distribution of a weighted sum of chi-squared
random variables can be approximated by a multiple of a chi-squared
distribution. Simulation results indicate that this provides a very good
approximation even for a modest sample size. It is shown that the degrees
of freedom of the chi-squared distribution goes to infinity rather slowly (at
the rate T'1/5 for a nonnegative kernel). This explains why the distribu-
tions of the bandwidth estimates converge to the normal distribution so
slowly.

1. Introduction. Given data from the model
Y(t) = m(x,) + &(t), x,=t/T,t=0,...,T -1,

where &(¢) is a sequence of independent random variables with mean zero and
variance o2 one is often interested in recovering the regression function
m(x). In practice, we usually do not have a proper parametric model and have
to use nonparametric regression methods to obtain an estimate of m(x), for
example, see Priestley and Chao (1972) and Reinsch (1967). We consider a
kernel estimator,

T-1

mg(x) = (TB) " ¥ w{(x, — x)/B}Y(2),

t=0
where B is the bandwidth. The kernel w(x) is a symmetric probability density
function. The estimate of m(x) is a weighted average of the observations with
x; close to x. The kernel assigns the weights. To eliminate boundary effects, we
use a “circular design,” that is, the estimate is obtained by applying the kernel
on the extended series Y(¢), where Y(¢t + kT) = Y(¢), k =0, +1,... .
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An important step in nonparametric regression is to choose a proper
smoothing parameter (bandwidth), which controls the smoothness of the
resulting estimate. The smoothing parameter considerably affects the features
of the estimated curve. The problem of automatic (data-driven) bandwidth
selection has been studied extensively and many automatic selectors have been
proposed [see Rice (1984), Hirdle, Hall and Marron (1988) and references
given therein]. Since the choice of the smoothing parameter is very crucial, it is
important to understand the behavior of the automatic selectors.

Most bandwidth selectors attempt to choose 8 so as to minimize the risk
function

T-1
(1.1) Rr(B) =E YL {m(x,) — my(x,))".
t=0

Rice (1984) showed that Mallows’ criterion gives a weakly consistent estimate
of the minimizer of R, (B) and the estimate is asymptotically normal. Similar
results for other selectors were also established in Rice (1984) and Hardle, Hall
and Marron (1988). Though the bandwidth estimates are asymptotically nor-
mal, it is well known in simulation studies that the normal distribution does
not provide a satisfactory approximation [see Figures 2 and 4 and Hardle, Hall
and Marron (1988)]. The disagreement between the asymptotic and empirical
results suggests that one needs a more precise approximation. To obtain a
better approximation is the main objective of this work. We show that the
bandwidth estimate is approximately equal to a constant plus a weighted sum
of independent exponential random variables. In practice, the distribution of a
weighted sum of chi-squared random variables can be approximated by a
multiple of a chi-squared distribution. An asymptotic distribution can be used
to construct an approximate confidence interval which provides some sugges-
tion for the range of bandwidths to choose from. The results here might be
useful in comparing some selectors which, though asymptotically equivalent,
perform quite differently for finite samples [Rice (1984) and Hirdle, Hall and
Marron (1988)].

2. Asymptotic distribution. The estimate B considered here is the
minimizer of Mallows’ criterion

(2.1) R (B) = RSSp(B) — To? + 20%w(0) /B,
where
T-1 5
RSS(B) = ZO {¥(t) — hp(x,)}

is the residual sum of squares and ﬁT(ﬁ) is an asymptotically unbiased
estimate of R;(B) [cf. Mallows (1973), Craven and Wahba (1979) and Rice
(1984)]. In practice o2 in (2.1) is replaced by an estimate &2. Rice (1984)
argued that the error caused by substituting a VT consistent estimate for o2
is negligible. The true o2 will be used in the theory and in the simulations
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except at the end of Section 3 where the effects of the replacement for finite
samples are assessed by a Monte Carlo study.
Under the conditions given in Section 4, R () is equal to

'10-2[w2(x) dx + 4'1Tﬁ4{fx2w(x) dx}zf{m"(x)}zdx

+ O(T872%) + o(TB*?).
Defining A;(8) = T~Y5R (T ~1/%9), we see that A,(0) converges to

A(9) = 0_102fw2(x) dx + 4_104{fx2w(x) dx}zf{m"(x)}zdx.

A(6) has a unique minimum at 6,, where

65 = aszz(x) dx/[{fxzw(x) dx}zf{m"(x)}zdx}.

Rice (1984) showed that the estimate § = T''/53 converges to 0, in probability.

In Section 4, we show that the estimate B is approximately equal to
a constant plus a linear combination of independent exponential random
variables. This result suggests the approximate distribution described in Theo-
rem 1.

THEOREM 1. Under Assumptions 1-3 in Section 4, the distribution of
T1/%(§ — 6,) can be approximated by the distribution of
—T=3/1%0 A"(8,)} "' Z(B,) »

where B, = T~ 1/%0, and

N
Z(Bo) = 20* L. (X, = 2)V,(2mj/T),
j=1
where X;, j = 1,..., N = [(T — 1)/2], are independent x2 random variables
and Vg(A) is defined in (4.8).

Here [x] means the largest integer which is less than or equal to x. From
Theorem 1, we get the following corollary.

COROLLARY 1. Under the conditions in Theorem 1, T'/'°( — 0,) is
asymptotically normal with mean zero and variance 8{A"(8,)} 205 30 */{ fw(x —
Yv(y)dy — v(x)}2dx, where —v(x) = w(x) + xw'(x).

Though § is asymptotically normal, the simulation results in the next
section indicate that Corollary 1 is not very useful in practice.

ReEMARK 1. Corollary 1 is similar to Theorem 2.3 of Rice (1984). Hardle,
Hall and Marron (1988) also gave a similar result. For an easy comparison
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with the result of Hardle, Hall and Marron (1988), we list the corresponding
notation: n = T; A = B; K(x) = w(x); and L(x) = w(x) + v(x) or —v(x) =
K(x) — L(x). h0 is the minimizer of R (k) which is approximately equal to
B, Corollary 1 can be established by applying Lemma 4 of Hérdle, Hall and
Marron (1988) and noting that

n¥10(h = o) = n%(h — k) + n3/9(hy — ho),

where £, is the minimizer of the sum of squared error.

To use Theorem 1, we need the distribution of ¥ X;V, (27j/T'). It might be
difficult to obtain the distribution of a weighted sum of chi-squared random
variables. For practical purposes, it has been suggested [see Brillinger (1981),
page 145 and references given therein] to approximate the distribution by a
multiple, nx2, of a chi-squared distribution whose mean and degrees of
freedom are determined by equating the first- and second-order moments. For
our case, we set

N
(2.2) nw=2) V(2mj/T),
j=1
N
(2.3) 2nPv =4 V2(27j/T)
j=1
or
N 2/ N
(2.4) v= 2{ )y Vﬂo(z’”'j/T)} Y Vi(2wj/T),
j=1 j=1

which is approximately equal to

(2.5) (430)_1{2w(0) - fwz(x) dx /f fw(x —y)v(y)dy — v(x)} dx.

The expression (2.5) indicates that the degrees of freedom goes to infinity
rather slowly (at the rate T'/5). This explains why the distribution of B
converges to the normal distribution so slowly. For the example considered in
the next section, one would need a sample size T = 109,000 in order to have
an approximate y2 distribution. It is also interesting to note that n» and v
depend upon m(x) only through B,. Estimates of n and v can be obtained by
substituting B for B, in (2.2) and (2.3).

3. Simulation results. To evaluate the approximate distributions for
finite sample sizes, we carried out some simulations and report the results
here. The observations Y(¢), ¢t = 1,...,T, are obtained by adding independent
Gaussian random variables with mean zero and variance o2 = 0.0032 to the
function

m(x,) =x}(1 - xt)3) x,=t/T.
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Fic. 1. A realization of the simulation (T = 75). The dashed curve is m(x) and the solid curve
is the kernel estimate with bandwidth 0.281.

The kernel is

(2)(1 - 4x2)%, Ixl <3
0, lx| > 3

w(x) =
The functions m(x) and w(x) were the ones considered in Rice (1984). The
same functions were also used in Hardle, Hall and Marron (1988). All random
variables were generated by the function RAND in Fortran 77 on a SUN 3
computer. Figure 1 shows a realization of the simulation (T' = 75) and the
regression functions. The bandwidth of the kernel estimate is selected by
R,(B). Simulations for several sample sizes between T = 75 and 300 were
carried out. Since the results are quite similar, we only report the results for
the sample sizes T = 75 and 300.

For each sample size, 2000 series were generated. It is well known that
RT(B) sometimes contains multiple local minima and most numerical methods
might fail to find the global minimum. The global minimizer $ is obtained by
searching over 401 equally spaced points in the interval [0.03,0.45]. The
sample means and standard deviations of the estimates are summarized in
Table 1. The empirical values agree well with the approximate ones. The
values inside the parentheses are the estimated standard errors.

For the sample size T = 75, the approximate distributions are compared in
Flgures 2-4 and Tables 2 and 3. We obtained an estimated density of 8 by
using the S function ‘“density” with a Gaussian kernel and a width 0.04 (in
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TABLE 1
Comparison of the sample means and standard deviations of the estimates ﬁ, B(6? and
B(&?)
T=15 T = 300
Approx. B8 B(&2) PB(&?) Approx. 3 B(&2) B2

Mean 0.298 0.291(0.002) 0.286 0.291 0.226  0.217(0.001) 0.214 0.219
SD 0.056 0.068 (0.001) 0.078 0.066 0.037  0.045(0.0009) 0.049 0.043

The sample sizes are 2000. The values inside the parentheses are the estimated standard
errors.

S, width/4 = standard deviation of the Gaussian kernel). The width is chosen
subjectively. Figure 2 compares the estimated density (solid curve) with the
approximate normal (dotted curve) and x? (dashed curve) densities. The
location and scale parameters of the approximate densities are the asymptotic
ones given in Theorem 1 and Corollary 1. The degrees of freedom of the x2
distribution, obtained from (2.4), is 5.94. It can be seen that the x?2 approxima-
tion is quite accurate. The quantile-quantile plot of the empirical distribution
of — 3 against the y? distribution is shown in Figure 3. Except at the tail, the
chi-squared distribution provides an excellent approximation. Figure 4 shows
the quantile—quantile plot against the standard normal distribution. It is clear
that the normal distribution does not provide a satisfactory approximation.

10

density

0.0 0.1 0.2 0.3 0.4

bandwidth

FiG. 2. The estimated density (solid curve) of ﬁ75 and the approximate normal (dotted curve)
and chi-squared (dashed curve) densities. The sample size is 2000.
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Fic. 8. The quantile—quantile plot of 2000 — I§75 against x4, distribution.
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FiG. 4. The quantile—quantile plot of 2000 — é75 against the standard normal distribution.
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TABLE 2
The percentages of ﬁ75 which are smaller than the percentiles of the approximate x2q, and
normal distributions

% 5 10 20 30 40 50 60 70 80 90 95
Chi-squared 7 13 21 28 37 45 57 68 81 92 97
Normal 13 17 23 28 34 43 52 64 80 95 99

Table 2 gives the percentages of B which are bigger than the percentiles of
the approximate distributions. It is clear that the chi-squared distribution
gives a better fit. We also use the Kolmogorov test statistics to compare the
asymptotic distributions. Since any small difference can be detected as
the sample size (of B) increases, we feel that it is more proper to compare the
distributions at a moderate sample size. The 2000 simulated estimates were
divided into 10 samples of size 200 each. Table 3 gives the Kolmogorov
distances to the best fitted Gaussian and chi-squared distributions for each
sample. The p-values (observed significance levels) are also given in the table.
All p-values against the chi-squared hypothesis are bigger than 0.15. On the
contrary, only one of the p-values against the normal hypothesis is bigger than
0.005. Although the chi-squared distribution provides a good approximation,
we should point out that R,(B) gives small bandwidth estimates more often
than predicted by Theorem 1. This can be seen from Figure 2. Table 1 also
suggests that the estimate is biased toward undersmoothing.

In practice, o2 in (2.1) has to be replaced by an estimate. The estimate

(3.1) 62 = Tz_;l{Y(t) - Y(t- 1)}2/(2T -2)
t=1

was suggested in Rice (1984). We also consider a more efficient estimate 2,
which is described in the Appendix. The sample means and variances of the
variance estimates are compared in Table 4. The estimate &2 has a smaller
variance. The estimates B(62) and B(62) are obtained by substituting the
corresponding variance estimates for o2 in (2.1). The sample means and the

TABLE 3
The Kolmogorov test statistics of —é75 against the x4 and normal distributions and their
corresponding p-values

1 2 3 4 5 6 7 8 9 10
x2 distribution  0.046 0.078 0.054 0.057 0.054 0.073 0.070 0.051 0.070 0.069
p-value 079 0.18 059 054 061 023 028 0.68 028 0.29
Normal 0.113 0.156 0.131 0.132 0.131 0.148 0.127 0.124 0.143 0.145
p-value 0.012 * * * * * * * * *

The p-values represented by ‘“ *”” are smaller than 0.005. The location and scale parameters
are estimated from each of the 10 samples of size 200.
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TABLE 4
The sample means and variances of 2 and &2

T=175 T =300
o2 &2 &2 &2
Mean (X 1076) 9.08 (0.04) 8.93(0.036) 8.98 (0.02) 9.15(0.02)
Var (x10712) 3.39(0.12) 2.55(0.09) 0.816 (0.026) 0.655 (0.023)

The sample sizes are 2000. The values inside the parentheses are the estimated standard
errors.

standard deviations of the estimates B(62) and B(&2) are also given in Table
1. For T = 75, the variance of B(62) is about 30% smaller than the variance of
B(62). The estimated densities of the estimates are plotted in Figure 5. The
same width (0.04 for T = 75 and 0.03 for 7' = 300) was used in estimating the
densities in each plot. For T = 75, the densities of B(52) and B(&2) have
modes lower than the mode of 3. However, there are only small differences
between the densities when 7' = 300. This confirms the argument of Rice
(1984) that the effects of replacing o2 with estimated ones are asymptotically
negligible.

4. Assumptions and proofs. We use the technique of Fourier analysis of
time series to derive the asymptotic distribution of the bandwidth estimate.
Most notation and terminology used here follows Brillinger (1981). In the
following discussion, we let S(¢) = m(¢/T) and S,(¢) = 1h 4(t/T). The peri-
odogram of the series Y(¢), ¢ = 0,...,T — 1, is defined by

Iy(A) =|dy(V) [*/(27T),
where

T-1
dy(A) = Y, Y(t)exp(—iAt), —0 <A <o,
t=0

is the (finite) Fourier transform of the series Y(¢). The periodograms and
Fourier transforms of the series (¢), S(¢) and Sg(¢) are defined similarly. By
Parseval’s formula, we have

T-1 , T-1 .
(4.1) T {S(t) - gﬁ(t)} =) lds()‘j) - ds()‘j)l )

t=0 =0
where A; = 27j/T, j=0,...,T — 1, are the Fourier frequencies. Similarly,

T-1 9
(4.2) T RSS,(B) = E:O lds(A;) +d.(A;) —dg(A;)] .

J
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Fi6. 5. The estimated densities of the bandwidth estimates B (solid curves), B(52) (dotted
curves) and B(52) (dashed curves) (T = 75 in Figure 5a and T = 300 in Figure 5b).
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Since
T-1
Sa(t) =(TB) " L w{(u —1)/(TB)}S(u)
u=0
T-1
+(TB) ™' X w{(u - t)/(TB)}e(w),
u=0
we have
(4.3) dg(A) = Wg(1) ds(1)Ws(A) d. (1),
where
T/2 .
Ws(A) = (TB) ™" ET w{u/(TB)}exp(—iru)
u=-T/2

is the transfer function of the filter {(T'8) w[u /(T B)]}. The function WB()\) is
real when w(x) is symmetric. From (4.1) to (4.3), we get

5 las() - dsO)f = T |dsa)(1 = Wy(a,)) - We(a,) ()]

and
RSS7(B) = %Tg—lldsu,-) +d,(0) = Wy(a){ds(a) + ()
_ % go |dy (1) [(L - We(a))

Noting that W,(0) = 1 and the periodograms and Wy(A) are symmetric func-
tions with period 27, we see that, for odd 7', (1.1) and (2.1) are equal to,
respectively,

N
(44) Bo(B) = 47X [10)(1 = Wo(a)) + @m) "o Wy ()] + o
and
N
(45) Rp(B) =4n ZIIY(AJ.){I —- W,(1)))* = To? + 20%w(0) /8.

j=
For even T, (4.4) and (4.5) drop the terms at frequency m, which have
negligible effects. Let G(8) = Ap(0) — Ap(6), where Ap(8) =
T-Y/5R,(T~1/56). By a Taylor series expansion, we have

(4.6) — G'(6) - {A7(8) — A(8)} = (8 — 6,)A"(6),

for some 6 which lies in between 6, and 6. We need the following assumptions
in deriving an approximate distribution of G'(6).
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AssumpTiOoN 1. The noise £(¢) is a sequence of independent random vari-
ables with mean zero, variance o2 and finite cumulants «, of all orders.

AssumprioN 2. The function m(x) satisfies m(0) = m(1), m'(0) = m'(1)
and the second-order derivative of m (x) satisfies a Lipschitz condition of order
a > %

Under Assumption 2, it can be shown that |[dg(A;)] = O(T/;®) for j < T
[cf. Zygmund (1959), page 241].

AssumpPTION 3. The kernel w(x) is a symmetric probability density func-
tion with support on [— 1,1] and the second-order derivative of w(x) is of
bounded variation.

Letting W(B J) = Jw(x)exp(—i2mpBjx) dx, Assumption 3 implies that
W(Bj)=0(B7%® and (3/3B)W(B_I) = O(B i=2) [cf. 2.8.6 of Edwards
(1979) and note that w(3) = w'(3) = 0]. Since

W)= ¥ WB(aT +))),

n=—c

we have, for some constant M > 0,
|Wao(A,) = W(Bj)| <M L (B(nT +4)} P =0(T*8~°).

Therefore, W(A;) can be replaced by W(Bj). Similarly, the derivatives
(0/3BIWg(A;) in the following discussion can be replaced by (8/0B)W(BJ).
Under these assumptions, the estimate 6 is consistent [Rice (1984)] and
Ap(8) — A(B) is of order T~%/5 + T~*/% = o(T~/1%).

We proceed to evaluate G'(9). Write the difference between (4.4) and (4.5) as

(4~7) RT(B) - RT(B) =B, + Bz(B) + Bs(ﬁ) + B4(ﬁ) + O(T 3/3 3),

where

2m ¥ {L(A)) - o?/(2m)),

j=0

N
By(B) = 47 L {L(%;) - o/ (2m)}Ws(A,)’,

Jj=1
N
By(p) = ~87 L {L(1)) = o2/ () W(1,)

and

N
B,(B) = 4T 'Re ;l ds()‘j)de(_)‘j){l - WB(Aj)}Z'
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The error term in (4.7) is caused by dropping the terms at frequency = for
even T. From (4.7), we see
T*°G'(T'/°B) = By(B) + By(B) + By(B) + O(T~%87%).
Lemma 1 gives the asymptotic variance of By(B8) + B4(B).

LemMmA 1. Under Assumptions 1 and 3 and assuming TB - © as T — o,
the asymptotic variance of B3 ?*{By(B) + B4(B)} is equal to 8o*/{jw(x —
Yu(y)dy — v(x)}2 dx, where —uv(x) = w(x) + xw'(x).

Proor. Letting
(4.8) Va(A) = —{1 = Wa(2)}(9/8B)Wy(R),
we have an important expression

N
(4.9) By(B) + By(B) = 8w X {L(3;) — o2/(2m)}V,(2)).
j=1
Since
2 2 Tk, + T%* ifj==Fk
d.(A)],]d (A = 4 ’
o ’)I 4.0 } {TK4 otherwise

[cf. Brillinger (1981)], the variance of B,(B) + B(B) is equal to

cum{

1604 ~IZ=V1 [{1 = Wa(a,)}8/B)W,(A,)]°

plus a negligible term. Define
(4.10) a(u) = B~NTB) > L w{(u — t)/(TB)}v{t/(TB))

t
and
(4.11) b(u) = B~(TB) 'v{u/(TB)}.
The filters {a(«)} and {6(u)} have the transfer functions W(AX3/9BI)W,(A)
and (9/3B)Wg(A), respectively. By Parseval’s formula, we get

T/2

T-1
(4.12) go [{1 - W )Na/BW,(A)] =T L {a(t) - b(2))°

t=—T/2

when B < ;. It can be seen that B3 times (4.12) converges to f{ /w(x —
yu(y)dy — v(x)}2dx and the proof is finished. O

A bound for the asymptotic variance of B,(B) is given next.

LemMA 2. Under Assumptions 1-3 and assuming B = by, where by = o(1)
and ¢ > 0 is a constant, the variance of B,(B) is of order Tb3.
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Proor. The variance of B,(B) is equal to
N 512
16702 Y Is(1)[(3/08){1 - Wo(A))]
j=0

plus a negligible term. Since (3/9B)1 — W4(A)}? = O(B%*) when Bj = O(1),
we see

2
T I(A)| @/t - Wy,
Jj=<bz!
is of order TB%b;% = O(Tb3). Because (3/3BIW4(1;) = O(B~37?), we also
have

2]2 _ .
T Is(n)|@/aB){1 - W(r)f| <MTBTe ¥ 7,
Jj=b7! Jjzbz!
for some constant M > 0. Noting that the right-hand side is of order Tb3
finishes the proof. O

From Lemmas 1 and 2, we see that B;(B) is negligible when b,T/¢ = o(1).
For the example considered in Section 38, the variance of B(B,) is about 4% of
the variance of B,(B,) + B3(B,) for the sample size T = 75.

For a Gaussian series &(#), I,(A)), j=1,..., N, are true independent
exponential random variables. Therefore G'(6) is approximately equal to a
constant plus a weighted sum of independent yZ random variables. As shown
in Lemma 3, this is still true for a non-Gaussian series.

LemMA 3. Under the conditions in Lemma 1, the distribution of {By(B) +
By(B)} is approximately equal to the distribution of Z(B) = 20°L(X; —
2)V,4(A;), where X;, j =1,..., N, are independent x2 random variables.

Proor. We need to show that the cumulants of B3/%{B4(B) + B3(B)} and
B3/%2Z(B) have the same limits. The expected values are equal to zero. From
Lemma 1, the variances are asymptotically equal when BT — x as T — . The
kth (£ > 3) cumulant of B3/%{B,(B) + B(B)} is equal to the kth cumulant of
8w B3 2L I,(A;)V,4(A,), which is
2

(413) 4742 ¥ cum{]d,(A;) de(Ajk)|2}l:r]1Va(M,)-

“oy

This cumulant is equal to
Y cum{d, (w;,); jh € vy} - cum({d, (w);); jh € v},

where w;, = (- D"\ and the summation is over all indecomposable partitions
of the table

(1,1) (1,2

(k1) (k,2)



1710 S.-T. CHIU

[cf. Brillinger (1981), pages 20 and 21]. By applying Theorem 4.3.2 of Brillinger
(1981) and noting that LV,2(A;) = O(B~?) from Lemma 1, it can be shown
that all partitions, except those described below, give values converging to
zero. The partitions which might give nonvanishing contributions are those
partitions » = v, U -+ U v, each of whose members v, contains exactly two
elements from different columns. The number of such partitions is k! (4.13) is
approximately equal to

N
(4.14) (402) B3*2k1 Y VE(2,),

j=1
which is equal to the %th-order cumulant of g3/2Z(B). O

Theorem 1 in Section 2 follows directly from (4.6) and Lemmas 1 to 3. The
Proof of Corollary 1 is given next.

Proor oF CorROLLARY 1. It is sufficient to show that (4.14) converges to
zero for k& > 3. Define a(u) = a(u) — b(u), where a(u) and b(«) are given in
(4.10) and (4.11), respectively. From the proof of Lemma 1, {G(«)} has the
transfer function VB(A). Now,

T-1
Y Vi(a))
j=1

=T|L Y a(t) - a(s))

n t1+ - +t=nT

(4.15)

Since there are at most 27 nonzero a(u)’s, we have a finite number of n’s
with nonzero summations. Hence, (4.15) is less than

(4-16) M3_2 Z |d(t1)| U Z |d(tk—1)|’

th-1
for some constant M > 0. Since (4.16) is of order B~**D, (4.14) is of order
B~1*%/2 The proof is finished by noting that 8~1**/2 = 0(1) when B = o(1)
and £ > 3. O

We remark that Lemmas 1-3 still hold for the more general case, m*(x) €
L, and [x'w(x)dx =0, for I=1,...,k — 1, and Jx*w(x)dx > 0. Results
similar to Theorem 1 and Corollary 1 can also be obtained. For the general
case, the bandwidth B, is of order T~/@**1 and the number of degrees of
freedom given in (2.6) is of order T'1/Zk+D,

APPENDIX

Estimation of noise variance. We consider the estimate
N I+ (A;
G2=27(N—-j,+1) 'YL r(%,) o
J=io |1 — exp(—iA;)|
where Y(#) =Y(#) - Y@ - 1), t=1,...,T — 1, is the differenced series of
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Y(¢). In the simulation study, we set j, = 5. 6 is a special case of the

estimate

o 27BN (W)L - exp(=id)(4(A))

(A1) .
Zf;lll - exp(—iAj)I gb(/\j)

where ¢(A) is a weighting function. The estimate 62 given in (3.1) is also a
special case of (A.1) with ¢(A) = |1 — exp(—iA j)|_2. More details about the
estimation procedure (including the choice of j,) can be found in Chiu (1989).
For a Gaussian series &(¢), the asymptotic variances of 62 and &2 are
1.5(20*/T) and {N/(N — j, + D}{20*/T), respectively.

Acknowledgments. 1 gratefully thank Professor David Scott, the refer-
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