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A probability assessor or forecaster is a person who assigns subjective
probabilities to events which will eventually occur or not occur. There are
‘two purposes for which one might wish to compare two forecasters. The first
is to see who has given better forecasts in the past. The second is to decide
who will give better forecasts in the future. A method of comparison suitable
for the first purpose may not be suitable for the second and vice versa. A
criterion called calibration has been suggested for comparing the forecasts of
different forecasters. Calibration, in a frequency sense, is a function of long
run (future) properties of forecasts and hence is not suitable for making
comparisons in the present. A method for comparing forecasters based on
past performance is the use of scoring rules. In this paper a general method
for comparing forecasters after a finite number of trials is introduced. The
general method is proven to include calculating all proper scoring rules as
special cases. It also includes comparison of forecasters in all simple two-
decision problems as special cases. The relationship between the general
method and calibration is also explored. The general method is also trans-
lated into a method for deciding who will give better forecasts in the future.
An example is given using weather forecasts.

1. Introduction. In this paper we will consider a number of probability
assessors (forecasters) who will assign probabilities to certain well-defined events.
Intuitively, forecasts are good inasmuch as they are “close” to the indicators of
the events being forecast. For example, a forecast of 0.1 for an event which does
not occur will appear better, after the fact, than a forecast of 0.2 for that same
event. In Section 2, we consider some existing methods used for comparing
forecasters. In Section 3, we introduce a general method which includes the
existing methods as special cases. The general method can be used either for
comparing several forecasters or for evaluating a single forecaster. In Section 4,
we characterize one of the existing methods, proper scoring rules, in terms of how
it relates to the general method. A different characterization, not related to the
general method, is given by Hendrickson and Buehler (1971). Some examples of
the characterization are given in Section 5. In Sections 6 and 7, we show how
other existing methods of comparing forecasters (calibration and dominance)
relate to the general method. We examine the relationship between proper
scoring rules and calibration in Section 8. An example, involving weather fore-
casting, of the use of the general method is given in Section 9.

A related question, not addressed in this paper, is how to improve a forecaster
who is judged to be performing poorly according to the general method. Methods
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for improving forecasters have been considered by Lindley, Tversky and Brown
(1979) and by Lindley (1982). These methods tend to rely on the use of beliefs
about forecasters. In Section 10, we see how the general method for comparing
forecasters can be translated into a general method for evaluating forecasters
based on beliefs. It should be noted that none of the methods for comparing
forecasters based on past performance is designed to determine which forecaster
is likely to perform better in the future. However, it is hoped that the general
method described in this paper can provide useful information for helping to
decide who might perform better in the future.

Much literature exists on the subject of comparing forecasts in meteorology.
An excellent survey of this area is given by Murphy and Winkler (1984). Some
work has been done comparing probabilistic forecasts to categorical forecasts in
decision problems by Thompson (1952, 1962), Thompson and Brier (1955),
Murphy (1977) and Winkler and Murphy (1979). In this paper, we will consider
only probabilistic forecasts and we will compare different forecasters to each
other. Other authors have considered the question of the goodness of probability
forecasts, but they have usually focused on a single aspect of the question. For
example, Epstein (1962) considers the use of forecasts from a decision theoretic
point of view, while Murphy and Epstein (1967) and Murphy (1972) consider
only scoring rules. In this paper, we develop a general framework for com-
paring probabilistic forecasts and we explore the ways in which several existing
methods of comparison fit into the general framework. We also hope to show
how the general framework sheds new light on the overall problem of comparing
forecasters.

2. Existing methods for comparing forecasters. Suppose each probabil-
ity assessment must be a number from the set =, a subset of [0,1]. For each
forecaster and for each possible forecast x, consider the set of all events whose
probabilities are assessed as x, and let r(x) denote the long-run frequency of
occurrence of these events. The function r(x) is often called the forecaster’s
(empirical) calibration curve. If x has never been given as a forecast or if
r(x) = x, the forecaster is said to be (empirically) calibrated at x. If the
forecaster is (empirically) calibrated at every x, he is called (empirically) well-
calibrated. [More general definitions of calibration are used by Dawid
(1982, 1985), but we will not consider them here.] It has been proven by Dawid
(1982) that in the presence of feedback, a Bayesian forecaster expects to be
well-calibrated in an infinite sequence of forecasts. But this is relative to the
forecaster’s (subjective) probability distribution over the future and supposes
that the forecaster has already decided how to make use of all information that
will ever be learned.

It is well-known that a forecaster can be well-calibrated in a sequence of
experiments if he/she always forecasts the same value x, as long as x is the
“long-run” frequency of occurrence of the events of interest. Clearly, a compari-
son of forecasters must rest on something other than a simple comparison of
calibration curves. DeGroot and Fienberg (1982a) offer a criterion which they call
refinement for comparing well-calibrated forecasters. Refinement is related to
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the concept of sufficiency, which we discuss in detail in Section 6. Unfortunately,
since these are long-run concepts, problems of comparison in the short run
cannot rest on calibration or refinement as currently understood.

To avoid the problems inherent in calibration, a method of comparing fore-
casters which does not rely on infinite sequences is needed. One method is the
adaptation of proper scoring rules which Savage (1971) suggested for eliciting
subjective probabilities.

DEFINITION 2.1. Consider a situation in which a forecaster must give a
probability forecast for an event E. Let Y = 1 if E occurs and 0 if not. Let the
forecaster’s subjective probability of E be p. A scoring rule is a pair of functions
8(x) and gy(x) such that if the forecast is x and Y = i, the forecaster loses
8:(x). A scoring rule (g,, 8,) is proper if, for all p, the function
(2.1) m(x; p) = pgi(x) + (1 — p)go(x),
considered as a function of x for fixed p is defined, minimized and less than + oo
at x = p. [We understand O times oo to be 0 in either summand on the
right-hand side of (2.1). Also, if the right-hand side of (2.1) is o0 — oo for some x,
we understand m(x; p) to be lim,_, , m(¢; p), which we require to exist for such
values of x.] A proper scoring rule is strictly proper if, for all p, m(x; p) has its
unique minimum at x = p.

It is easy to see that when the forecaster believes that the probability of E is
D, (2.1) is the forecaster’s expected loss if he/she forecasts x. Hence, a scoring
rule (considered as a loss function) is proper if and only if the optimal decision is
the probability of E. An old and much studied strictly proper scoring rule is the
Brier score [Brier (1950)] g,(x) = (1 — x)? and gy(x) = x2 Some authors define
scoring rules as gains to the forecaster rather than losses. It will prove conve-
nient in this paper to consider them as losses in order to make the connection
with loss functions in two-decision problems more straightforward. One can use
scoring rules to compare forecasters by claiming that the forecaster who per-
formed better is the one with the smaller score after a finite number of forecasts.

3. A general method for comparing forecasters. The main goal of this
section is to introduce a general framework in which the existing methods for
comparing forecasters, described in Section 2, can be better understood and in
which new methods with desirable properties can be introduced. The framework
we choose will be that of simple two-decision problems.

Define a simple two-decision problem to be a problem in which there are two
states of nature Y = 0 or 1 (unknown at the time the decision must be made) and
two possible decisions d,, and d,, such that the loss L(d;, Y) of making decision
d; has the properties

L(d,,1) < L(d,,1),

L(d,,0) > L(d,,0).
It is easy to see that such a problem is equivalent (in terms of which decisions
will be optimal) to a problem in which L(d,, i) =0 for i = 0,1, L(d,,0) and
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L(d, 1) are both nonnegative and L(d,,0) + L(d,,1) = 1. Such a problem can
be characterized by the number ¢ = L(d,,0), with 0 < ¢ < 1, and will be called
problem q.

Imagine that a decisionmaker will use the forecast x as if it were the
probability that Y = 1 in problem g for some g. It is easy to see that the optimal
decision is d, if x > g, d, if x < ¢ and undetermined if x = q. For definiteness,
say that the optimal decision is d,, if x = q. The loss incurred by the decision-
maker is

(81) k(x;9,Y)=ql(x>q,Y=0)+(1-¢q)[(x<q,Y=1),

where I( B) denotes the indicator of the event B. Each time a forecast x; is used,
the decisionmaker in problem g would incur a loss equal to k(x; g, Y,). After n
forecasts, let x be the vector of forecasts and Y be the vector of indicators for the
events. The average loss for the decisionmaker in problem q is

1
fl@,Y) = — L k(x5 ¢, Y)

#(x;,>q,Y,=0) #(x;<q,Y,=1)
=q - +(1-gq) .

n

Note that k(a; q,Y) < k(b; q,Y) for all q if a is closer to Y than b is. This fact
suggests the following partial ordering of forecasters.

(3.2)

DEFINITION 3.1. Let A and B be two forecasters and let C be some set of
events. Let Y stand for the vector of indicators of the events in C. Let f,(q,Y)
be the expression in (3.2) calculated from the forecasts of A and let fz(q,Y) be
calculated from the forecasts of B. Then we say A has performed at least as well
as B (for the events in C) if f,(q,Y) < fg(q,Y) for all ¢. If, in addition,
fa(q,Y) < fg(q,Y) for some g, we say A has performed strictly better than B.

Clearly, not every two forecasters will be comparable according to Definition
3.1. However, we will require that any attempt to provide a more complete
ordering of forecasters must agree with Definition 3.1, when that definition
applies. Hence, we introduce the following:

A general method of comparing forecasters is to choose a
functional L on the set of all functions of the form (3.2) and a
subset C of all events. We say that A has performed at least
as well as B according to L for the events in C if L(f,) <
L( fg). The method will agree with Definition 3.1 as long as
L(h) < L(g) whenever h(q) < g(q) for all q.

The simplest functional a decisionmaker could choose would be L( f) = f(q,)
for that value of g, which reflects the relative risks in his /her particular decision
problem. If several (or all) values of g are possible relative risks, L( f) could be
the integral of f with respect to some measure. The measure should put more
mass on those values of ¢ which the decisionmaker feels best describe the
problems he/she must deal with. In Section 4, we will see that this is essentially
equivalent to calculating a proper scoring rule. In particular, for each ¢, gy(x) =
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k(x; q,Y) defines a (not strictly) proper scoring rule. In Section 6, we also
consider a sense in which one f function being “better” than another means that
one forecaster is better calibrated than the other. A functional which is equiva-
lent to neither scoring rules nor calibration is L(g) = sup, g(q). This would
correspond to a minimax criterion for comparison. In fact, a whole class of
functionals of this type can be generated by letting L(g) be any norm of the
function g.

It should be noted that many of the results in the following sections remain
valid (with appropriate modifications) if f(q,Y) in (3.2) is replaced by a
weighted average of the functions k(x;; g, Y;) rather than the straight average.
Interpretations of such concepts as calibration, sufficiency, dominance and re-
finement become more cumbersome in this case, so we will deal only with the
straight average in the remainder of this paper. Unless stated otherwise, we will
also assume that the subset C of events is actually the set of all events of
interest.

The first step in comparing forecasters A and B might be to draw the graphs
of the functions f, and fz to see which one was higher for what values of q. A
method similar to this has been suggested by Murphy (1977). Murphy’s method,
however, involves several plots for each forecaster and a separate set of plots for
each formulation of the decision problem ( p* in his notation). We believe that
the plots of the functions (3.2) are simpler to create and their relationship to
proper scoring rules (see Section 4 below) makes them more useful.

4. Proper scoring rules for comparison. Consider a proper scoring rule
(&1, &) as defined in Definition 2.1. In this section, we establish a relationship
between such a scoring rule and the function & defined in (3.1). The main result
will be a generalization of a theorem of Shuford, Albert and Massengill (1966),
which can be restated in the present terminology as:

THEOREM 4.1 [Shuford, Albert and Massengill (1966)]. If g, and g, are
differentiable on [0,1], g, is nonincreasing and g, is nondecreasing, then
(8,, 89) is a proper scoring rule if and only if

-pg{(p) =1 -p)gi(l—p) forall0<p<1,

where the prime denotes derivative.

This theorem leads to an integral representation of differentiable scoring rules
which we quote verbatim from Shuford, Albert and Massengill (1966), page 129:

-+« If we let h(t) be any bounded, differentiable nonnegative
function, defined on the unit interval, having the property
that h(1) = 0 and sup, ., |A(¢)| < oo, then we can let

t
go(r)=f£0,r)h(t) dt and gl(r)=f[’1-r11)1—_——th(t)dt.
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A similar representation was derived by Savage (1971). These representations are
reformulated and generalized in Theorem 4.2 below. The general representation
of Theorem A.9 in the Appendix makes precise the connection between proper
scoring rules and the function k defined in (3.1).

Because we allow scoring rules to attain the value — o0, any scoring rule
satisfying the following four relations will be proper according to Definition 2.1:

min{gy(x), g(x)} = —0 forall0 <=x <1,
max{g,(x), & (x)} < +oo for all but finitely many x,
(4.1) 80(0) < inf go(x),

&(1) < inf g,().

Such scoring rules are neither strictly proper nor very interesting. For this
reason, we will not consider such scoring rules further in this paper. It is
straightforward but tedious to show that all other proper scoring rules are finite
forall0 < x < 1.

THEOREM 4.2. Let (g,, 8,) be a left continuous scoring rule satisfying
(4.2) g:(x) = }i_l.r,lcgi(t) forx =0,1, i=0,1,

and having both g(t,) and g\(t,) finite for some t,,t, € [0,1]. This rule is
proper if and only if there exists a measure \(dq) on [0,1) such that

a(x) =a(t) + [ (1= @)\da),
(4.3) o
8o(x) = go(2y) + / g\(dq)
tOrx)
for all x. The scoring rule is strictly proper if and only if A gives positive
measure to every nondegenerate interval.

The proof of Theorem 4.2 relies on several lemmas and has been placed in the
Appendix. The purpose of condition (4.2) is to avoid unnecessary problems which
can arise when a scoring rule jumps to infinity at one of the endpoints. A result
similar to Theorem 4.2 can be proven for right continuous scoring rules, and
Lemma A.7 in the Appendix can be used to mix left and right continuous scoring
rules into an arbitrary scoring rule. The important consequence of Theorem 4.2
occurs when both g, and g, are bounded below. Since we can add arbitrary
constants to either part of a (strictly) proper scoring rule without changing the
(strict) propriety, we can assume that ¢, =0, ¢, = 1, g,(0) = 0 and g,(1) = 0. In
this case, the score a forecaster is given when he/she forecasts x equals

£(DIY = 1) + &)Y =0) = [ k(x; g, Y)Nda),

where k(x; q,Y) is defined in (3.1). After a number of forecasts, the average
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score of a forecaster equals

(4.4) f[o fx(a. V)M (da),

where f.(q,Y) is defined in (3.2). This is the precise statement of the claim made
in Section 3, that integrating f is essentially equivalent to calculating a proper
scoring rule.

The representation equation (4.4) can be used to shed some light on the
inconsistency of proper scoring rules discussed by Winkler and Murphy (1968).
They point out that in cases in which two forecasters A and B each assign
probabilities to several events, and then A and B are compared via proper
scoring rules, it may turn out that A gets a lower score than B from one scoring
rule and a higher score from another scoring rule. The example they give is of
forecasts for several disjoint events, but the same phenomenon occurs with
several forecasts in sequence. The reason for the reversal of order when one
changes scoring rules is that neither f,(p) < fg(p) nor fg(p) < fo(p) for all p.
When neither forecaster is at least as good as the other in the sense of Definition
3.1, then there exist two measures A, and A, such that A, has more of its mass
in the region where f, > fz and A, has more of its mass in the region where
fg > fa- It will then follow that under the scoring rule derived from A,, B will
have a smaller score than A and vice versa under the scoring rule derived
from A,.

5. Examples of proper scoring rules. In light of Theorem 4.2, we can
generate as many left continuous proper scoring rules as we can generate
measures on [0, 1). Some well-known examples are given below, along with some
lesser known ones.

ExXAMPLE 5.1. A simple measure that gives positive measure to every “non-
degenerate” interval is A(dg) =2dg. With ¢, =0 and ¢ =1, (4.3) yields
&o(x) = x% and g,(x) = (1 — x)?, which is just the Brier score.

EXAMPLE 5.2. An unbounded measure, which also gives positive measure to
every “nondegenerate” interval is A(dg) = dg/q(1 — q). Once again, with ¢, = 0
and ¢, =1, (4.3) yields g(x) = —log,(1 — x) and g,(x) = —log(x), which is
commonly called the logarithmic scoring rule.

EXAMPLE 5.3. A proper scoring rule which is not strictly proper is

2 ifx> 3
&(x)=(x? ifl<x<?
% ifx<i,
% ifx >3,
g(x)={((1-=x) ifl<x<3,

9 ~ 1
ifx < 3.
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This is obtained from (4.3) by using A(dp) = 2 dp for p between 1 and 2 and 0
outside and by setting g,(0) = g,(1) = .

Discontinuous scoring rules can be generated by adding point masses to the
measure A which generates any continuous scoring rule. The effect of such an
addition is to add a penalty to the score whenever the forecast is on the wrong
side of the point where the mass is. For example, the left continuous scoring rule
generated by the measure A(dq) = 2 dg plus a unit point mass at ¢ = % would
be Brier score plus a penalty of 1if x < ; and Y=1orifx > 1 and Y = 0.

6. How calibration fits into the general method. Throughout this sec-
tion, assume that all forecasters have made forecasts for the same n events. The
first result which allows us to see how calibration fits into the comparison
framework described in the previous sections is easily proved by comparing
f(q,Y) to the limit of f_ from the left of q.

THEOREM 6.1. A forecaster is empirically well-calibrated if and only if his
function . (q,Y) defined in (3.2) is continuous in q.

In light of Theorem 6.1, if being calibrated were all that was of interest, one
could define a sense in which forecaster A has performed better than B if f, is
closer to being continuous than fz. On the surface, such a definition would have
little or no connection with Definition 3.1, since f, can be continuous, fg
discontinuous and f,(q,Y) = fg(q,Y) for all q. For example, suppose there were
only two events being forecast, ¥; = 0 and Y, = 1. Suppose A forecasts 0.5 both
times, while B forecasts 0.2 for the first event and 0.8 for the second. Then A is
calibrated while B is not. But f,(q,Y) > f5(q,Y) for all ¢ with strict inequality
for ¢ between 0.2 and 0.8. It is clear after the fact that B’s forecasts were better
than A’s.

There is, however, a sense in which, for each forecaster B who is not
calibrated, there “exists” a forecaster A who is calibrated and has performed
better than B.

DEFINITION 6.2. Consider a single forecaster B. For each forecast x given by
B, let
#(xi =x,Y, = 1)

#(x;=x)

(6.1) ra(x) =

be the empirical calibration curve for forecaster B. Let A be a mythical
forecaster who gave forecast rz(x) each time B gave forecast x, for all x. We say
that forecaster A is the (empirically) calibrated version of forecaster B.

Note that forecaster A in Definition 6.2 is automatically well-calibrated. We
say that A is a mythical forecaster, because he would have to know the values of
rg(x) before seeing the Y, in order to make the forecasts he does. Clearly, if B is
already well-calibrated, then B and A give the same forecasts. If the set of
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possible forecasts = is not the entire unit interval, then A gives invalid forecasts
whenever rg(x) & =. Without going into too much detail, one could define D to
be an almost calibrated version of B relative to = by having D give the closest
forecast to rgz(x) which is in = and is between x and rgz(x) whenever B gives
forecast x. Theorem 6.3 below still holds if the word “almost” is inserted before
“calibrated version,” but some of the other results do not hold after that change.
We will not consider almost calibrated versions any further in this paper.

THEOREM 6.3. Let B be a forecaster and A his calibrated version. If B is not
well-calibrated, then A has performed strictly better than B in the sense of
Definition 3.1.

Proor. Using formula (3.2), we can write, after some simplification,

fa(p) — fa(p)
= p#(x; > p, rg(x;) <p)

— #(x;>p, rp(x;) <p, Y, =1)

+ #(x; <p, rg(x;) > p, Y, = 1) - p#(x, < p, 5(x,) > p).
Consider the two terms in the first row of (6.2). Since we are counting trials for
which rg(x;) is less than p, the proportion of such trials for which Y, =1 is
clearly less than p by (6.1). Hence the first row of (6.2) is nonnegative. Similarly,
the second row of (6.2) is nonnegative and fg(p) = f4(p) for all p. If B is not

well-calibrated, then for each p which is between x; and rg(x;) for some i, one of
the rows of (6.2) will be strictly positive. O

(6.2)

The relationship between a forecaster and his calibrated version is a special
case of a more general relationship called sufficiency by DeGroot and Fienberg
(1982a).

DEFINITION 6.4. A function A(x|y) defined for all x and y in a finite set of
possible forecasts is called a stochastic transformation if

h(x]y) >0 forall x and y,
Y h(xly) =1 forall y.
X

DEFINITION 6.5. For a forecaster A, let n (x) = #(x;, = x)/n and let r,(x)
be forecaster A’s calibration curve. Similarly, define ny and ry for another
forecaster B. We say that A is (empirically) sufficient for B if there exists a
stochastic transformation h(x|y), defined for all x in the set of forecasts given
by B and all y in the set of forecasts given by A, such that

Zh(xly)nA( y) = ng(x) for all x,

Y h(x|y)ra(y)na(y) = rg(x)ng(x) forall x.
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The word empirically is in parentheses in Definition 6.5 because the context
of this definition is slightly different from that of DeGroot and Fienberg (1982a):
DeGroot and Fienberg are dealing with probabilities, not frequencies from finite
samples. However, since frequencies in finite samples behave like probabilities,
many of the theorems of DeGroot and Fienberg can be used in the present
context without reproving them. We will make free use of this fact in the ensuing
discussion. We will discuss the distinction between probabilities and frequencies
again in Section 10.

A sense in which being empirically sufficient means being better is given by
the next theorem.

THEOREM 6.6. A forecaster A is empirically sufficient for B if and only if the
calibrated version of A has performed at least as well as the calibrated version
of B in the sense of Definition 3.1.

PROOF. It can easily be shown that a forecaster and his calibrated version
are empirically sufficient for each other and that empirical sufficiency is transi-
tive. Hence, it suffices to consider forecasters A and B who are well-calibrated.
Hence, we may assume ry(x) = rg(x) = x for all x. In this case, we can write
(after some simplification)

fo(p) —fa(p)= X (p— x){nalx) - nB(x)},
x<p
where the summation is over all forecasts (given by either forecaster) that are
less than or equal to p. Theorem 3 of DeGroot and Fienberg (1982a), when
translated to handle the empirical case, applies to finish the proof. O

Consider, once again, the simple two-decision problems discussed in Section 3.
Theorem 6.6 says that a forecaster A is empirically sufficient for B if and only if
we would have done no worse to use the calibrated forecasts of A than the
calibrated forecasts of B no matter what problem g we were making decisions in.
Note that if A is very poorly calibrated, it is possible for B to have performed
better than A, while A was empirically sufficient for B. This would be the case,
for example, if A always gave one of the forecasts 0 and 1, but was always wrong.
The relationship between sufficiency of forecasters and sufficiency in the theory
of comparison of experiments will be taken up in Section 10.

As a final note, the results of this section are particularly uninteresting in the
case in which B gives each forecast only once. In this case, the calibrated version
of B is the perfect forecaster, the one who says only 0 or 1 and is always correct.
Such considerations might lead to more restrictive definitions of calibration such
as the ones in Dawid (1982, 1985). Dawid’s definitions, however, have less
intuitive appeal than the more standard definition given above and lead to
complications which have not yet been resolved [see Schervish (1985b)].

7. Dominance considerations. Recently, Vardeman and Meeden (1983)
introduced three partial order relations among forecasters. We translate these
relations into the notation introduced above.
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DEFINITION 7.1. Forecaster A (empirically) rain dominates forecaster B if,
for all q,

(7.1) Y ra(x)ng(x) < X rp(x)np(x).

x<q x<q

Forecaster A (empirically) dry dominates forecaster B if, for all g,

(7.2) IREERACININCI D {1 = rg(x)}ng(x).

x<gq x=<q
Forecaster A (empirically) dominates B if both (7.1) and (7.2) hold for all q.

The authors then proceed to prove several mathematical properties related to
dominance. For example, if A and B are both well-calibrated and A either rain
or dry dominates B, then A is sufficient for B.

In this section, we will explore how these dominance concepts fit into the
general method of comparing forecasters. It is easy to see, for example, that A
empirically dry (rain) dominates B if and only if the first (second) term in (3.2)
for f, is no larger than the corresponding term for f; for all gq. Hence, A dry
dominates B if and only if A performs at least as well as B on dry days, that is,
the set C is the set of all trials on which it does not rain. Similarly, A rain
dominates B if and only if A performs at least as well as B on rainy days. There
is also a connection between rain/dry dominance and overall performance. The
following theorem is easy to prove, so the proof will be omitted. Note that there
is no calibration condition for either A or B.

THEOREM 7.2. If A dominates B, then A performs at least as well as B. If A
dry (rain) dominates B and B performs at least as well as A, then B rain (dry)
dominates A.

In a sense, Theorem 7.2 says that either rain or dry dominating another
forecaster is a hedge against having the other forecaster perform better, but is no
guarantee. For example, if A dry dominates B, then the only way B could
perform at least as well as A is for B to rain dominate A to at least as great an
extent as A dry dominates B. One can easily construct examples of all of the
cases not covered by Theorem 7.2. For example, one could have A rain dominate
B and B dry dominate A, while either f, < fz or f, > fz or neither. Similarly,
one could have A rain dominate B and B not dry dominate A, while either
fa(q,Y) < fg(q,Y) for all g or not. Also, we could have A perform at least as
well as B, but A neither rain nor dry dominates B.

8. Proper scoring rules and calibration. Theorem 6.3 states that the
calibrated version A of an ill-calibrated forecaster B has performed strictly
better than B. Hence, the average score on any proper scoring rule should be
smaller for A than for B. The purpose of this section is to consider exactly how
much smaller the average score is. For simplicity consider only scoring rules
(8o, &) which are left continuous and which satisfy g4(0) = 0 = g,(1). Then
there exists a measure A on the unit interval such that the average score of
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forecaster A is
[ fa(a,Y)N(dg)
[0,1)

and the average score of forecaster B is
[ foa DN(dg).
[0,1)

We can write the average score of B as

(8.1) Lng(x){ra(x)go(x) + [1 - rg(x)] &i(x)},

where the sum is over all of the distinct forecasts which B gives. DeGroot and
Fienberg [(1982b), Theorem 4] write (8.1) as S, + S,, where S, is just the average
score of forecaster A, the calibrated version of B and S, is the excess, which they
write as

S, = Lnp(x){rs(x)(8:(x) - &i[ra(2)]) + [1 - ra(x)][2o(x) — go(ra(x))]}-

It is not easy to see how this expression measures the degree to which B is not
calibrated, except that it is zero when B is calibrated and positive otherwise.
However, if we use the integral representation of the average score, we see that

(8.2) S=X[  na®){rs(x) - g)\(da),
x “Lx, ra(x))

where the range of integration is to be understood in the sense of Definition A.8
(in the Appendix) if x > rg(x). The integrand in (8.2) is nonnegative over the
range of integration and the closer x is to rg(x), the shorter that range is. We
can also see that it is particularly bad to be ill-calibrated in regions with high
measure under A. Recall that A gives high measure to regions which include ¢
values corresponding to those simple two-decision problems which are most
important. Poor calibration in such a region would correspond to the forecast x
being too often on the wrong side of the cutoff ¢ in problem g, leading the
decisionmaker to make the more costly decision too often.

Just as S, has an interpretation as a measure of how far forecaster B is from
being calibrated, S,, which is the accumulated score of the calibrated version of
B, has an interpretation as a measure of how good B was at distinguishing trials.
If ry(x) is very different from rg(y) when x and y are different, then B was
good at distinguishing trials, even if he distinguished them incorrectly. For
example, the forecaster who always forecasts 0 or 1 and is always wrong
distinguishes trials as well as the perfect forecaster who is always right. DeGroot
and Fienberg (1982b) say that forecaster A is at least as refined as forecaster B
if A is at least as good as B at distinguishing trials in some sense. The exact
sense will not concern us, since whenever A and B are well-calibrated, DeGroot
and Fienberg prove that A is at least as refined as B if and only if A is sufficient
for B. To see how S, can be interpreted as a measure of how refined (or how
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“sufficient”) B is, write S, as
Sy = Xnp(x)¥[rp(x)],

where
¥(2) = tg(t) + (1 — t)go(2).

The function ¢ is concave, since it is the Bayes risk in the decision problem with
parameter Y € {0,1}, decisions x in the interval [0,1] and loss function
L(x,Y) = gy(x). A concave function on a bounded interval is smallest near at
least one of the ends of the interval. So S, is small if rg(x) is always near 0 or
near 1. That is, B is refined in so much as his forecasts distinguish groups of
trials with far apart values of rg.

In summary, a forecaster accumulates a high score for two reasons:

1. He is not well-calibrated.
2. His calibrated version is not perfectly refined.

This result can be easily misinterpreted. It would seem to suggest that one
should strive to be well-calibrated, since that will reduce one’s function f(p).
However, attempts to become more calibrated may make one less refined.
Unfortunately, unless one is failing to learn from experience, the only way to
become better calibrated is to figure out what is going to happen before it does.
Hence, one should strive to figure out what will happen before it happens. A
more reasonable interpretation of these results is given in Section 10.

9. An example of the use of the general method. During the summer of
1982, the author kept track (in a somewhat nonsystematic manner) of the
forecasts for rain on the current day and for the next day. The variable Y was
taken to be 1 if the National Oceanic and Atmospheric Administration recorded
at least 0.01 in. of rain for the given day and 0 otherwise. There were 47 days for
which the author had two forecasts, the one given on that day and the one given
the day before. We will call the forecaster who forecasts today’s rain today A and
the one who forecasts today’s rain yesterday B. The functions n and r for each
forecaster are given in Table 1. One can easily see that neither set of forecasts is
exceptionally well-calibrated. The functions f,(q,Y) and fz(gq,Y) are plotted in
Figures 1 and 2 along with the corresponding functions for their calibrated
versions. Figure 1 shows the forecasters compared to each other (I) and compares
their calibrated versions to each other (II). The calibrated version of A has
performed at least as well as the calibrated version of B for all g, indicating that
A is more refined than B. Surprisingly, however, there is a substantial range of
values of g, from 0.3 to 0.5, over which B performed better than A. Figure 2
shows each forecaster compared to his calibrated version. [Today’s forecast given
today is (I) and today’s forecast given yesterday is (II)]. In this plot, one can see
that B is more nearly calibrated than A.

To compare the two forecasters, one might wish to use several proper scoring
rules. Since neither forecaster has performed better than the other, different
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TABLE 1
Values of n(x) and r(x) for current and previous day forecasts. A denotes today’s forecast given
today. B denotes today’s forecast given yesterday.

x n4(x) ry(x) ng(x) rg(x)
0.0 16 0.063 16 0.063
0.2 3 0.000 0
0.3 10 0.400 6 0.167
04 3 0.000 8 0.250
05 2 0.500 4 0.750
0.6 3 0.667 3 0.333
0.7 3 0.667 7 0.714
0.8 1 0.000 1 1.000
0.9 0 1 1.000
1.0 6 1.000 1 1.000

scoring rules will rank them differently. For example, the average Brier scores are
0.1402 and 0.1485 for A and B, respectively, while the average scores for the rule
of Example 5.3 are 0.0961 and 0.0761, respectively. This is due to the fact that B
was better than A for forecasts in the middle of the range, while A was better
than B to an even greater extent for extreme forecasts.

10. Beliefs about forecasters. In the previous sections, we have dealt
almost exclusively with a finite set of trials in which one or more forecasters gave
a probability for the event E; = {Y; = 1}, and we learned whether or not E;
occurred. We judged forecasters based on how close the forecasts were to the
observed values of Y,. What if we are interested in expressing our beliefs about a
future prediction? We cannot judge a future forecast about Y based on how close
it is to Y until after Y is observed. If the forecast which will be given is X, then
we must consider the joint distribution of (X, Y). By “distribution” here, we
mean the subjective probability distribution that some decisionmaker has over
the forecasts and the forecasted events. In a manner similar to (3.2), write

¢x(q) =qPr(X>q,Y=0)+(1-q)Pr(X<q,Y=1).

The results of the previous sections which concerned the accumulated score can
be easily translated to results concerning the expected score from a proper
scoring rule by replacing fx(q, Y) by ¢x(g) and making some minor terminologi-
cal changes.

We will call a forecaster probability calibrated [following Lindley (1982)] if

p(x)=Pr(Y=1X=x)=x

for all possible forecasts x. The function p(x) can be called the forecaster’s
probability calibration curve in analogy to the function r(x). Similarly define
»(x) to be Pr(X = x) in analogy to n(x). Call A the probability calibrated
version of B if A gives forecast p(x) after B gives forecast x. Then Theorem 6.3
translates to say that ¢,(q) < ¢x(q) for all g. The conclusion that one should
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strive to be calibrated now translates to the reasonable, and almost forgone,
conclusion that if one is going to use a forecast x as if it were Pr(Y = 1), one
would do best if x = Pr(Y = 1).

The concept of probability sufficiency is complicated by the fact that the set
of possible forecasts may not be finite, whereas in the empirical case, the set of
observed forecasts is always finite. We take the approach of Blackwell (1951) in
the following definition.

DEFINITION 10.1. Consider two forecasters A and B. We say that A is
( probability) sufficient for B if there exists a function H(E|y) with the following
properties:

(1) H(:|y) is a probability over [0,1] for each y € [0,1].
(i) H(E| -) is a Borel-measurable function for each Borel subset E of [0,1].
(iil) p;p(E) = [H(E|y)p;s(dp) for i = 0, 1,

where, for any forecaster C,
pic(E) = Pr(C’s forecast € E|Y = i).

The function H takes the place of the stochastic transformation A in
Definition 6.5 because it is not necessary for the set of possible forecasts to be
finite. For the case in which the set of possible forecasts is finite, a simple
translation of Theorem 6.6 to the case of probabilities says that A is probability
sufficient for B if and only if the expected loss from using A’s calibrated
forecasts is no greater than the expected loss from using B’s forecasts (calibrated
or not) regardless of which problem g we are making decisions in. For the more
general case, we state the following theorem, which can be proved by applying
Theorems 5, 8 and 10 of Blackwell (1951) and Theorem 8.3.2 of Blackwell and
Girshick (1954).

THEOREM 10.2. If A and B are probability calibrated forecasters, then A is
probability sufficient for B if and only if ¢,(q) < ¢5(q) for all q.

This, then, makes the connection with sufficiency in comparison of experi-
ments more clear. Forecaster A is probability sufficient for forecaster B if the
experiment which provides us with A’s calibrated forecast is sufficient for the
experiment which provides us with B’s (calibrated) forecast.

Finally, consider the probabilistic analogs of the dominance criteria of
Vardeman and Meeden (1983). We might say that A probability rain dominates
B if, for all q,

Pr(X,<q,Y=1)<Pr(Xp<q,Y=1)
and A probability dry dominates B if, for all g,
Pr(X,<q,Y=0)>Pr(Xz<q,Y=0).

A simple analog of Theorem 7.2 applies and will not be stated here. Unfortu-
nately, there is a serious drawback to these criteria. Even if one knew that A dry
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dominated B, one would be hard pressed to make use of the information, because
all it means is that the expected loss from using A’s forecast is smaller than that
from using B’s on dry days. In order to use the information, one must either
know whether or not it is a dry day, in which case one no longer needs the
forecasts, or one must decide how likely it is that the day is dry, which begs the
original question the forecasters are trying to answer.

11. Discussion. In this paper, we have introduced a general method for
comparing probability assessors which includes, as special cases, several other
popular methods. Studying the properties of this general method has also aided
our understanding of the problem of comparing forecasters in two important
ways. First, it has highlighted some of the strengths and weaknesses of existing
methods. For example, we saw that scoring rules are just a way of averaging all
simple two-decision problems into a single, more complicated, decision problem.
We also saw how calibration by itself is not a measure of how good a forecaster
is. Second, the study of the general method has helped to clarify the difference
between comparing forecasters based solely on their past performance and
comparing them based on expected performance in the future. In particular, we
saw how it was easy to use the concept of empirical dominance to compare two
forecasters after seeing their forecasts, but it is not so easy to use probability
dominance when comparing future forecasts.

The distinction between these two problems (comparison after the fact and
comparison of future forecasts) has caused a good deal of confusion in the
literature [see Dawid (1982), Sections 6 and 7, and Dawid (1985) for examples].
One cannot evaluate a forecaster foday based on how good his forecasts will be
in the future. One can evaluate him today based on how good one believes his
forecasts will be in the future and/or based on how good his forecasts were in
the past. The confusion so prominent in discussions about calibration, for
example, is caused by an attempt to use results designed for evaluations based on
past performance as if they were valid for evaluations based on beliefs about the
future. The “past performance” used is usually the infinite future. For example,
the idea that one should strive to be empirically calibrated is a misinterpretation
of the result that the probability calibrated version of a forecaster is better (to
the decisionmaker) than the forecaster himself. Lindley, Tversky and Brown
(1979) and Lindley (1982) present methods for improving a forecaster who is not
probability calibrated. On the other hand, there is no way to take a forecaster
who is not empirically calibrated and redo his forecasts before they are known to
make him empirically calibrated. This has been proven by Oakes (1985) and
Schervish (1985a).

In light of the above problems, the goal of this paper has been to consider only
those evaluation procedures which can be performed and which have meaningful
interpretations at the time they are performed. In Section 3, we introduced the
framework for a general method of evaluating and comparing forecasters based
on past performance. In Section 10, we translated the results valid in that
framework to results useful for evaluations based on beliefs about future fore-
casts. Although some of the results pertaining to comparison based on past
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observations have the same forms as those pertaining to comparison based on
beliefs, both their interpretations and their mechanics are very different. For
example, consider the forecasters of Section 9. Just because B performed better
than A for values of g near 0.4, I would not be more inclined to follow
yesterday’s forecast for today’s weather than today’s (even if my g were near
0.4) because of my high prior probability that today’s forecast is better. How-
ever, if I have both forecasts available, I could try to combine them into a single,
hopefully better, forecast. The problem of combining forecasts, however, is a
separate problem, which also deserves serious attention.

APPENDIX

In this section, we will prove that g, and g, must be monotone and remove
the restriction that they be continuous. The present treatment begins with a
lemma.

LEMMA A.1. Let (g, 8,) be a (strictly) proper scoring rule, possibly attain-
ing infinite values on the closed interval [0,1]. Then g,(x) is (strictly) decreasing
in x and g,(x) is (strictly) increasing in x.

PrOOF. Let 0 < b — a < 1. We have, from Definition 2.1,
m(a; b) > m(b; b),

(A1) m(b; a) > m(a; a),

with strict inequality in both in the strictly proper case. It is straightforward to
show that, for proper scoring rules which violate (4.1), the restrictions on m in
Definition 2.1 imply that the only possible infinite values are g,(0) = oo, g,(1) =
— 0, 8o(0) = — o0 or g(1) = oo. It is clear from (A.1) and (2.1) that g,(x) > g,(1)
and g(1) = g,(x) for all x <1 and that gy(x) > g,(0) and g,(0) > g,(x) for all
x > 0 (with strict inequalities in the strictly proper case). So, it suffices to
consider 0 < @ < b < 1. In this case, the quantities ¢ = g,(a) — g1(d) and d =
go(a) — go(b) are both finite. It follows that the inequalities in (A.1) can be
written

(A.2) be+(1-b)d=>0=ac+ (1-a)d,
with strict inequalities in the strictly proper case. Subtract ac + (1 — b)d from
all three parts of (A.2) and divide by b — a > 0 to obtain
ac+ (1 -b)d
——
b—a
Since (A.3) implies ¢ > d, add (1 — b)(c — d) > 0 to the left of (A.2) and

a(d — ¢) < 0 to the right to obtain ¢ > 0 > d (with strict inequalities in the
strictly proper case). O

(A.3) c>

Also, since proper scoring rules are monotone, they are continuous except
possibly for countably many jump discontinuities. In case m(0; q) or m(1; q) is



COMPARING PROBABILITY ASSESSORS 1875

ever oo — oo, define its value via the limit, which either exists or is-infinite
because the sum of monotone functions has bounded variation. The next lemma
describes a useful continuity property of proper scoring rules.

LEMMA A2. The function m(x; p) defined in (2.1), considered as a function
of x for fixed p, is continuous at x = p if g, and g, are both bounded in a
neighborhood N of x = p.

PROOF. Let p be fixed and assume m(x; p) has a jump discontinuity (the
only possible kind of discontinuity for the difference of two monotone functions)
such that

lim m(x; p) = ¢ + m(p; p)
xlp

with ¢ > 0. [This can only happen if p < 1. If p = 1, the limit from the left must
be greater than m( p; p). The other cases can be handled in a fashion similar to
the treatment below.] Let 8 be small enough so that the sum of the absolute
values of all of the other jump discontinuities of m(x; p) for |x — p| < 8 is at
most c¢/4 and so that the continuous part of m(x; p) varies by at most c/4
for |x — p| < 8. Because m(x; y) is linear in y for each x and because g, and
8, are both bounded for x € N, it follows that there exists ¢ such that
|m(x; p*) — m(x; p)| < ¢/4 for all x € N and |p — p*| < e. Now choose any
p* > p such that |p — p*| <€, p* € Nand |p — p*| < 8. The following contra-
dictory string of inequalities obtains:

m(p*; p*) < m(p; p*) < m(p; p) + c/4
< m(p*; p) — ¢/4 < m(p*, p*). |

The following corollary to Lemma A.2 says that the discontinuities of g, and
of g, are intimately tied together.

COROLLARY A.3. For all p strictly between 0 and 1,
(1-p)|dp) - lim g,(x)| = -p|a(p) - lim g,(+)|
x| p xlp
and

(1= p)|&o(p) - limgy(x)| = ~p[a(p) - limg(x)

The possible discontinuities of a proper scoring rule at 0 and at 1 are of a
slightly different nature than the others. The following three lemmas make this
more explicit. Their proofs are omitted because discontinuities at the endpoints
are not of great interest, especially in light of Lemma A.6.

LEmMMA A.4. Suppose (g, &,) is a (strictly) proper scoring rule. Let ¢ =
lim,, , g(¢) and d = lim,,, g(t). Then any scoring rule (h,, h,) which equals
(81, 8) for all x strictly between 0 and 1 is also (strictly) proper so long as it
satisfies h(0) > g,(0) and h(1) > g,1).
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LEMMA A.5.  Suppose (g, 8,) is a proper scoring rule. If g,0) < lim, , g¢(2),
then g,(0) = co. Similarly, if g\(1) < lim,,, g,(¢), then gy1) = .

LEMMA A.6. A scoring rule satisfying gy0) < lim,,,g4(t) and/or g,(1) <
lim,,, g(t) is (strictly) proper if and only if the scoring rule (h,, h,) is
(strictly) proper, where (hy, hy) = (8, 8,) for all x strictly between 0 and 1
and, for x equal 0 or 1, h(x) = lim,_, , g,(¢) fori=0,1.

Lemma A.6 is the justification for only dealing with scoring rules which
satisfy (4.2).

The next property of proper scoring rules is trivial and is stated without
proof. All it says is that a proper scoring rule is a mixture of continuous, left
continuous and right continuous proper scoring rules. One term in the mixture is
needed for each point at which g; (and hence g,) is discontinuous. Corollary A.3
guarantees that the same set of mixing coefficients works for both g, and g,,.

LEmMA A7, If (g, 8) is a proper scoring rule, then there exists a continu-
ous proper scoring rule (&, 8.,) and (at most) countably many left continuous
proper scoring rules (&, ,8;,) and right continuous proper scoring rules

(gRu’ gROl) such that for j = 0,1,

0
g =8,;% 2 (ng, + gRﬁ)-
i=1
Each of the functions &L, and &r, is a step function with a single jump
discontinuity at a point x; (the same point for R as for L and the same forj =1
as for j = 0, with the sizes of the jumps constrained by Corollary A.3).

In view of Lemma A.7, we will prove Theorem 4.2 for left continuous proper
scoring rules and note that the proof is analogous for right continuous scoring
rules. The two versions can then be combined together with Lemma A.7 for the
most general result. Because Theorem 4.2 involves integrals over intervals with
arbitrary endpoints in [0, 1], we need the following definition first.

DEFINITION A8. Let p(dx) be a measure on [0,1] and let f be any
measurable function. If b < a, define

[, fCma) =~ [

and define the interval [a, b) to be the interval [b, a). By convention, the
interval [ @, a) is empty. This definition allows us to refer to the interval between
two numbers ¢ and b, including the smaller but excluding the larger as [a, b)
regardless of which is larger.

a)f(x)#(dx)

)

PrROOF OF THEOREM 4.2. First we prove the “if” parts. Since we can add
arbitrary constants to either or both parts of a proper scoring rule without
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changing its propriety, we will assume that g,(¢;) = g4(¢,) = 0. We can calculate
m(x; p) — m(p; p) as

pf (-a)Mdg)+1-p)[ aNda),
which equals
(a4) [, (P @A(da)-

The integrand in (A.4) is positive over the range of integration if x < p and is
nonpositive over the range if x > p. But in the latter case, the integral must be
multiplied by —1 (by Definition A.8) and the integral in (A.4) is nonnegative in
either case. This proves that a scoring rule defined by (4.3) is proper. If A gives
positive measure to every nondegenerate interval, then the integral in (A.4) will
be strictly positive whenever x # p and the scoring rule will be strictly proper.

The “only if” parts require more work. We assume the scoring rule (g,, g,) is
proper. Lemma A.l says that g, is monotone decreasing and g, is monotone
increasing. Define three measures on the interval [0, 1) by defining them for all
intervals [a, b) with b > a and extending to all Borel sets:

Aola, b) = go(b) — go(a),
(A.5) Mla, b) = gi(a) — gi(b),
A=Ay + A
By (4.2), we may assume that all three measures assign mass 0 to the singleton
{0}. It now follows that the measures are o-finite. Clearly A, and A, are both

absolutely continuous with respect to A. Let Ay p) and A,( p) be their respective
Radon-Nikodyn derivatives. Since A is the sum of A, and A,

(A.6) ho(q) + h(g) =1 ae.[A].
It follows from (A.5) and Definition A.8 that, for all x,

go(*) = &(to) + [ ho(a)A(da),
[Zo, %)
(A7)

&(x) =a(6) + [ m(a)A(dg).

In light of (A.6), all that remains to show is that A,(q) = g a.e. [A]. Since the
scoring rule is proper, we know that m(x; p) — m(p; p) = 0 for all x and p.
Using (A.6) and (A.7), we write

(A.8) f[ p){p — ho(q))A\(dg) = 0 forall x, p.

Lemma 20.54 of Hewitt and Stromberg [(1965), page 367] together with Corol-
lary A.3 can be used to show that (A.8) implies A,(g) = g a.e. [A].

In the strictly proper case, if A gave zero measure to a nondegenerate interval
[a, b), then for all x and p in [a, b), m(x; p) = m(p; p) by (A4) and the
scoring rule would not be strictly proper. O
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Finally, we may wish to consider a general version of Theorem 4.2 for the case
in which the scoring rule is bounded below. First, define

(A.9) h(x;9,Y)=ql(x>q,Y=0)+ (1-q)I(x <q,Y=1)

as the right continuous version of k(x; q,Y).

THEOREM A.9. Assume the functions g, and g, are bounded from below and
satisfy (4.2). Then (g, &,) is a proper scoring rule if and only if there exist
measures. A; on the interval [0,1] and nonnegative constants {a;} and {B;} for
i=0,1,... such that each of the measures A, fori=1,2,... is a unit point
mass at a different point q;, A, is nonatomic and

{&1(x) —&(V}(Y =1) + {go(x) — £0(0)} I(Y = 0)
= zi:f(o’l){aik(x; 0,Y) + B:h(x; ¢, Y) I\, (dg).
The rule is strictly proper if and only if, in addition, the measure
Z(“t + B)A;
assigns positive probability to every “nondegenerate” interval.
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