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STOCHASTIC INEQUALITIES RELATING A CLASS OF
LOG-LIKELIHOOD RATIO STATISTICS TO THEIR
ASYMPTOTIC x? DISTRIBUTION

By B. T. PorTEOUS
Durham University

For decomposable covariance selection models, stochastic inequalities
which relate the null distribution of the log-likelihood ratio statistic to its
asymptotic x? distribution are obtained. The implications are twofold: First,
the null distribution of the log-likelihood ratio statistic is seen to be stochas-
tically larger than its asymptotic x2 distribution. Extremely large samples
apart, for the x? approximation to be valid, a deflation of the log-likelihood
ratio statistic is then necessary. Second, a simple adjustment to the log-likeli-
hood ratio statistic, similar in spirit to the Bartlett adjustment, yields a
conservative test.

1. Introduction. With respect to decomposable covariance selection models,
in this article we study how the exact null distribution of the log-likelihood ratio
statistic relates to its asymptotic x? distribution. For a general discussion of
covariance selection models, see Dempster (1972), Wermuth (1976a, b), Lauritzen
(1982), Speed and Kiiveri (1986) and Porteous (1985a): A decomposable model is
defined later in this section. However, the main objectives of the present article
are first stated:

1. When testing nested decomposable covariance selection models, it is shown
that the exact null distribution of the log-likelihood ratio statistic —n log L is
stochastically larger than its asymptotic x? distribution.

2. When testing nested decomposable covariance selection models, it is shown
that a simple adjustment to the log-likelihood ratio statistic yields a conserva-
tive test.

With respect to objective 1, it is widely accepted that, for small sample sizes,
the null distribution of —n log L is not well approximated by its asymptotic x?
distribution. Hence the extensive work on corrections to —n log L such as the
Bartlett adjustment and the F-approximation of Box (1949). However, the
essential point of objective 1 is that, for all sample sizes, not just those which are
“small,” assessing significance by comparing —nlog L to its asymptotic x2
distribution leads to a test which rejects the null model too often.

As stated in objective 2, when testing nested decomposable covariance selec-
tion models, a simple adjustment, hereafter denoted by ¢, to —nlog L yields a
conservative test. By this we mean that, under the null model, for all n it is true
that Pr(—nlog L/c > y) < Pr(x% = y) for all y. Hereafter, such stochastic in-
equalities will be denoted as —n log L/c < x?, for example.
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For multivariate normal data, the exact null distribution of the likelihood
ratio statistic has been studied extensively. Wilks (1935) and Wald and Brookner
(1941) are two well known examples of this work. For particular mutual indepen-
dence hypotheses, these authors express the exact null distribution function of
the likelihood ratio, or log-likelihood ratio statistic, in terms of incomplete beta
or gamma integrals. We emphasize that the approach of this paper is different.
Our interest is in studying how the exact null distribution of the log-likelihood
ratio statistic relates to its asymptotic x? distribution.

At this point, it is convenient to give a short preliminary discussion of
covariance selection models. These models are used to analyse the covariance
structure of a multivariate normal population. We assume that a sample from
N,(0, 2), the multivariate normal distribution in p dimensions with zero mean
and covariance matrix 2, has been taken: There is no loss of generality in
assuming a zero mean. The elements of Q' are called concentrations and,
typically, one is interested in testing if any of these are zero; zero concentrations
correspond to conditional independence properties of the population. A graph
can be associated with any covariance selection model: The nodes of the graph
correspond to the p components of X with node a connected to node B if
W = (Q‘l)aﬂ # 0. The graph is useful for identifying conditional independence
properties of the model and for checking if it is decomposable: A model is
decomposable if and only if it does not contain a chordless cycle of length greater
than or equal to 4. An important property of decomposable covariance selection
models is that estimation and testing can be performed in closed form, no
iterative fitting being required. For the purposes of this paper this is a necessary
property and, consequently, nondecomposable models are not considered.

A covariance selection model is specified by its generating class {G,,..., G;}-
Here the G, are subsets of T = {1,..., p} such that no G, is a subset of any
other G,. A model M is specified by M = [G,] - - - [G)] where, under M, w?=0
if {a, B} ¢ G, for any i. For example, the model in four dimensions with only
w'* = 0 is specified by M = [123][234].

2. The likelihood ratio statistic for decomposable models and its
moment generating function. Assume that a sample X, X,,..., X, from
N,(0, 2) has been taken. Let

S= Y XX /n
i=1

denote the sample variance matrix which follows a Wishart distribution. For any
acT={1,..., p}, we take S, to denote the marginal matrix obtained by
deleting all those rows and columns of S which do not correspond to the
elements of a. The likelihood ratio statistic for testing a decomposable model M,
against the saturated model is L"/? where L has the general form

t—1 t
(2-1) L =S| l—[ Is(bq)|/{ l—[ |S(aq)|}'
q=1 g=1
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A full discussion of this has been given in the references previously cited. For our
purposes, the null moment generating function of L is of crucial importance.
Using T to denote the gamma function, define

¥(p) = TLIT((n~ )/2+ W) /T((n - 0)/2)]

With p(a,) denoting the cardinality of a,, Porteous (1985a) has shown that

en B =¥ TR0} | [T¥(p(a) |

A straightforward extension of the work of Wilks (1932) can be employed to
obtain (2.2). Note that when testing nested decomposable models, but where the
alternative model is nonsaturated, E(L"/M,) is again straightforward to derive
and, from considerations of symmetry, is of exactly the form that one expects.

3. Preliminary results. In this section we introduce two preliminary re-
sults relating the log-likelihood ratio statistic —n log L to its null asymptotic x?
distribution. Both results, although elementary, are of crucial importance in the
development of this article.

Consider testing the null model M, = [a][b] against the corresponding satu-
rated model. Then with a’ =a \ b and & = b \ a, in the usual conditional
independence notation, the corresponding null hypothesis is Hjy: X,y L
X 5| X(ans) Here X, is the marginal vector which is obtained by deleting those
components of X not indexed by a: Individual components of X will be denoted
by X, (a = 1,..., p). In this case, L has the simple form

L =|S| IS(anb)I/{IS(a)I IS(b)I}‘

LEMMA 3.1. The log-likelihood ratio statistic —nlog L for testing M, =
[a][b] against the corresponding saturated model has the following properties:

(i) Assuming without loss of generality that p(a) = p(b), if p = p(a) + 1,
and p(a) — p(a N b) = 2, then under M,,

—nlogL ~ —nlogbeta[(n —p + 1)/2,1] ~ {1 — (p — 1)/n} " 'x2 = x3.

() If a\b={a}) and b\ a={B), implying that one is testing the
hypothesis that the single concentration w* =0, then under M,, L ~
beta[(n — p + 1)/2,1/2] and

x2<[1-(p-1)/n]"'x2< -nlogL <[1-p/n] 'x%

Lemma 3.1(i), which extends an earlier result of Bartlett (1938), is easily
deducible from (2.2) and 3.1(ii) follows by using elementary calculus and the fact
that, in this case, L is closely related to the partial correlation coefficient.

As an illustration of Lemma 3.1(i) consider the following example: In four
dimensions one may wish to test M, = [12][234] against the saturated model.
The corresponding null hypothesis is H: X; 1 (X;, X,)|X, and from Lemma
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3.1(i) it follows that, under M,
—nlogL ~ (1 -3/n)"'x2.
It is important to note that, for these special cases, the lemma shows that the
null distribution of —nlog L is stochastically larger than its corresponding
asymptotic distribution and also may be bounded above by a multiple of this

asymptotic distribution. We shall see later that these results are, in fact, rather
general.

4. Partitioning the likelihood ratio statistic. The object of this section is
to introduce the technique of partitioning the likelihood ratio statistic. For our
purposes, this is a powerful tool which allows one to apply the simple results of
Lemma 3.1 to obtain more general stochastic inequalities. To illustrate this point
we present two examples. A formal treatment, based on the work of Sundberg
(1975), is given in Section 5.

ExAMPLE 4.1. In four dimensions consider testing the null model M, =
[12][34] against the saturated model: That is, test the null hypothesis
Hy: (X, X,) L (X, X,). The likelihood ratio statistic L"/? for testing M, has
the form

L= |S|/{|S(1,2)| |S(3,4)|},

where, from now on, we abuse notation by taking §, 5 = S (1,2))- The statistic L
can also be written as

L = (IS 1S/ {ISu,2! 152,591 }] % [1Se,3,4!/{1Se 1Ss,4!}]
= L,L,,

say. Here, the statistic L, corresponds to testing the null model M} = [12][234]
against the saturated model and L, to testing MZ = [2][34] against the marginal
saturated model M, = [234]. Moreover, M, implies that both M} and M} are
true and, by the analogous partition of (2.2), it is straightforward to deduce that,
under M, L, and L, are independent beta[(n — 3)/2,1] and beta[(n — 2)/2,1]
variables, respectively. From Lemma 3.1(i) it follows that

—nlogL ~ (1- 3/n)_1x§ +(1- 2/n)_1x§.

Once more, the log-likelihood ratio statistic is stochastically larger than its
asymptotic x? distribution. Note that, under M,, —nlog L < (1 — 3/n) X2
implying that a conservative test of M, is available.

ExAMPLE 4.2. In four dimensions, consider testing M, = [1][2][3][4] against
the saturated model: That is, test the mutual independence hypothesis H: X, L
X, L X5 1L X,. With L, and L, defined in Example 4.1, the likelihood ratio
statistic L™/2 for testing M, can be partitioned as L = L,L,L, where

Ly = (1S5, 51/ {I1Sw! 1S/ }] % [1Ss,4!/{1Se) 1Sw!}]
=L,L;.
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The statistics L, and L, are of the form considered in Lemma 3.1(ii). They
correspond, respectively, to testing the marginal models M} = [1][2] and M =
[3][4] against their respective saturated models. Moreover, under M,, M} and
M are both true and L, and L, are both distributed as beta[(n — 1)/2,1/2]
variables. By the analogous partition of (2.2), it can also be deduced that, under
M, L,, L,, Ly and L, are mutually independent. Hence, under M,, it follows
that

—nlogL~(1-3/n)""x2+ (1 -2/n)"'x% - nlogbeta[(n — 1)/2,1/2]
— nlogbeta[(n — 1)/2,1/2].
Using Lemma 3.1(ii), —n log L can be bounded stochastically as
1-1/n)"'x2< —nlogL < (1 - 3/n) 'x2

and a conservative test is again available.

There is obviously more than one way of partitioning L. However, the null
distribution of —nlog L is clearly independent of this choice. We emphasize
that the partitioning technique is only a tool which aids one in studying the null
distribution of —n log L. However, motivated by the simple relationship Lemma
3.1(i), we always partition L into as many beta[:,1] components as possible.
Note that whenever the first argument of a beta variable is not specified, from
now on it shall be implicit that this is of the form (n — ¢)/2, for some positive
integer ¢.

5. General stochastic inequalities. In this section we prove that, for
decomposable covariance selection models, the previously discussed stochastic
inequalities hold quite generally. Given Lemma 3.1 this result follows directly
from

THEOREM 5.1. Let —nlog L denote the log-likelihood ratio statistic for
testing nested decomposable covariance selection models. Then the null distribu-
tion of L can be expressed as a product of mutually independent beta[-,1] and
beta[-,1/2] variables.

The proof of this result, which relies heavily on the work of Sundberg (1975),
is given in the Appendix. For completeness, we now state in full the main result
of this article.

THEOREM 5.2. Let —nlog L denote the log-likelihood ratio statistic for
testing nested decomposable covariance selection models. Then,

(1) The null distribution of —nlog L is stochastically larger than its asymp-
totic x? distribution.

(ii) An adjustment ¢ can be found such that the null distribution of
—nlog L/c is stochastically smaller than the corresponding asymptotic x?2
distribution, thus yielding a conservative test.
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That the null distribution of L can be expressed as a product of mutually
independent beta[ -,1/2] and beta[ -, 1] variables is established by Theorem 5.1,
but this result is of little help in obtaining such an expression. However, if one
tries to formalise the procedure of partitioning L, the simplicity of the technique
is obscured. Consequently, no such treatment is attempted here. In particular
cases, it is a relatively simple matter to find a partition and, in this respect, the
graphical representation is useful (see Section 7).

Since any beta[(n — t)/2,1] variable can be expressed as a product of inde-
pendent beta[(n — ¢)/2,1/2] and beta[(n — t + 1)/2,1/2] variables, clearly L
can also be partitioned into a product of mutually independent beta[-,1/2]
variables; if —nlog L is on d degrees of freedom, then this product will consist
of d such variables.

Theorem 5.2(i) indicates that, even for large sample sizes, it may be dangerous
to approximate the null distribution of —nlog L by x% For decomposable
covariance selection models, the Bartlett adjustment is available [see Porteous
(1985b)]. This adjustment of —n log L is known to improve substantially the x2
approximation: For empirical evidence supporting this assertion, see Section 6
and Porteous (1985a, b). For decomposable covariance selection models, the null
distribution of —nlog L is x? plus terms of O(n~') whereas, from Box’s (1949)
results, for the Bartlett adjusted statistic, the error term is O(n~2).

6. An empirical study. In all that follows, the Bartlett and conservative
adjusted statistics are denoted by —nlog L/b and —n log L/c, respectively. In
this section, when testing two simple null models M, against the saturated
model, the exact null densities of —nlog L, —nlog L/b and —nlog L/c are
compared numerically to their asymptotic x? distribution. Both tests are of
hypotheses in four dimensions. The Bartlett adjustment b can be calculated
using the general formula of Porteous (1985b) whereas, for both of the tests
considered, the conservative adjustment is ¢ = (1 — 3/n) "L

Null Model 1: My[1][234]. The hypothesis which corresponds to testing M,
against the saturated model is Hy: X; L (X,, X;, X,). Under M, the L-statistic
for testing H, follows a beta[(n — 3)/2,3/2] distribution. This fact was used in
calculating the following numerical results.

Null Model 2: M, = [12][34]. The hypothesis which corresponds to testing
M, against the saturated model is Hy: (X;, X,) L (X;, X,). The null distribution
of the L-statistic for testing M, against the saturated model is known to be
related to a beta[(n — 3),2] variable; this fact was used in calculating the
following numerical results.

With n =5, 25 and 50, the x? density and the exact null densities of
—nlogL, —nlog L/b and —nlog L/c are plotted in Figures 1 and 2 for null
models 1 and 2, respectively. It can be seen that —n log L/b is always approxi-
mated extremely well by x2 In fact, for n = 25,50, the exact null density of
—n log L/b is indistinguishable from that of x2. Provided that the sample size is
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3. density comparison : sample size = 5
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Fic. 1. The curves are exact null densities as follows: Solid line, x2; dotted line, —nlog L/b;
dashed line, —nlog L/c and chain line, —nlog L.
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_Density comparison : sample size = 5
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Fic. 2. The curves are exact null densities as follows: Solid line, x?; dotted line, —nlog L/b;
dashed line, —nlog L/c and chain line, —nlog L.
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TABLE 1
Exact rejection rates corresponding to (a) Figure 1 and (b) Figure 2. The numbers in row (i) are the
exact null probabilities that —nlog L exceeds the appropriate upper percentage point of x2.
Corresponding rates for —nlog L/band —nlog L/c are given in rows (ii) and (iii), respectively.

(a) M, = [1][234] (b) M, = [12][34]
10% 5% 1% 0.1% 10% 5% 1% 0.1%
n=>5 @ 03972 02972 01510 0.0574 0.4392 03337 0.1736  0.0668

(i) 01010 0.0521 00116 0.0014 0.1006 0.0515 0.0111  0.0013

© (i)  0.0651  0.0300 0.0052 0.0004 0.0555 0.0245 0.0038  0.0003

n=25 (i) 01316 00711 00170 0.0022 0.1360 0.0739  0.0178  0.0023
(i) 01000 0.0500 0.0100 0.0010 0.1000 0.0500 0.0100 0.0010

(iif)  0.0942  0.0463 0.0089  0.0009 0.0934 0.0459 0.0088  0.0008

n =50 (i) 01147 0.0596 0.0130 0.0015 0.1167 0.0608 0.0133  0.0015
(i) 01000 0.0500 0.0100 0.0010 01000 0.0500 0.0100  0.0010

(iii)  0.0972  0.0482 0.0095 0.0009 0.0968 0.0480 0.0094  0.0009

TABLE 2
Model types M, for which, when tested against the saturated model, the null distribution of the
log-likelihood ratio statistic has a simple form.

M, Exact null distribution
3 dimensions  [12][3] 1-2 /n)*lxg
4 dimensions  [123][34] 1 -3/n)"x2
[12](34], [12][23][4] 1 -2/n)""x3 + (1 - 3/n)"'x}
5 dimensions  [1234][345] 1 -4/n)"x2
[123][234][45], [123][234](35], (1 — 3/n) " x%Z + (1 — 4/n)" %3
[123][345]
[1234](5] 1 =2/n)7'x3 + (1 - 4/n)"'x;
[123][34](5], [123][45] (1-2/n)" x5+ (1 =3/n) x5 + (1 — 4/n)"'x}
[12][23][4](5], [12](34][5] (1 =-2/n)" x5+ @ -3/n)""xj + A -4/n)""x}

not too small, —n log L/c is approximated adequately by x2. However, for the
sample sizes considered, —n log L is never near to x2.

The rejection rates which correspond to Figures 1 and 2 are presented in
Table 1, and similar conclusions apply. Note that, even for n = 50, approximat-
ing —nlog L by x? is unsatisfactory.

7. Discussion. The main results of this paper are stated in Theorem 5.2. It
is now natural to ask the question: Does Theorem 5.2(i) hold more generally? For
most families of distributions, this question will be far more difficult to address
than it was for the models of this article. However, the serious implications of
Theorem 5.2(i) justify that, in general, further study should be devoted to
obtaining a better understanding of how the null distribution of —nlog L
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approaches 2. This point is particularly pertinent when corrections , such as the
Bartlett and conservative adjustments, are not available.

Throughout this paper it has been indicated that, for certain tests, the exact
null distribution of —n log L has a particularly simple form; this occurs if L can
be partitioned into a product of mutually independent beta[ -, 1] variables. When
testing a null model M, against the saturated model in three to five dimensions,
Table 2 presents a comprehensive list of all such tests. Note also that, in three,
four and five dimensions the corresponding conservative tests are of the respec-
tive forms (1 — 2/n)(—nlog L),(1 — 3/n)(—nlog L) and (1 — 4/n)(—nlog L).
In fact, it has been pointed out by one of the referees that when testing any null
decomposable model M|, not of the form discussed in Lemma 3.1(ii) against the
saturated model, this is indeed the general pattern, although a formal treatment
is not attempted here. For tests involving a single concentration, from Lemma
3.1(ii) it can be seen that, in p dimensions, (1 — p/n)(—nlog L) is conservative.
Hence a slightly larger deflation is appropriate.

In fact, since the null distribution of L can be partitioned into a product of
mutually independent beta[(n — ¢),1,/2] variables, it follows from Lemma 3.1(ii)
and the fact that, in p dimensions, each ¢ < p — 1, that for all nested decompos-
able models, (1 — p/n)(—nlog L) is conservative. But note that, in most cases,
as above, a smaller deflation will be appropriate. However, (1 — p/n)(—nlog L)
is both simple to use and widely applicable.

To conclude, for decomposable covariange selection models, it has been
demonstrated in this article that if significance is to be assessed by referring
—nlog L to its asymptotic distribution, then an adjustment of —nlog L is
appropriate. Both Bartlett and conservative adjustments are available and their
relative merits have been discussed.

APPENDIX
Together with Sundberg’s (1975) results, Theorem 5.1 follows from

LEMMA Al. Let —nlog L denote the log-likelihood ratio statistic for testing
the null model M, = [a][b] against the corresponding saturated model. Then
the null distribution of L can be expressed as a product of mutually independent
beta[-,1] and beta[-,1/2] variables.

ProoF. We use induction on d, the degrees of freedom corresponding to
—nlog L.

(i) d = 1. The test involves a single concentration and is of the form discussed
in Section 3. In this case, L ~ beta[(n —p + 1)/2,1/2].

(i) d = 2. There are two cases of consider and we discuss these in terms of
concentrations and the corresponding null hypotheses: (a) For distinct «, 8 and
8, the null hypothesis is Hy: w* = *® = 0. Then a =T \ {a}, b=T \ {8, 8}
and by Lemma 3.1(i), L ~ beta[(n — p + 1)/2,1]. (b) For distinct «, 8, § and ¥
the null hypothesis is H,: «* = " = 0. But in this case, the interaction graph
of the null model contains the chordless cycle of length 4, a ~y ~ 8~ 68 ~ a.
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Therefore the null model is not decomposable and this case need not be
considered.

(iii) Assume that Lemma Al holds for all tests on d < k degrees of freedom,
where k > 2, and take d = k& + 1. Without loss of generality we may assume
that a has dimension at most p — 2. Take a € b \ a and, dispensing with the
usual set notation for the singleton a, partition L as

L = |811S(ansl/ {ISa| 1S}

= [lSI IS((aUa}ﬁb)l/{IS(aUa)l |s(b)|}] [ls(aua)l ls(aﬁ b)l/{lS(a)l IS({aUa}ﬁb)I}]

= L,L,. :
The statistic L, corresponds to testing M = [a U a][b] against the saturated
model and, in the marginal distribution of X, ,), L, corresponds to testing
M¢ =[al[{a U a} N b] =[a][{a N b} U a] against the saturated model. More-
over, M, implies that both M} and M are true. Let d, and d, be the degrees
of freedom corresponding to L, and L,. Then since d, > 1, d,>1 and d =
d, + d,, it follows that d, < k, d, < k and, by the induction hypothesis, the
null distributions of L, and L, can be expressed as products of the desired form.
Finally, the analogous partition of (2.2) implies that, under M,, L, and L, are
independent. Hence the null distribution of L is a product of the correct form.

This completes the proof of the lemma. O

By routine application of the arguments used by Sundberg in proving his
Lemma’s 1, 2, 3 and 4, it can be deduced that the L-statistic for testing nested
decomposable covariance selection models can be factorised into a product of
L-statistics, each one corresponding to a test of the form specified in the
statement of Lemma Al. Note that Sundberg calls the corresponding hypothesis
a “general independence” hypothesis. By symmetry, there is an analogous
factorisation of the corresponding moment generating function and it then
follows that the L-statistics of the factorisation are mutually independent. The
proof of Theorem 5.1 now follows from Lemma Al.
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