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CONCAVITY AND ESTIMATION!

By SHELBY J. HABERMAN

Northwestern University

Simplified conditions are given for consistency and asymptotic normality
of M-estimates derived by maximization of averages of independent identi-
cally distributed random concave functions. Applications are made to maxi-
mum likelihood estimation.

1. Introduction. In this paper, simple conditions are provided for strong
consistency and asymptotic normality of M-estimates based on maximizing
averages of independent and identically distributed random concave functions.
Such conditions can be found in the literature for concave functions defined on
the real line R [Brens, Brunk, Franck and Hanson (1969), Huber (1964, 1981)
and Daniels (1961)]; however, for concave functions on finite-dimensional vector
spaces, such results only appear in special cases [Rao (1957), Huber (1973) and
Berk (1972, 1973)]. General treatments of M-estimation such as Huber (1981),
White (1982) and Gourieroux, Monfort and Trognon (1984) do not consider gains
possible given the assumption of concavity.

The remainder of this section will be used to define the range of problems
considered in this paper. In Section 2, strong consistency results will be stated
and illustrated. In Section 3, asymptotic normality results are stated and
illustrated. The conclusions of Sections 2 and 3 are based on results proven in
Sections 4, 5 and 6. Section 4 provides basic results concerning M-estimates
which are needed in other parts of the paper. Proofs of consistency results
appear in Section 5, and proofs of asymptotic normality results appear in Sec-
tion 6.

1.1. Concave estimation functions. The basic feature of this paper is the use
of concave estimation functions 4. Here estimation functions are upper-semicon-
tinuous Borel-measurable functions with domain U X V and range [ — o0, c0),
where U is a separable complete metric space and V = R? for some finite
positive integer p. The special requirement in this paper is that for each x in U,
h(x, - ) is concave. If || - || is a norm of V and U = V, then

(1.1) h(x,w) = |lx|| — |lx — w|

is an example of a concave estimation function.

1.2. M-parameters and M-estimates. Given the spaces U and V and the
estimation function A, a set of M-parameters may be defined for a random
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variable X on U with distribution F and for a Borel subset W of V by means of
the expected value d(w, h, F) = [h(x,w) dF(x) of h(X,w). In this paper, it is
assumed that —oo < d(w, h, F) < oo for all w in V, so that d(-, h, F) is
concave and upper-semicontinuous (Theorem 4.1). As in Huber (1981), pages
43-44, the set M(W, h, F) of M-parameters relative to W, k and F consists of
those elements m of W such that d(m, h, F) equals the supremum d(W, k, F)
of d(w, h, F) for win W.

A further simplifying assumption made in this paper is that M(W, h, F)
contains a single element m. For example, if U = V = W and (1.1) holds, then
d(-, h, F) is always finite. I, in addition, V is the real line R, then M(W, h, F)
is the set of medians of F. The assumption that M(W, h, F) is {m} is then the
assumption that m is the unique median of F.

To estimate the M-parameters M(W, h, F), the M-estimates M(W, h, F,) are
used. To define these estimates, let X;, i > 1, be independent random variables
with common distribution F, and for n > 1, let F, be the empirical distribution
of the X;, 1 <i < n. Observe that d(w, h, F,) is the average of h(X;, w) for
1<i<n,and m, € Wisin M(W, h, F,) if and only if

(1.2) Y hX,m,) = Y hX,w), weW.

i<n i<n

For example, if (1.1) holds for U = V= W = R, then M(W, h, E)) is the set of
sample medians of X;, 1 <i < n. As is evident from this example, the set of
M-estimates M(W, h, F,) may contain more than one element even when only
one M-parameter exists. It is also possible for no M-estimate to be defined, so
that M(W, h, F,) is empty.

Since the statistical theory of estimation discusses random variables rather
than random sets, it is useful to define an M-estimator m, to be a random vector
in W such that m, is in the set of M-estimates M(W, h, F,) whenever
M(W, h, F,) is nonempty. Since d(-, h, F,) is upper-semicontinuous and W is a
Borel set, it follows from Brown and Purves (1973) that for each n, at least one
M-estimator m,, exists. If U= V = W= R and (1.1) holds, then m, might be
defined as the average of the largest and smallest elements of M(W, h, F,). It is
not necessary in this paper for M(W, h, F,) to consist of a single element.

The same set M(W, h, F,) of M-estimates can be obtained from many
functions A. In practice, & is chosen to produce a limited set of M-parameters
M(W, h, F). For example, let (1.1) hold for U=V =W, and let k(x, w) =
—|lx — w||. Since d(w, h, F)/|w|| - —1 as |w|| - c and d(-, Ak, F) is concave
and upper-semicontinuous (Theorem 4.1), it follows from Rockafellar (1970),
page 265, Theorem 27.2, that M(W, h, F') is a nonempty closed bounded set.
Clearly, M(W, h, F,) = M(W, k, F,); however,

M(W,h,F) if E|X|| < oo,

M(W. b, F) = {W if E||X|| = o.

Thus use of 4 is preferable to use of & in this example.
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1.3. Maximum likelihood. Maximum likelihood estimation provides an im-
portant class of problems in which the conditions of this paper may hold. Let g
be a Borel-measurable function from U X V to [— o0, ) such that g(x, ) is
concave and upper-semicontinuous for all x in U. Assume that for a o-finite
measure » on U,

WcQ-= {w eV fexpg(x,w) dv(x) = 1},

Q is a convex set with nonempty interior and for some m in W,
dF/dv=expg(-,w)[v], we Q,

if and only if w = m. Then M(W, g, F,) consists of the maximum likelihood
estimates of m under the model that for some m in W, the X;, 1 <i < n, are
independent random variables with common density exp g(-, m) relative to ».
The fact that this model is valid will greatly simplify analysis.

To avoid complications involving nonfinite d(m, g, F'), define

g(x,w)—g(x,m) lfg(x: m)> —oo,wEQ,
(1.3)  h(x,w)={g(x,w) ifg(x,m)= -0, weq,
— o0 otherwise,

so that the set M(W, h, F,) = M(W, g, F,), the set of maximum likelihood
estimates of the unknown M-parameter m. Clearly, h satisfies the measurabil-
ity, concavity and upper-semicontinuity requirements of this paper. Since the
information inequality [Rao (1973), page 59] implies that d(w, h, F) <0, w € V,
with equality only if g(-,w) = g(-, m)[»], the restriction on F implies that
M(W, h, F) = {m]}.

The measure v may be known, as in conventional definitions of maximum
likelihood estimates, or unknown, as in problems involving conditional maximum
likelihood. For example, in exponential family models [Berk (1972, 1973) and
Barndorff-Nielsen (1978)], » is known, g is the upper-semicontinuous concave
function determined from the Borel-measurable transformation T from U to V
by the equation

(1.4) glx,w) =wT(x) - logfexp(w’T) dv

and Wc @ ={weV: [exp(wT)dv <. o0}. As in Berk (1972), it is convenient
to assume that the induced measure »T'~! has affine support V and that Q has
nonempty interior. The equation

dF/dv = expg(-, m)[v]
defines m. Thus, given (1.3), M(W, h, F) = {m} and M(W, h, F,) consists of
maximum likelihood estimates of m.
In binary response models [Haberman (1974), Chapter 8, and Pratt (1981)],
the parameter space W=V = RP, the observation space U = {0,1} X V is a
product of a response space consisting of 0 and 1 and of a covariate space V, v is
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a product of counting measure on {0,1} and an unknown probability measure on
V and for some known continuous increasing distribution function L such that
log L and log(1 — L) are concave,

log(1 — L(w't)) ifs=0,
(1.5) &((5:8):w) = o L (wrt) ifs=1.

For a pair X = (S, T) with response S € {0,1} and covariate T' € V, let the
conditional probability given T' be L(m'T) that S =1, and assume that no
nonzero w in V exists such that w'T = 0 with probability 1. Then the set of
M-parameters M(W, h, F) = {m}, and the set of M-estimates M(W, h, F,)
consists of maximum likelihood estimates of m that are conditional on the
covariates T}, 1 < i < n. The binary response models described here are examples
of generalized linear models which involve log-concave likelihood functions.
For other examples, see Wedderburn (1976), McCullagh and Nelder (1983),
Haberman (1974, 1977) and Fahrmeir and Kaufmann (1985). The assumption
that the covariates 7, are independent and identically distributed will somewhat
simplify the results.

2. Strong consistency. Under very general conditions, the M-estimator m,,
is strongly consistent for the M-parameter m; i.e., m, converges almost surely to
m (m, - m as.). To describe regularity conditions, four basic cases will be
considered. In Section 2.1, the special case V = R of real parameters is examined
under the assumption that W is convex. In Section 2.2, V = R but W need not
be convex. In Section 2.3, V need not be the real line but W is assumed convex.
In Section 2.4, general spaces V and general sets W are considered.

2.1. Convex Win R. The simplest case arises if W is a convex subset of the
real line V = R, for it is then always true that m, — m a.s. The most similar
previous results have added some modest restrictions on A. Huber (1981), page
48, Corollary 2.1, obtains strong consistency under the condition that A(x, - ) is
finite and for each x, h(x, y) > —oo as |y| > —oo. Brens, Brunk, Franck
and Hanson (1969) obtain strong consistency for U = V= W = R given that
h(x,x) > h(x,w), x,w in R. As will be evident from the results of Section 4, the
analyses in these papers in terms of derivatives of A(x,-) do not affect the
relationship between these authors’ results and those presented here. If V is not
R but W is a convex set of dimension 1, then a simple reparametrization of the
problem may be used to convert the problem to the case under study.

2.2. Subsets W of the real line. Let W be a subset of V = R, but. drop the
requirement that W be convex. Let cl(W) denote the closure of W. Then
m, — m as. if the following conditions hold.

CoNDITION 1. For some closed set N, m is in the interior of N and W N N is
closed.
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CoNDITION 2. The set M(cl(W), h, F) = {m}.

Condition 1 requires that W be locally compact at m. It obviously holds if W
is locally compact, so that W is the intersection of an open set and a closed set
[Tjur (1980)]. Condition 2 requires that m is also the unique M-parameter
relative to cl(W), h and F. Obviously, Conditions 1 and 2 hold if W is closed.
Provided Condition 2 holds, Condition 1 can be satisfied by the simple expedient
of replacing W by its closure. Condition 2 always holds in the maximum
likelihood problems of Section 1.3.

In Section 2.1, Conditions 1 and 2 necessarily hold. Condition 1 follows since a
real convex set is an interval. In Condition 2, one also notes that d(-, h, F) is
concave.

Unlike in Section 2.1, comparable results appear difficult to find in the
literature.

2.3. Convex W. If the parameter set W is convex, but W has dimension
greater than 1, then it appears necessary to add some conditions on A beyond
the basic assumptions of this paper. Possible conditions vary somewhat in
complexity. To begin, m, » m as. if Conditions 1 and 2 hold and if the
following condition on d(-, A, F') holds.

ConpITION 3. The function d(-, A, F) is finite on a nonempty open set.

This simple condition is widely applicable. As an example, consider estimation
of r-means [Brens, Brunk, Franck and Hanson (1969)]. Let || - || be a norm on
U=V=W,and let

h(x,w) = |lx)|™" = |lx — w||"**

for r > 0. Suppose that E||X||" is finite. Since || - ||"*! is convex and continuous
[Rockafellar (1970), page 135, Corollary 15.3.1], h(x, - ) is concave and continu-
ous. It is readily verified that d(-, h, F') is finite. Consequently, m, - m as.
whenever m is uniquely defined. This result can be obtained from Brens, Brunk,
Franck and Hanson (1969) if the parameter space V = R. Huber (1981), pages
133-134, considers consistency of m, for V of dimension greater than 1 when
0<r<1and x|%=x".

A more general but still simple condition may be based on the directional
derivatives

(2.1) h(x,w;y) = lin(l)a‘l[h(x,w + ay) — h(x,w)], yev,
al

of h(x,:) at w. Provided (—o0) — (—o0) is taken to be 0, A'(x, w; y) is well-
defined [Rockafellar (1970), pages 213-214, Theorem 23.1].

CoNDITION 4. For some w in V, d(w, h, F) is finite and ER'(X,w; y) is
finite for all y in V.
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Given Conditions 1, 2 and 4, m, - m a.s. By Theorem 4.3 of Section 4,
Condition 3 implies Condition 4.

For a simple application of Condition 4, let C be a compact convex set with
nonempty interior, let U = W = V and let

0 ifx—welC,
h(x,w) = { —oo otherwise.
Let X have a uniform distribution on C, so that d(0, h, F) = 0 but
d(w, h, F) = —co for w #+ 0. Thus M(W, h, F) has the single element m = 0,
but Condition 3 fails. Nonetheless, 2'(X,0; y) = 0 with probability 1, so that
ER'(X,0; y)is O for all y in V. Thus Condition 4 holds. Since Conditions 1 and 2
are trivial and W is convex, strong consistency follows.

More general results depend on a variation of dominance arguments often
used in proofs of strong consistency of maximum likelihood estimates [Wald
(1949), Kiefer and Wolfowitz (1956) and Perlman (1972)]. One also has m, —
m a.s. if Conditions 1, 2 and 5 hold. To define Condition 5 in a manner suitable
for nonconvex sets W, let ch(W) be the closure of the convex hull of W, so that
ch(W) = cl(W) in this section.

ConNDITION 5. For some open neighborhood N’ of m, if w € ch(W) N N/,
w # m, then there exist an open neighborhood N of w and a Borel-measurable
function k& from U X V to [ — o0, 0] such that

(2.2) |d(v,k, F)| <, vEN,

(2.3) k(x, -) is concave for x in U

and

(2.4) h(x,w) < k(x,w), x€V,weNnch(W).

To illustrate the use of Condition 5, consider the binary response problems of
(1.5). Here it is always the case that m, —» m a.s. This result follows since (2.2)
to (2.4) are satisfied if A satisfies (1.3), N = N’ = V and

k((s,t),w) = —g((s, t), m).
In (2.2), note that the finiteness of d(-, &, F') follows since for p € [0, 1],

plogp + (1 - p)log(1 - p) € [~log2,0].

This very general strong consistency result is much stronger than are comparable
results in the literature. This improvement over conventional results is closely
tied to the assumption that the covariates are independent and identically
distributed. Haberman (1974), Chapter 8, and Fahrmeir and Kaufmann (1985),
who have weaker results for this special case, also consider covariates which are
fixed rather than random, and Fahrmeir and Kaufmann (1985) do not assume
concavity. Nonetheless, the case of independent and identically distributed
covariates does imply that strong consistency holds for a very general set of
fixed covariates. Let B consist of all sequences {¢;: i > 1} such that given that

the covariates T;= ¢, i > 1, m, converges to m with probability 1. As in
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Andersen (1971), {T;: i > 1} is in B with probability 1. Given that the only
condition on the distribution of T is that it now be supported on a proper linear
subspace of V;, it follows that strong consistency holds quite commonly for fixed
covariates. It is especially notable that one may preserve strong consistency even
if W is not V but rather an arbitrary convex set such that Conditions 1 and 2
hold.

Condition 5 is more generally applicable than may be immediately evident.
The condition is obviously met if for some neighborhood N of m and some finite
constant ¢, A(x,w) < c for all x in U and w in N N W. Condition 5 always
holds if Condition 3 or 4 holds, for one may let¢ N=N'=V and k= Lh,,
where the approximation function LA, is defined by

h(x,w) + K(x,w; v — w) if h(x,w) > — oo,
h(x,v) if A(x,w) = —o0.

By Rockafellar (1970), pages 213-214, Theorem 23.1, Condition 4 implies that
(2.2) to (2.4) hold, so that Condition 5 holds. Since Condition 3 implies Condition
4, it also follows that Condition 3 implies Condition 5.

The results of this section imply results of Sections 2.1 and 2.2, for Condition
5 always holds if the parameter space V = R. To verify this claim, consider
le| > 0. Let

(2.6) 8h(x,m,e) = max[h(x, m + €) — h(x, m),0],

(2.5)  Lh,(x,0) = {

where (—o0) — (— ) is 0, and let

h(x,m) + (w— m)8h(x,m,e)/e if h(x,m) > — o0,
h(x,w) if h(x,m) = —

Since d(m + ¢, h, X) < o0 and d(m, h, X) is finite, E §h(X, m, ¢) is finite. By
Rockafellar (1970), pages 213-214, Theorem 23.1, if ¢ > 0, then (2.2) to (2.4) hold
for w > m + ¢ if N = (m + ¢, o0). Similarly, (2.2) to (2.4) hold for w < m + ¢ if
N = (—o0,m + ¢) and ¢ < 0. Since ¢ is arbitrary, it follows that Condition 5
holds.

The conditions in this section do not have strong analogs in the literature,
although similar uses of concavity can be found in Bloomfield and Steiger (1983)

in the least absolute deviation problem in which the observation space is
U=RX Vand

(2.8) h((s,t),w) = |s| — |s — w't|.

Here if X = (S, T'), with response S € R, covariate T' € V and E(T) finite, then
d(-, h, X) is finite. Thus m, » m as. For treatments of M-estimation for
nonconcave estimation functions in multidimensional parameter spaces, see
Huber (1967, 1981). For treatments of robust regression that involve concave
estimation functions, see Huber (1973) and Yohai and Maronna (1979). All
these references also consider the asymptotic normality problems examined in
Section 3.

2.7) k(x,w) = {
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2.4. General sets W. It is not necessary to assume either that the parameter
set W isin R or that W is convex. One has m, — m a.s. holds if Conditions 1, 2,
5 and 6 hold, where Condition 6 is defined as follows:

CONDITION 6. The set M(ch(W), A, F) is nonempty and bounded.

Since d(-, h, F) is upper-semicontinuous, Condition 6 obviously holds if the
parameter set W is bounded. More generally, let sp(W) be the span of the
vectors w-v, w and v in W. By Rockafellar (1970), page 68, Theorem 8.6, and
page 267, Theorem 27.3, Condition 6 holds if and only if no w in ch(W) and y in
sp(W), y # 0, exist such that d(w + ay, h, F') is nondecreasing in ¢ and w + ay
is in ch(W) for all positive a. Condition 6 obviously holds if ch(W) has
dimension 1 and Condition 5 holds. Condition 6 is also obviously true if W is
closed and convex, for M(ch(W), A, F) is then {m}. In the maximum likelihood
problems of Section 1.3, Condition 6 holds since M(ch(W, A, F) is {m}.

To illustrate the use of Conditions 1, 2, 5 and 6, consider the exponential
family problems defined by (1.4). If E[T(X)] is finite, as is the case for m in the
interior of €, then d(-, h, X) is finite. Since the exponential model holds,
Conditions 2 and 6 hold. Thus m, — m a.s. if Condition 1 applies. Berk (1972)
obtains nearly the same result for this case (his W is locally compact). The
methods of this paper permit some modest extensions of Berk’s results. If V is
R, then no conditions on E[T(X)] are required. Since

c(w) = —logfexpg(x, w) dr(x)

is upper-semicontinuous for w in V [Berk (1972)], an open neighborhood N of m
and a Borel-measurable extended real function 2 on U X V exist which satisfy
(2.2) to (2.4) if for some Borel-measurable function T* from U to V,

(w-m)T(x) < (w—-m)T*(x), wech(W),xeU.

3. Asymptotic normality. Relatively simple conditions also exist which
ensure that the sequence of normalized random vectors Z, = n'/%(m, — m)
converges in distribution to a random vector Z with distribution N(0, 2) (Z,, —p
N(O, X)). In Section 3.1, results are provided for cases in which the M-parameter
m is in the interior of W. In Section 3.2, results are given for m not in the
interior of W. In Section 3.3, simplifications of conditions and formulas are
discussed for the case of maximum likelihood estimation. Proofs of the results
are found in Section 6.

To describe asymptotic normality results, it is useful to consider some deriva-
tives of h(x,-) and d(-, h, F). Let D(h, x) denote the set of w € V at which
h(x, - ) is finite and A’(x,w; - ) is finite and linear. By Rockafellar (1970), page
244, Theorem 25.2, w € D(h, x) if and only if A(x, - ) is finite and differentiable
at w. For w € D(h, x), let Vh(x,w) denote the gradient of h(x, - ) at w, so that
Vv h(x, w) is the unique element of V such that

(3.1) v Vh(x,w) =k (x,w;v), veEV
[Rockafellar (1970), page 241]. For w not in D(h, x), let VA(x,w) = 0.
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Let w be in Dy(h, x) if and only if w is in D(hA, x) and the second directional
derivatives

(32) h"(x,w;y) = lin(l)[h’(x,w +ay; y) — k(x,w; y)]/a, yeV,
al

satisfy the equation

(3.3) R'(x,w; y) =y vih(x,w)y, yeV,

for some self-adjoint linear transformation v 2h(x, w) from V to V called the
Hessian transformation of A(x, - ) at w [Rockafellar (1970), page 27]. For w in
Dy(h,w), v 2h(x, w) is uniquely determined. As is well known, if A(x, - ) is finite
and twice differentiable at w, then w € D,(h, x); however, the condition w €
D,(h, x) does not imply that A(x,-) is twice differentiable at w if V has
dimension greater than 1. For w not in Dy(h, x), let v 2h(x, w) be the zero

transformation.
Similarly, if d(-, A, F') is finite at w and

(3.4) d(w;v,h, F) = lii%[d(w +av,h,F)—d(w, h, F)]/a

is linear in v, so that d(-, h, F) is differentiable at w, let vd(w, h, F) denote
the gradient of d(-, A, F') at w. Thus

(3.5) vvd(w, h,F)=d(w;v, h, F), veV.

The function d(-, h, F) has Hessian v %d(w, h, F) if d(-, h, F) is finite and

differentiable at w and if

d"(w; y,h,F) = lim[d'(w + ay; y, h, F) — d'(w; y, h, F)] /a

(3.6) al0
=y'vid(w,h,F)y, yeV,

for a self-adjoint linear transformation v %d(w, h, F) from V to V.

3.1. The parameter m in the interior of W. If m is in the interior of W, then
results are relatively simple. The fundamental requirements for asymptotic
normality results are Conditions 7 and 8. These conditions are not sufficient, but
they permit definition of the asymptotic distribution of n'/?(m, — m).

ConDITION 7. The Hessian v %d(m, h, F) exists and is nonsingular.
CoNDITION 8. The covariance operator J of VA(X, m) exists.

To assist in interpretation of Condition 8, observe that Corollary 4.3.1 and
Condition 7 imply that VA(X, m) is the gradient of A(X, - ) at m with probabil-
ity 1.

If K = —v2%d(m, h, F), then the basic asymptotic result for m in the interior
of W is that

(3.7) nV%(m, — m) >, N, K-JKY).
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Equation (3.7) holds if Conditions 7, 8 and 9 hold. Condition 9 is basically a
requirement that the error

Yh(X, m, y)

(3.8) _[AM(X,m+y)-h(X,m)-K(X,m;y) if h(X,m)> —o0,
'{0 if H(X, m) = — oo,

in the approximation of A(X, m + y) by the function Lk, (X, y) of (2.5) not be
excessive.

CONDITION 9. Fore<Oand y €V,

(8.9) liil(l)E[2maX[vh(X, m, ay), ] /a’] = d"(m; y, h, F).

Condition 9 may appear a bit strange. Since m is in the interior of W and
since Condition 7 implies that d(-, &, X) is differentiable at m, d'(m; y, h, F) is
0. By Theorem 4.3, EA'(X, m; y) = 0. Given (3.8) and Condition 7, (3.9) holds
for ¢ = — oo. Since

(3.10) lill'%yh(X, m,ay)/a=0, yeV,
a
Condition 9 is a plausible condition.

Conditions based on h’. Given Condition 7, Conditions 8 and 9 are implied
by Condition 10, as can be verified by use of Theorems 4.2, 4.3 and 4.5.

CoNDITION 10. For some neighborhood N of m,

(8.11) o} (w,y) = E[r(X,w;y)]°’< o, weN,yeV.

Condition 10 has the attraction that it does not require examination of second
derivatives of A(X, - ). Conditions 7 and 10 have been previously used to derive
(3.7) under the condition that the parameter space V = R. Brens, Brunk, Franck
and Hanson (1969) reach this result under their conditions that A(x, x) > A(x, w)
and U =V = W. Huber (1981), pages 49-51, obtains this result under the
assumption that the variance of the detivative (X, w) of A(X, - ) at w is finite
and continuous for w in an open neighborhood of m. It will follow from
Theorem 4.4 of Section 4.5 that Huber’s conditions are actually equivalent to
those used in this paper. Given Rockafellar (1970), pages 227-228, Theorem 24.1,
if V = R, it suffices to verify Condition 10 for y = 1. Comparable results for a
parameter space V of dimension greater than 1 do not appear to be readily
found, although (3.7) is derived by Huber (1967, 1981), pages 132-133, under
regularity conditions that do not exploit concavity.

To illustrate Conditions 7 and 10, consider the absolute deviation case of (2.8).
Let X = (S, T), with response S € R, covariate T € V and let D =S — m'T.
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Assume E(T') < oo, and assume that P{D = 0} = 0. Let

P(0<D<aq|T)/a ifa>0,
3.12 T)=
(3.12) 9(a,T) {P(a<D<O|T)/(—a) ifa <0,
(3.13) q(0,T) = limsupq(a, T),

a—0
(3.14) p(0,T) = liminfq(a, T)

a—0
and
(3.15) r(T) = supq(a,T).

a+0

Assume that ¢(0, T') = p(0, T') with probability 1,
(3.16) lin})P(D =a|T)/a=0

a—

with probability 1,
(3.17) E[r(T)TT] <
and no w in V exists such that with probability 1, either ¢(0, T') is 0 or w'T = 0.
Then (3.7) holds with J = E(TT") and K = E[2¢(0, T)TT']. If D is indepen-
dent of T and has a continuous density at 0, then as in Bloomfield and Steiger
(1983), ¢(0, T) is a constant g(0) and K~ WJK~! = [4¢g(0)]"%/ .
To verify this claim, begin with Condition 10. Since
y't if s > w't,
(3.18) K((s,t),w; y) = {‘y't if s < w't,
lyY ifs=uw',

Condition 10 holds for N = V. Let

1 ifx>0,
(3.19) f(x) = 0 ifx=0,
-1 ifx<oO,

and let
_ (1 ifx=0,
(3.20) 8(x) = {o ifx %0,

so that g =1 — |f|. Then VA((S, T), m) = f{(D)T, and J = E(TT").
To check Condition 7, note that since d(-, h, F') is finite on V, Theorem 4.2
implies that

(321)  d(w; 3,k F) = E[f(S—wT)yT + g(S — wT)lyT]].
Since it is assumed that D = 0 with probability 0, Corollary 4.2.3 implies that
(3.22) vd(m,h,F)=E|[f(D)T] =o0.

To obtain v2%d(m, h, F), observe that (3.17), the assumption P{q(0,T) =
p(0,T)} =1 and the dominated convergence theorem imply that

[d'(m+ ay; y,h, F) —d'(m; y,h,F)]/a
(3.23) = E{(yT[f(D - ayT) - f(D)]/a)}
+ E{|y'T|[g(D - ay'T) — g(D)] /a}
has limit — E[24(0, T)(y'T)2]. Thus K = E[2¢(0, T)TT"].
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Conditions based on h’’. An alternative approach assumes that Conditions 7
and 8 hold and that Condition 11 is satisfied.

CoNDITION 11. The Hessian v %d(m, h, F) satisfies
(3.24) v2d(m,h,F)=Ev2h(X,m).

Condition 11 implies Condition 9 since for each y in V,
(8.25) 2max[yh(X, m, ay), ¢] /a® > h"(X, m; y)
with probability 1 for each ¢ < 0, and since (3.24) implies that the A”(X, m; y)
are uniformly integrable [Chow and Teicher (1978), page 100, Corollary 4].

Conditions 7 and 11 both hold and K is equal to — E v 2A(X, m) if Conditions
12 to 14 are satisfied.

CoNDITION 12. For some open neighborhood N of m, the probability is 1
that A(X, - ) has a Hessian at each element of N.

CoNDITION 13. For some open neighborhood N of m, the expected value
E v 2h(X, w) is continuous in w.

CoNDITION 14. If w # 0, then P{w’' v 2h(X, m)w = 0} < 1.

To apply Conditions 12 to 14, one argues as in Fahrmeir and Kaufmann
(1985), who apply comparable conditions to generalized linear models based on
natural exponential families. Since by Theorem 4.2 and Condition 12,

[d'(m + ay; y, h,F) —d'(m; y, h, F)] /a
= E{[W(X,m + ay; y) — B'(X, m; y)]/a}
(3.26) = Ea™! ¥y vih(X, m + by)ydb
)

O, a
=a_1f YEv2h(X,m+ by)ydb
©, a)

for a > 0 sufficiently small, Condition 13 implies that v 2d(m, h, F) equals
E v 2h(X, m). Since v 2h(X, m) is nonpositive definite, Condition 14 implies
that v 2d(m, h, F) is nonsingular.

Conditions 12 to 14 can hold in very simple cases in which Condition 10 fails.
As an example, consider the familiar problem of least squares. Let the observa-
tion space U = R X V, let the parameter set W= Vand fors € R, t € V, let

(38.27) R((s,t),w) = s — (s — w't)”.

Let X = (S, T), for response S € R and covariate T' € V. Assume that E(T'T)
and E(ST) are finite and that no w € V exists such that w # 0 and
P{(w'T = 0} = 1. It is well known that

m = [E(TT")] 'E(ST).
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In this example, derivatives are easily obtained. One has
vh((S,T),w) =2(S — wT)T
and v 2A((S, T'), w) = —2TT". Conditions 12 to 14 hold, and
K= —v2(m, h, F) = 2E(TT).

Provided that the residual D = S — m'T satisfies E[ D*(T'T)] < o, Condition 8
is satisfied. The covariance J is 4E(D?*TT"). Thus

- n/*(m, — m) >, N(0,[E(TT")] 'E(D*TT")[E(TT")] ).
In the familiar case in which D and T are independent, the asymptotic covari-
ance = of n'/?(m, — m) reduces to E(D?)[E(TT")] ™.
Condition 10 can only hold if E(T'T)? is finite, so a substantial reduction in
generality can occur if one relies on this condition.

3.2. Conditions for m not in the interior of W. If the M-parameter m is not
in the interior of the parameter set W, then Conditions 7, 8 and 9 must be
supplemented by conditions on the set W. The basic requirements are that
M(V, h, F) = {m} and that W have an affine approximation in a neighborhood
of m. A simple way to ensure the existence of such an approximation is to use a
parametric approach found in Birch (1964).

ConDITION 15. The set M(V, h, F) = {m)}.

CoNDITION 16. For some element b in the interior of a subset B of a
finite-dimensional vector space A = R% 1 < a < o0, there is a function ¢ from B
onto W such that q(b) = m, ¢ has nonsingular differential @ at b and ¢, » b
whenever {c,: ¢t > 0} ¢ W and g(c,) > m.

Given Conditions 1, 7, 8, 9, 15 and 16, let

(3.28) 2= Q(QKQ) 'QJQQKQ) Q.
Then n'?2(m, — m) -, N(O, 2). If m is in the interior of W, then one may let
B=A=Vand m=> and let ¢ = @ be the identity transformation I on V.
Then Conditions 1, 15 and 16 hold, and (3.28) reduces to (3.7).

Under Conditions 1, 7, 8, 9, 15 and 16, a further asymptotic normality result
of some interest is available. Let b, be random variables in B such that
m, = q(b,). Let '

(3.29) Z=(QKQ) 'QJQRKQ) ™"
Then n'/%(b, — b) =, N(O, E).

Results comparable to (3.28) and (3.29) are found in the literature in special
cases. For example, Berk (1972, 1973) considers cases based on exponential
families in which 4 is defined as in (1.3) and (1.4) for an m in W such that m is
in the interior of the natural parameter space Q and the equation

(3.30) E[T(X)] = / T(x)g(x, w) dv(x)
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is satisfied for a w in Q only if w equals m. In this model, it need not be true
that dF/dv is g(-, m); however, M(W, h, X) = M(V, h, F) = {m}. Assume
Conditions 1 and 15 hold and E[T(X)]JT(X) is finite. Since m is in the interior
of Q, it follows from Berk (1972) that Condition 8 holds with J = Cov[T(X)]
and Conditions 12 to 14 hold with K = [[T(x) — m][T(x) — m]'g(x, m) dv(x).
Thus Conditions 7 and 9 hold. The one difference in results in this case is that
Berk (1972) has stricter conditions on g than are used in Condition 16.

A modest generalization to Condition 16 is available if one requires that
W —m= {w— m: we W} is well approximated by the set D(W, m) of tan-
gents of W at m and that D(W, m) is a linear subspace of V. In Conditions 17
and 18, || - || is a norm on V, and the set of tangents D(W, m) of W at m is
defined to be the set of all limit points of sequences (a,)”'(z, — m) such that
a, — 0 and for each integer ¢t >0, a,> 0 and 2z, € W. Observe that for W
convex, D(W, m) is the closure of the convex cone generated by W — m.

CONDITION 17. The set D(W, m) is a linear subspace.

ConbpITION 18. If w, € D(W, m), t > 1 and w, — 0, then
(3.31) inf |w, + m — v||/||w,) = O.
veWwW

In Conditions 1, 7, 8, 9, 15, 17 and 18 hold, then n'/%(m, — m) -, N(0, =),
where

(3.32) S =HK 'JHK!
and H is the projection on D(W, m) defined by the conditions
(3.33) Hwe D(W,m), weV,

(w - Hw)K(w — Hw) < (w — y)K(W - y),
yeD(W,m),weV.

It is helpful to note that since HK is self-adjoint [Rao (1973), page 47], £ is

self-adjoint despite its asymmetric appearance.

Conditions 17 and 18 hold given Condition 16. Under Condition 16, D(W, m)
is the range of @, so Condition 17 holds. To show that Condition 16 implies
Condition 18, let w, = Gc, be in D(W, m) for ¢ > 1, let w, — 0, let v, = g(c,) for
¢, in B and let v, be m if ¢, is not in B. Since G is nonsingular, ¢, > 0 and

(3.34)

(3.35) ([eYe) ™ *a(e) = m = Ge)] - 0.
Thus for v, in W,
(3.36) llw, + m = oll/llwll - 0;

i.e., (3.31) must hold. As is well known, under Condition 16, H is (@' KQ) 'Q'K,
so that (3.28) and (3.32) are consistent.

On the other hand, Conditions 17 and 18 are slightly more general than
Condition 16, for one may let V= R% m = (0,0) and W = {(x, y): |x| < y%}.
Here Conditions 17 and 18 hold with D(W, m) = {(0, y): ¥ € R}, but Condition
16 fails.
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If Conditions 1, 7, 8,9 and 18 hold but D(W, m) is a closed convex set but not
a linear subspace, then Z, = n!/?(m, — m) converges in distribution to HK 'Y,
where H is still the projection on D(W, m) defined by (3.33) and (3.34) and Y
has a distribution N(0, J). The limiting distribution is then not normal. Related
results involving likelihood ratio tests can be found in Chernoff (1954). As a
simple example, note that if W is [0, c0), m is 0 and the parameter space V is R,
then D(W, m) =W, Hw =w, w > 0 and Hw =0, w < 0. Thus HK~'Y has a
distribution which is the maximum of 0 and a N(0, J /K ?) random variable.

In practice, consistent estimation of J and K is important when confidence
intervals of parameters are of interest. In the case of <J, Condition 10 implies
that

J,=n"'Y vh(X;, m,)[vh(X,,m,)] > J as.

i<n
whenever m, — m as. In the case of K, Conditions 12 and 14 suggest the use of

K,= —n"' ¥ vh(X, m,)
<n
to estimate K. If one adds the condition that for some neighborhood N of m and
for some symmetric random matrix L, —y' v 2h(x,w)y < y'L(x)y, y€V,
w € N, and Ey'L(y) < 0, y € V, then K, > K a.s. whenever m, > m as. If
Condition 16 holds for a ¢ with a continuous differential @(c) for ¢ in a
neighborhood of b, then Q(b,) — @ a.s. whenever b, — b a.s. In the Berk (1972,
1973) example of exponential families, these conditions are straightforward to
verify given that Cov[T(X)] is finite and m is in the interior of Q.

3.3. Special results for maximum likelihood. In the maximum likelihood
problem of Section 1.3, several simplifications occur if m is in the interior of .
In this problem, Condition 15 always holds, and Condition 7 implies Condition 8.
It is typically the case that J = K, so that = = HK~! under Conditions 1, 7, 9,
17 and 18, while 2 = Q(Q'KQ) '@’ and = = (Q’KQ) ! under Conditions 1, 7, 9
and 16. These formulas for 3 and = are quite well known. For example, Berk
(1972, 1973) notes that in the exponential family models of Section 1.1 in which
the model holds, J = K = Cov[T(X)].

To verify that Condition 7 implies Condition 8, assume Condition 7 holds.
Observe that for w in Q,

(3.37) d(w, k, F) < —E[exp[h(X,w)] - 1 — h(X,w)].
Since d(m, h, F)is 0 and vd(m, h, F) = 0,
(3.38) lin})2d(m +ay,h,F)/a® > —y'Ky, yeV.

Since c(a) =e®*—1— a is nonnegative and has derivatives ¢’(0) = 0 and
¢”(0) =1 and since A(X, m + ay)/a = K'(X, m) = g'(X, m) as a |0, Fatou’s
lemma, (3.37) and (3.38) imply that

(3.39) yKy > E[W(X, m; y)]°.
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Since d(-, h, F') has gradient vd(m, h, F') = 0 at m, Corollary 4.3.1 and (3.39)
imply that o exists and satisfies the inequality

(3.40) y'Jy < y'Ky, yeV.

It is often straightforward to verify directly that J = K. In other cases, it is
helpful to note that the transformation < equals K and Conditions 7 and 8 hold
if Conditions 19 and 20 hold.

ConDITION 19. For some open neighborhood N of m, if w € N, then
v({x € U: g(x,w) > — o0, gx,m) = —o0}) = 0.

CoNDITION 20. If v € V, then an open interval N(v) containing 0 exists such
that the random variables c¢(h(X, m + ay))/a?, a € N(y), a # 0, are uniformly
integrable.

Condition 19 permits equality to hold in (3.37). Under Conditions 19 and 20,
since

(841)  lime(h(X,m+ ay))/a® = [K(X,m; y)|"/2,  yeV,

if g(X,-) > — o0 on N, the uniform integrability assumption implies that
(3.42) lirlx(l)d(m+ay, h,F)/a’>= —6¢*(m,y)/2> -0, y€eV.
a

" By Rockafellar (1970), page 244, Theorem 25.2, d(-, h, F) is differentiable at m
withvd(m, h, F) = 0. By Corollary 4.3.1, A(X, - ) has gradient VA(X, m) at m
with probability 1, and E[VA(X, m)] = 0. Thus 6%(m, y) = y’Jy,and d(-, h, F)
has Hessian —J at m.

To verify that J is nonsingular, assume y’Jy = 0 for some y in V. Then
E[h(X, m; y)]? =0, so that A'(x, m; y) = 0 with probability 1. Thus by (1.3),
g(X, m + ay) < g(X, m) with probability 1 for all positive a. Given that m is in
the interior of , it follows that »({x € U: g(x, m + ay) # g(x, m)}) = 0 when-
ever m + ay € Q. Since this result implies that for m + ay in Q,

dF/dv = expg(-, m + ay)[ 7],

a basic uniqueness assumption of Section 1.3 is violated unless y is 0. Thus
J = K is nonsingular.

To illustrate the results of this section, consider the quantal response model of
(1.5). For simplicity, assume that 0 < L(a) < 1 for ¢ in R, and assume that at
each a in R, L has first derivative L’(a) and second derivative L"'(a). Let

(3.43) f(a) = [L'(a)]*/{L(a)[1 - L(a)]},

~L"(a)/[1 - L(a)] - [L'(a)]’/[1 - L(a)]* ifs=0,

(3.44) e(s,a) = ) )
L"(a)/L(a) - [L'(a)]"/[L(a)] if s = 1.
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Then
(3.45) v2h((s,T),w) = e(s,wT)TT".

By the dominated convergence theorem, Conditions 12, 13 and 14 hold if
z(w) = E[e(S, w'T)T'T] is finite and continuous for w in a neighborhood of m.
Thus Conditions 7 and 9 hold. It is easily verified that

(3.46) J=K=E[f(mT)TT].
Thus
(3.47) n*(m, — m) -, N, J~1).

This conclusion is well known. In several special cases, further simplification of
conditions is possible. In logit analysis, L(a) = 1/(1 + e~ %), so that
(3.48) 0< —e(0,a) = —e(1,a) =f(a) =e?/(1 + %)’ < L.

By the dominated convergence theorem and the continuity of e(s, - ), z is finite
and continuous if E(T'T) is finite. As in Haberman (1974), Chapter 8, (1977),
(3.47) holds for

(3.49) J = E[Var(S|T)TT'].

In probit analysis, L is the standard normal distribution function ®, so that
e(s, - ) is continuous. The dominated convergence theorem and the bounds

(3.50) ®(a)/®(a) <1/|al, a<o0,
and
(3.51) ®(a)/[1 - ®(a)] <1/a, a>0,

associated with Mills’ ratio may be used to show that z is finite and continuous
if E(T'T)? is finite. Thus (3.47) holds.

4. Basic properties of M-parameters and M-estimates. In this section,
the basic properties of M-parameters and M-estimates are reviewed. To begin,
consider properties of the function d. Note that %4 is a Borel-measurable
function from U X V to [— o0, 00) such that A(x, - ) is concave and upper-semi-
continuous for all x in U and d(w, A, F) < o0.

4.1. Concavity of d(-, h, F) and d(-, h, F,). The functions d(-, 4, F) and
d(-, h, F,) are both concave and upper-semicontinuous. This claim is derived
from the following theorem and corollary.

THEOREM 4.1. The function d(-, h, F) is concave and upper-semicontinu-
ous.

ProOF. Let v and w be in V and let a be in the real interval [0,1]. The
concavity condition on A implies that

(4.1) h(X,av+ (1 - a)w) = ah(X,v) + 1 —a)h(X,w).
Since d(v, h, F), d(w, h, F) and d(av + (1 — a), h, F) are all less than oo, it
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follows that
dlav+ (1 - a)w,h,F)=Eh(X,av+ (1 — a)w)
(4.2) > aEh(X,v) + (1 — a)Eh(X,w)
=ad(v,h,F) + (1 —a)d(w, h, F),

so that d(-, h, F') is concave.

To prove upper-semicontinuity, consider the convex set D of points w such
that d(w, h, X) is finite. If D is empty, then upper-semicontinuity is obvious. If
D is not empty, then let v be in D and let w be in V. By Rockafellar (1970),
Corollary 7.5, page 57, it suffices to show that

(4.3) d(w, h, F) = limd((1 — a)v + aw, h, F).
atTl
Equation (4.3) obviously holds if w is not in the closure cl(D) of D. Thus it

suffices to assume that w is in cl(D). Since d(v, A, F) is finite, A(X, v) is finite
with probability 1. Given that A(X, - ) is concave and upper-semicontinuous,

(4.4) h(X,w) = lirTr}h(X, (1-a)v+ aw)

with probability 1. Thus with probability 1,
(45) h(X,w)—-h(X,v)= lirTI}a_l[h(X(l —a)v+ aw) — h(X,v)].

By concavity, the probability is 1 that
a '{A(X,(1-a)v+aw) - h(X,v)]

is nonincreasing for @ > 0. For 0 < a < 1,
a [d(1-a)v+aw,h, F)—d(v, h, F)]

=Ea '[h(X,(1 - a)v + aw) — h(X, v)]
is finite. By the monotone convergence theorem, (4.4), (4.5) and (4.6) imply that
d(w,h,F) —d(v,h, F)

= }lirTI}a_l[d((l —a)v+aw,h,F)—d(v, h, F)].

(4.6)

(4.7)

Since (4.7) implies (4.3), the theorem is proven. O

COROLLARY 4.1.1. The function d(-, h, F,) is concave and upper-semicon-
tinuous.

ProoOF. Note that d(-, h, F,) is less than oo and apply Theorem 4.1 with
F=F,.O

4.2. Derivatives and gradients. It is common for results concerning M-
parameters and M-estimates to be stated in terms of derivatives. The following
results are helpful in this regard.
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THEOREM 4.2. If d(w, h, F) and d(w + cy, h, F) are finite for some win V,
yin Vand ¢ > 0, then the directional derivative
(4.8) d'(w; y,h,F) = lima [d(w + ay, h, F) — d(w, h, F)]
al0

is equal to Eh' (X, w; y).

Proor. Since a '[A(x,w + ay) — h(x, w)] is nondecreasing as a |0 and
(49) ¢ '[d(w+cy,h,F)—d(w,h,F)] = Ec ' [A(X,w + ¢y) — (X, w)]
is finite, (2.1), (4.8) and the monotone convergence theorem imply that
(4.10) d'(w; y,h,F) =EW(X,w; y). O

Given Theorem 4.2, several basic results concerning directional derivatives
and maxima follow.

CoROLLARY 4.2.1. If d(w, h, F) is finite and EW'(X,w; y) is defined for
some win Vand yin V, then

(4.11) d'(w; y, h, F) < EW'(X, w; y).
Proor. If d(w, h, F) is finite and d(w + ¢y, h, F) is finite for some ¢ > 0,

then (4.11) follows from Theorem 4.2. If d(w + ay, h, F) is — oo for all a > 0,
then d'(w; y, h, F) is — o0 and (4.11) is trivial. O

COROLLARY 4.22. If me€ W and if EK(X,m; y —m) <0 for all y in W,
then m is in M(W, h, F)

Proor. By Theorem 4.2 and Corollary 4.2.1, d’'(m; y — m, h, F) < 0 for all
y in W. By Rockafellar (1970), pages 213-214, Theorem 23.1, d(y, h, F) <
d(m, h, F) for all y in W, so that m isin M(W, h, F).O

COROLLARY 4.2.3. If m € M(W, h, F), if d(w, h, F) is finite for all w in the
intersection of W and a neighborhood N of m and if W is convex, then
d(m;w—-m,h,F)=EW(X,m;w—-—m)<0 forallwe W.

PrOOF. Let w bein W. Since m + a(w — m)isin Wfor0 <a <1,
d'(m;w—m,h, F)
(4.12) = liil(l)a_l[d(m +a(w—m),h, F)—d(m,w, F)]
a

<0.

Since d(m + c(w — m), h, F) is finite for sufficiently small positive ¢, the
conclusion follows from Theorem 4.2. O

REMARK. The preceding corollaries can be used to modify problems to fall
within the framework of this paper. Let 2 be a Borel-measurable function from
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U X V to [— o, ) such that k(x, - ) is concave and upper-semicontinuous for
all x in U, and let there be an element m of W such that 2(X, m) is finite with
probability 1 and Ek'(X, m; w) < 0 for all w in V. Let

k(x,w) — k(x,m) if k(x,m) > —oco,

(4.13) h(x,w) = {k(x,w) if k(x,m) = —co0.

Then A is a Borel-measurable function from U X V to [— o0, 00) such that
h(x,-) is concave and upper-semicontinuous for x in U, d(m, h, F) is 0,
d'(m; w, h, F) = Ek'(X, m; w) <0 for all win V, d(w, h, F) <0 for w in V
and M(W, h, F) contains m. At the same time, M(W, h, F,) = M(W, k, F,), so
that study of large-sample properties of M-estimates based on k is the same as
study of large-sample properties of M-estimates based on 4. Observations of this
sort appear in Huber (1967) and (1981), page 44.

THEOREM 4.3. If for some w in V, d(w, h, F) is finite and —oo <
d(w; y, h, F) = —d'(w; — y, h, F) < oo for all y in a subset W of V, then with
probability 1, —oo < K'(X,w; y) = —h(X,w; — y) < oo for all y in sp(W) and
R (X, w; -) is linear on sp(W).

ProOF. Observe that for all y in W,

(4.14) d(w; y,h,F)=Eh(X,w,y)
and

(4.15) d'(w;—y,h,F)=Er(X,w; —y),
so that

(4.16) E[W(X,w;—y) + k(X,w; y)] =0.

Since —A'(X,w; —y) = (X, w; y) [Rockafellar (1970), Theorem 23.1, pages
213-214], — 0 < A'(X,w; — y) = —h/ (X, w; y) < oo with probability 1 for y in
an arbitrary basis H of the finite-dimensional space sp(W). The conclusion of
the theorem follows from Rockafellar (1970), Theorem 4.8, page 30, and Theorem
23.1, pages 213-214. 0O

COROLLARY 4.3.1. If atw, d(-, h, F) has gradient vd(w, h, F'), then
(4.17) vd(w, h,F)=Evh(X,w),
and with probability 1, h(X, - ) is differentiable at w.

ProoF. Apply Theorems 4.2 and 4.3 to the definition of VA(X, w). Equation
(4.17) follows since
(4.18) y'vd(w, h,F) =d'(w; y,h,F) = EN(X,w; y) = Eyvh(X,w). O

THEOREM 4.4. Let w and y be in V, let b be positive and let ¢*(w, v) and
o%(w + by, y) be finite. Then for 0 < a <1, o(w + ay, y) is right-continuous
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in a. If in addition,
(419) - <d(w+ay;y,h,F)=-d'(w+ay; —y,h,F) <0

for some a, 0 < a < 1, then o(w + ay, y) is continuous at a.
REMARK. Here o6%(w, y) is defined by (3.4).

ProoF. By Rockafellar (1970), pages 227-228, Theorem 24.1, if A(X, w) and
h(X, w + by) are finite, then for 0 < a < 1, A'(X,w + ay; y) is right-continuous
in a,

(4.20) M(X,w; y) > (X, w+ ay; y) = K(X,w + by; y)
and
(421) [W(X,w + ay; y)]2 < [W(X,w; y)]* + [W(X,w + by; ¥)]°

By Theorem 4.3 and Rockafellar (1970), pages 227-228, Theorem 24.1,
h'(X,w + ay; y) is continuous at a with probability 1 if (4.19) holds. The
conclusion of the theorem then follows by the dominated convergence theorem
and (4.21). O

The final result of this section concerns the second derivative d”(m; y, y, h, F)
defined in (3.6) and the function yh(X, m, - ) of (3.8).

THEOREM 4.5. Conditions 7 and 10 imply Condition 9.

PrOOF. Let y € V, let 6%(m, y) and ¢*(m + by, y) be finite and let

(422) Y= {h'(X’ m+by; y) — h'(x,m; y) if h(X3 m) is finite,
0 otherwise.
Let &€ < 0. Then (3.9) holds if

(4.23)  lm E{[vh(X, m, ay) - max[yh(X, m, ay), e]] /a?} = .

Since A(X, - ) is concave, Rockafellar (1970), pages 213—214, implies that
(4.24) aY <yh(X,m,ay) <0, O0<ac<b.
For a > 0, let

_ Y/a' if Y< —¢/a,
(4.25) Za,e) = {0 if Y> —¢/a.
Then (4.23) holds if
(4.26) IimE[Z(a,e¢)] = 0.
al0

Let A(a, e, - ) be the indicator function of (— 0, ¢/a). Since E(Y?) is finite by
assumption and since Z(a, ¢) is YA(a, ¢,Y)/a,

(4.27) (e/a)E|YA(a,&,Y)| < E[Y?A(a,¢,Y)]
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and
(4.28) 0> E[Z(a,¢)] = E[Y?A(a,¢,Y)] /e
Since E[Y?A(a, ¢ Y)] — 0 as a |0, (4.28) implies (4.26). Thus (4.23) holds. O

5. Consistency proofs. Results on consistency rely heavily on the following
basic result from the theory of concave functions. Let a sequence of concave
functions f, on V converge pointwise on a dense subset of the convex open set S.
Then f,(x) — f(x) for all points x of S, where f is a concave function. In
addition, convergence is uniform on compact subsets of S [Rockafellar (1970),
page 90, Theorem 10.8]. This result, also exploited by Andersen and Gill (1982),
permits concentration on the behavior of d(w, &, F,) for fixed w. Final argu-
ments here will be a bit more complex than in Andersen and Gill (1982) since
cases will need to be considered in which for almost all relevant points w,
d(w, h, F,) converges to d(w, h, F) with probability 1 but d(w, h, F') is not
finite. The basic theorem to be proven in this section is Theorem 5.1. In this
theorem, Conditions 1, 2, 5 and 6 are defined as in Section 2. As in Section 2, it is
assumed that M(W, A, F) has a single element m. The notational convention is
adopted that if a sequence of events A,, n > 1, is said to be true almost always
(a.a.) if with probability 1, A, holds for all but a finite number of n.

THEOREM 5.1. Assume Conditions 1, 2, 5 and 6 hold. Then m, - m. a.s.
This theorem is proven by use of a series of lemmas.

LEMMA 5.1.1. Let N be an open convex subset of V and let k be a Borel-mea-
surable function from U X V to [ — o0, 0] such that k(x, - ) is concave for all x
in U and such that d(w, k, F) = Ek(X,w) is finite for w in N. Then the
probability is 1 that for all w in N, the average d(w, k, F,) of k(X;, w),
1 < i < n, converges to d(w, k, F). With probability 1, convergence is uniform
on any compact subset of N.

REMARK. If d(w, k, F,) involves both summands oo and —oo, then
d(w, k, F,) will be set to 0.

ProoF. Let D be a countable dense subset of N. For each w in D, the law of
large numbers implies that d(w, k&, F,) = d(w, k, F') as. as n = . Thus the
probability is 1 that for all w in D, d(w, k, F,) converges to d(w, k, F') as
n — oo. By Corollary 4.1.1 and Rockafellar (1970), page 53, Theorem 7.2, the
probability is 1 that for each n, d(w, %k, F,) < 0, w € V and d(-, k, F,) is
concave. By Rockafellar (1970), page 90, Theorem 10.8, it follows that with
probability 1, d(w, k, F,) converges to d(w, k, F) for all w in N, with conver-
gence uniform on compact subsets of N. O

REMARK. For a similar proof, see Andersen and Gill (1982).
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LEMMA 5.1.2. Let N be an open convex set and let k be a Borel-measurable
function from U X V to [ — o0, 0] such that d(-, k, F) is finite on N and k(x, - )
is concave on N for x in U. Then with probability 1, k(X,-) is a finite
continuous function on N.

Proor. Let D be a countable dense subset of N. Let w be in D. Since
d(w, k, F) is finite, 2(X,w) is finite with probability 1. It follows that with
probability 1, 2(X,w), w in D, are all finite. By Rockafellar (1970), page 82,
Theorem 10.1, it follows that with probability 1, (X, - ) is continuous on N. O

LEMMA 5.1.3. Let w be in a convex open set N, let 8 be a positive real
number and let k be a Borel-measurable function from U X V to [ — o0, 00] such
that k(x, - ) is concave for each x in U, d(-, k, F) is finite on N and h(x,w) <
k(x,w), x € U, w € N. Then there exist an open convex subset N’ of N and a
Borel-measurable function k' from U X V to [— o0, ] such that w is in the
interior of N’, k'(x,:) is concave for x in U, d(-,k’, F) is finite on N’,
h(x,w) < k'(x,w), x € U, w € N’ and

d(N', k', F) < max|[d(w, h, F) +8,—87'].

ProoF. For ¢ > 1, let N, be a decreasing sequence of convex open neighbor-
hoods of w such that each N, is included in N and such that m, converges to w
if m, is in N,. Let D denote the subset of x in U such that k(x, - ) is finite and
continuous on N. For x in D, let c¢(x) be the minimum of ¢ and A(x,w’) —
h(x,w’), w’ € N,. Otherwise, let c,(x) be 0. Since A(x,w) < k(x,w) for x € D,
w € N, c, is nonnegative. By assumption, A(x, -) is upper-semicontinuous for
each x in U. Thus for x in D, c,(x) approaches k(x, w) — h(x,w) as t = . By
Lemma 5.1.2, X is in D with probability 1. Thus with probability 1, c(X)
approaches k(X, w) — h(X,w) as t goes to .

Consider the concave function k,(x, - ) = k(x, - ) — c(x). Clearly, k,(x,w) <
h(x,w), x€ U, we N, Since 0<c,<t and d(w', k, F) is finite on N,
d(w', k,, F)=d(w', k, F) — Ec(X) is finite for w’ in N,. Since d(-, k, F) is
concave and finite on N, d(-, &, F) is continuous on N [Rockafellar (1970), page
82, Theorem 10.1]. Thus

(51) d(N, k,F)—-d(w,k, F)=d(N, k,F) - d(w,k,F) -0

as t — oo. Since ¢, is nondecreasing and d(w, k, F') is finite, the monotone
convergence theorem implies that d(w, k,, F') approaches d(w, h, F') as t = cc.
Consequently, d(N,, k,, F) approaches d(w, h, F') as t — co. Thus for suffi-
ciently large ¢, one may let &’ be k, and let N’ be N,. O

LEMMA 5.1.4. Condition 5 implies that for each w in V, w + m, an open
convex set N and a Borel-measurable function k from U X V to [ — o0, 0] exist
such that w € N, k(X, -) is concave for x in U, d(-, k, F) is finite on N and
h(x,w) < k(x,w), x € U, w e NN ch(W).
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ProOF. The lemma is trivial if w is not in ch(W), so let w € ch(W) and
assume w is not m. Let y equal aw + (1 — a)m be in N’, where 0 < a < 1.
Since w is in ch(W), m is in ch(W) and ch(W) is convex, y is in ch(W). Let N”
be a neighborhood of y and let g be a Borel-measurable function from U X V to
[ — o0, 0] such that g(x, - ) is concave for x in U, d(-, g, F) is finite on N’ and
h(x,v) < g(x,0), x € U, v € N" N ch(W). Let

k(x,v)
(5.2) _ {a"[g(x, av+ (1 -—a)m)— (1 - a)h(x,m)] if h(x,m)> —o0,
h(x,w’) if h(x,m) = — 0.

Obviously, % is Borel-measurable and k(x, - ) is concave for x € U. Let N be
any open convex set such that

weNc{veViav+ (1-a)meN"}.

Since d(m, h, F') must be finite if M(W, h, F') = {m} and W has at least two
elements, d(-, k, F) is finite on N. Since

(5.3) h(x,v) <a Yh(x,av + (1 — a)m) — (1 — a)h(x, m)]
whenever A(x, m) is finite and
(5.4) h(x,av+ (1 —a)m) < g(x,av + (1 —a)m), ove€EN,
it follows that 2 and N satisfy the requirements of the lemma. O
LEMMA 5.1.5. Let Condition 5 hold and let C be a compact subset of ch(W)
such that m is not in C. Then
(5.5) d(C,h,F,) > d(C,h,F) a.s.
Proor. Let 6 > 0. By Theorem 4.1, d(-, h, F) is upper-semicontinuous, so

that for some w in C, d(w, h, F) = d(C, h, F'). By the strong law of large
numbers [Chow and Teicher (1978), page 122, Corollary 2],

(5.6) d(w,h,E,) > d(w,h,F) as.
even if d(w, h, F) is — 0. Since d(w, h, F,) < d(C, h, F,), it follows that
(5.7) d(C,h,F)-8<d(C,h,F,) aa.

By Lemmas 5.1.3 and 5.1.4, to each w in C corresponds a Borel-measurable
function %, from U X V to [— o0, 0], an open convex neighborhood N, of w
and a bounded open convex neighborhood N of w such that cl(N;) C N,,
k,(x, ) is concave for x in U, d(-, k,, F) is finite on N,, h(x, v) < k, (x, v),
xe€U,ve N, and

(5.8) d(v, k,, F) < max[d(C, h, F) + &, — §7}]

for all v in N,. Given Lemma 5.1.1 and the compactness of C, for some finite
positive integer b and some w(j)in C,1 <j < b, C is in the union of the sets

Ny 1 <j < b, and d(-, k), F,) converges uniformly to d(-, k), F) on
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cl( N, ;) with probability 1. Since d(-, , F,) < d(-, k
b, it follows that
(59) d(w,h, F,) <max[d(C,h,F)+8,-8', weC, aa.
Since § is arbitrary, (5.5) follows. O

F,)on N,

wiy 1 <7 <

w(Jj)

PROOF OF THEOREM 5.1.  Since the theorem is trivial if W = {m}, assume W
has at least two elements, so that d(m, h, F) is finite. Let —c0 < ¢ < d(m, h, F)
and let m be in the interior of a bounded convex subset D of V with boundary
dD such that if w is in ch(W) N 9D, then d(w, k, X) > c. By Rockafellar
(1970), page 70, Theorem 8.7, and Condition 6, such a set D must exist. By
Lemma 5.1.5,
d(ch(W) n D, h, F,)

- d(ch(W) N dD,h,F)as.<c<d(m,h, X).
By the law of large numbers,

(5.10)

(5.11) d(m,h,F,) >d(m,h,F) as.
Since d(-, h, F,) is concave and ch(W) is convex, (5.10) and (5.11) imply that
(5.12) W,={weW:d(w,h,F,)>d(m,h,F)} cD aa.

Let N be an open neighborhood of m such that cl( N) N W is closed. Let N’
be a bounded open neighborhood of m such that N’ is a subset of D N N and let
H be the set of all w in cI(W) N D but not in N'. Since H is compact, Lemma
5.1.5 and Condition 5 imply that

(5.13) d(H,h,F,) >d(H,h,F) <d(m,h, F) as.
Consequently, W, c N’ a.a.

Since d(-, h, F,) is upper-semicontinuous (Corollary 5.1.1) and since cl( N’) N
W = cl(N’) N [cl(N) N W]is compact, the set of maxima M(cl(N’) N W, h, F,)
of d(-, h, F,) over cI(N')y N W is nonempty. If W, is contained in N’, then
M((N)YN W, h,F,)=M(W, h, F,) c N'. Since W,c N’ aa, m,€ N’ aa.
Since N’ is arbitrary, m, - m as. O

REMARK 1. Examination of the proof of Theorem 5.1 permits an extension
to cases in which M(W, h, F) has more than one element. Let Condition 6 still
hold, assume that W cl(N) is closed for some open set N such that
M(W, h, F) c N and assume that M(W, h, F) equals M(c(W), h, F). Then
m, € N’ a.a. for any open set N’ such that M(W, h, F') C N’'. Arguments of this
kind are readily found in the literature. For example, see Brons, Brunk, Franck
and Hanson (1969).

REMARK 2. A restriction in the definition of m, permits removal of Condi-
tion 1 from Theorem 5.1. As in Brown and Purves (1973), one may require that
m,€ W is in M(W,h,F,) if M(W,h, F,) is nonempty, d(m,, h, F,) >
d(W, h,F))—1/n if d(W, h, F,) is finite and M(W, h, F,) is empty and
d(m,, h, F,) > n if d(W, h, F,) is co. Given this definition of m,, Conditions 2,
5 and 6 imply that m, - m as.



1656 S.J. HABERMAN

REMARK 3. The arguments used in the proof of Theorem 1 are related to
those of Perlman (1972).

6. Proofs of asymptotic normality results. In this section, Theorem 6.1
provides asymptotic normality results for m in the interior of W, while Theorem
6.2 provides more general asymptotic normality results. Theorem 6.3 considers
cases in which the set D(W, m) of tangents is not a linear subspace of V. In this
section, —, denotes convergence in probability. It is convenient to let |lw||? =
(w, Kw), w € V, so that under Condition 7, || - || is a norm on V. If Condition 18
holds for any definition of a norm, it holds for this norm as well.

THEOREM 6.1. Let m be in the interior of W and let Conditions 7, 8 and 9
hold. Let J = Cov[Vh(X, m)] and let K = —v *d(m, h, F). Then

(6.1) n?(m, — m) -, N0, K" JK').
The proof of Theorem 6.1 involves proof of a series of lemmas.

LEMMA 6.1.1. LetY,,1 <i<n, n>1, be nonnegative extended real ran-
dom variables such that for each n > 1, the Y,, are independent and identically
distributed. Let S, =%,_, Y,,, let E(Y,,) =, let v =lim,_, np, > 0 and for
e>0, let p,(¢) = E[min(e, Y,,)] and let lim,_, np,(¢) =v for each & > 0.
Then S, -, ».

REMARK. This lemma is very close to Chow and Teicher (1978), page 435,
Exercise 2.

ProOF. Since
(6'2) aP(Yln>a) S""n—p‘n(a)’

one may select ¢, > 0 such that ¢, —» 0, np,(¢,) = » and nP(Y,, > ¢,) = 0. If
Z,, = min(e,, Y;,)and T, = X, _,Z,,, then P(S, = T,) — 1. Since

the variance Var(T),) of T, satisfies
(6.4) Var(T,) = nVar(Z,;) < nE(Z,,)* - 0.

It follows that S, — npu,(¢,) and T, — np,(¢,) both converge in probability to 0.
The conclusion follows since nu ,(¢,) = v. O

LEMMA 6.1.2. Let Conditions 7 and 9 hold. Let
(6.5) h(X,w) = nyh(X, m, n"?w).
Then for win V,

(6.6) d(w, h,, F,) >, — wKw/2.
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PROOF. Observe that (3.9) with ¢ = — oo implies that
(6.7) d(w,h,,F) > d’(m;w,h,F)=-wKw/2.

Since A,(X, w) is never positive, the conclusion follows given Conditions 7 and 9
and Lemma 6.1.1. In Lemma 6.1.1, Y, is yA(X, m, n~2w). O

LEMMA 6.1.3. Let Conditions 7 and 9 hold. If C is a compact subset of
sp(W), then
(6.8) sup |d(w, h,, F,) + (wKw/2)| -, 0.

weC

PROOF. Let D be a finite set such that C is in the convex hull of D. By
Rockafellar (1970), page 88, Theorem 10.6, and Lemma 6.1.2, a ¢ > 0 exists such
that the probability approaches 1 that

(6.9) |d(w, h,, F,) —d(v,h,,E,)| <clw-v|, w,veC.
Similarly, e > 0 exists such that
(6.10) |w'Kw — v'Kv| < 2e|jw —v|, w,veC.

Let ¢ > 0 and let F be a finite set such that for any w in C, a v in F exists such
that ||w — v|| < ¢/[2(c + e)]. By Lemma 6.1.2,

(6.11) sup |d(w, H,, F,) + wKw/2| -, 0.
weF
Thus the probability approaches 1 that
sup |d(w, h,, F,) + w'Kw/2| < e.

wel

Thus (6.8) holds. O

LEMMA 6.1.4. Let Conditions 1, 7, 8, 9 and 15 hold. Then for any ¢ > 0,
there exists a finite 8§ > 0 and a finite n’ such that the probability that
n?|m, — m|| < § exceeds 1 — ¢ foralln > n'.

REMARK. The references to Conditions 1 and 15 are helpful in application of
this lemma to Theorems 6.2 and 6.3. Under the conditions of Theorem 6.1.
Conditions 1 and 15 necessarily hold.

Proor. Since Condition 7 implies Condition 3 and Condition 15 implies
Conditions 2 and 6, Theorem 5.1 implies that m, — m as., so that M(W, h, F,)
is nonempty a.a.

If
(6.12) g(x,w) =h,(x,w) + n"?w vh(x, m)
and W, = {n'/%(w — m): w € W}, then an examination of (3.8) and (6.5) shows
that the probability approaches 1 that

(613) e, = nl/z(mn - m) € M("Vn, 8n» Fn)
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It thus suffices to use (6.13) to demonstrate that for any ¢ > 0, & in (0, c0) and
n’ > 0 exist such that for n > n’ the probability is at least 1 — & that |le,|| < é.
To investigate the behavior of M(W,, g,,, F,,), consider the decomposition

(6.14) d(w,g,, F,)=d(w,h,, F,) + wn?vd(m, h, F,).
By Lemma 6.1.3, if for ¢ > 0, C(c) is the compact set
(6.15) C(c) ={weV:wKw-=c},
then
(6.16) sup d(w, h,, F,) =, — c/2.
weC(c)

By Condition 15, Corollary 4.2.3 and the central limit theorem,

(6.17) n?vd(m, h,F,) =n"%% Y vh(X;,m) >, N(0, J).
i<n

For any y in V,

(6.18) sup w'y = /2y Kly)"”

weC(c)
[Rao (1973), page 60]. Thus

(6.19) P{ sup w'n'?vd(m,h,F) < c/4} -0
weC(c)

as ¢ = oo. Consequently, if ¢ > 0, then for sufficiently large ¢ there exists an n”
such that for n > n”, the probability exceeds 1 — ¢/2 that d(w, h,, F,) <
d(0, h,, F,) = 0 for all w in C(c). Since d(-, g,, F,) is concave and M(W,, g,, F,,)
is nonempty a.a., it follows that for some finite n’ and ¢, if n > n’, then the
probability exceeds 1 — ¢ that ||e,|| = [e,]'Ke,, < ¢. The conclusion of the lemma
follows. O

PROOF OF THEOREM 6.1. Let w, be K~ 'n2vd(m, h, F,). By (6.17), w, -,
N(0, K~'JK~1'). Thus it suffices to prove that e, = n'/?(m, — m) satisfies

(6.20) e, — w, —,0.

As is well known from the theory of least squares, if

(6.21) f(w) =wn?vd(m, h,F,) — wKw/2, wevV,
then

(6.22) fw) = f(w,) = (w - w,)K(w - w,)/2, weV.
Given Lemmas 6.1.3 and 6.1.4 and the previous definitions of g, and A,
(6'23) d(en’ gn’ Fn) - fn(en) _)p 0

and
(624) d(wny 8n> Fn) - fn(wn) _)p 0.
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Since e, € M(W,, g,., F,) a.a,,

(6.25) d(w,, g,, F,) <d(e,, &, F,) aa.

Given (6.21) to (6.25) and the fact that K is positive definite under Condition 7,
it follows that (6.20) holds. O

Given the proof of Theorem 6.1, it is relatively straightforward to prove
Theorem 6.2, which treats cases in which m is not in the interior of W.

THEOREM 6.2. Let Conditions 1,7, 8,9, 15, 17 and 18 hold. Define 2 and H
as in (3.32) to (3.34). Then
(6.26) n**(m, — m) -, N(0,2).

In addition to the lemmas already used in the proof of Theorem 6.1, Lemma
6.2.1 is needed to prove Theorem 6.2.

LeEMMA 6.2.1. Let Condition 17 hold. If w,€ W, t 2 1 and w, - m, then
(6.27) w, — m — H(w, - m) | /llw, — m|| - 0.

PRroOOF. Given the definition of || - | and H, the left-hand side of (6.27) never

exceeds 1. If (6.27) does not hold, then an infinite set T of positive integers, an
element w of D(W, m) and a constant ¢ in (0, 1) exist such that as ¢ in T — oo,

(6.28) lw, = m — H(w, — m)| /llw, - ml| > ¢
and

(6.29) lw, — m|| Y w,— m) > w.
Since H is a linear transformation such that Hw = w,
(6.30) lw, — m||""H(w, — m) - w.

Since (6.29) and (6.30) imply that ¢ is 0, the assumption that (6.27) is not true
leads to a contradiction. O

PrOOF OF THEOREM 6.2. Define
(6.31) v, = Hw,,

where w, is defined as in the proof of Theorem 6.1. By (6.17) and (3.32) to (3.34),
v, = p N, 2). Thus it suffices to show that

(6.32) v, — e, >,0.

As in (6.22),

(6.33)  fu(w) = fu(y) — (w—0)K(w—10,), weD(W,m).
By (6.27) and Lemma 6.14,

(6.34) f-(e,) = f(He,) =, 0.
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By the strong law of large numbers, vd(m, h, E,) - 0 as., so that v,/n'/? - 0
as. By Condition 18, there exist random variables u, in W, such that
e, = v,ll/llv.ll = 0 as. Since v, is asymptotically normal, (6.33) implies that

(6.35) fo(1,) = fu(0,) =, 0.
Given Lemma 6.1.3,
(6.36) fou,) —d(u,, g,, F,) -»,0.

Since d(e,, g,, F,) = d(u,, g,, F,) a.a., Lemma 6.2.1, Lemma 6.1.4 and (6.33) to
(6.36) imply that (6.32) holds. The conclusion of the theorem then follows. O

Minor changes in the proof of Theorem 6.2 lead to Theorem 6.3.

THEOREM 6.3. Let Conditions 1,17, 8,9, 15 and 18 hold. Assume D(W, m) is
closed and convex. Then n'/*(m, — m) converges in distribution to HK 'Z,
where Z has distribution N(0, J).

ProoF. The proof of Theorem 6.2 applies with the change in (6.33) from
equal to less than or equal to. The conclusion of Lemma 6.2.1 remains valid since
H is still continuous and retains the properties H(av) = aHv, a € R, v €V,
and Hv = v, v € D(W, m).O
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