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A REGRESSION TYPE PROBLEM!

By YANNIS G. YATRACOS

Université de Montréal and Columbia University

Let X,,..., X,, be random vectors that take values in a compact set in
RY, d=1,2.Let Y},..., Y, be random variables (the responses) which condi-
tionally on X, = x,,..., X, = x, are independent with densities
f(y|x;, 0(x;)), i = 1,..., n. Assuming that 8 lies in a sup-norm compact space
O of real-valued functions, an L,-consistent estimator (of ) is constructed
via empirical measures. The rate of convergence of the estimator to the true
parameter  depends on Kolmogorov’s entropy of ©.

1. Introduction. It is a well-known fact that L -optimal estimates
(1 < p < ) of a density and a regression function with the same smoothness
converge to the true parameter at the same rate; for example, see Stone (1980,
1982). The following questions arise naturally:

1. Is there an explanation for this coincidence in the rates of convergence?

2. Would the same optimal rates have been observed if, other things being equal,
the regression function were a quantile or another parameter of the condi-
tional density?

These questions provided the motivation for the regression type problem posed
in the next paragraph. The key observation to answer both questions is that a
regression type problem can be viewed as a combination of several density
estimation problems, each occurring at the observed values of the independent
variable.

Let us consider a sample (X, Y)),...,(X,,Y,) where X,,..., X, are %valued
random measurements and Y,...,Y, are the corresponding responses. £ is a
compact set in R¢, d = 1,2. Conditionally on X, = x,,..., X, = x,, the random
variables Y),..., Y, are independent, with a distribution of the same form but
with parameters depending on the measurements x;, i=1,...,n, that is,
Y)\X, =x, ~ f(y|x;,0(x,)), i=1,...,n, where 8 is an element of a sup-norm
compact infinite dimensional space © of real-valued functions on £". Our aim is
to estimate 6 and calculate the rate of convergence of the estimator to the true
parameter in L,-distance.

For the classical regression problem where it is assumed that E(YX; = x,) =
0(x;), consistent estimators have been constructed and rates of convergence have
been calculated by Devroye and Wagner (1980), Ibragimov and Khas’'minskii
(1980) and Stone (1980, 1982) when © is a “smooth” family of functions on a
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compact set in R% d > 1. All these methods use criteria based on weighted sums
of the Y;’s since the regression function 6 is a conditional mean. Here it will not
be assumed that 6(x) is necessarily a conditional mean; consequently 0 will be
called a regression type function. Observing that a regression type problem is
almost a density estimation problem, a minimum distance criterion will be used
for estimating 6 via empirical measures. This approach will allow us to overcome
the difficulty of deciding on the appropriate functional of Y;,..., Y, that should
be used to estimate § when #(x) is an unknown parameter of the conditional
density (not necessarily a mean). An estimate along the lines mentioned above
will also be constructed when © is the family of “smooth” functions in R?,
d = 1,2. However, the method to be proposed applies to other sup-norm compact
spaces of functions (in R?, d = 1,2) using their equicontinuity property. For the
case d > 3, see Remark 3 at the end of the paper.

The rate of convergence (or bound on the risk for sample size n if you prefer)
of the estimator én to the true regression type function § will depend in all cases
on Kolmogorov’s entropy of © as in the density estimation problem [Yatracos
(1985)]; the definition of the entropy is given at the end of Section 2. This rate is
the same as that obtained by Ibragimov and Khas’minskii (1980) and Stone
(1980, 1982) when Z is a compact subset of R or R%? and when attention is
restricted to the “smooth” family ® they consider, even though 8(x) in our case
is not a conditional mean. Furthermore, it is optimal, as follows, by a comparison
with lower bounds on minimax risks for regression type problems [see Yatracos
(1988)]. The optimality is mainly due to Assumption Al [see item 1 below and
Section 2], the entropy of ©® and the local behavior of the Kullback information
of the conditional measures, and does not depend at all on the nature of the
parameter 0(x) in the conditional density. The calculation of the upper bound
on the risk will be carried out on the basis of the following assumptions:

1. The total variation (that is, the L,-) distance of the conditional densities
| £ 1%, 8(x)) — f(-|x, 8(x))| is of the order of |8(x) — §(x)| for all (8, ) € B2,
x € %. (In the L, -distance, integration is carried out with respect to the
variable that is denoted as - .)

2. The density f(y|x, (x)) is of known form.
3. The observed values x,,...,x, of the independent variable are sufficiently
dense in &

These assumptions are not very restrictive. Assumption 1 is satisfied in most
cases, as the examples in Section 2 show. Assumption 2 is not needed for the
construction of an estimate when it is known that the regression type function is
a conditional mean. This is clear in Stone’s (1982) paper, although one should
know the form of the conditional density in order to check one of his conditions,
namely, the condition that f(y|x, ¢) has a number of derivatives with respect to
t. It is easy to see that the construction of the proposed estimate of § can be
carried out and its optimality holds even if the form of the conditional density is
changing with x, provided its functional form is always known. Assumption 3 is
satisfied in many situations and has already been used extensively in the
literature; it is necessary to obtain uniform bounds on risks.
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Interesting results on related problems have been obtained by Cox and
O’Sullivan (1985) and Severini and Wong (1987). The reader may consult
Devroye and Gyorfi (1985) and Devroye (1987) for the use of the L,-distance and
related results in density estimation problems. For a general theory of estimation
in abstract parameter spaces, the reader may refer to Le Cam (1986).

2. Notation, definitions, the setup. We will describe the idea for our
approach in a general framework. Let (%, #), (%,, %,), x € %, be spaces with
their o-fields and let € be a compact set in R¢ (d =1,2). © is a family of
real-valued functions defined on %, compact in sup-norm || ||, on C(%).
Let M= (P, 4,; 0€0, x€Z} be a family of probability measures on
(B, x € X} dominated by a o-finite measure p. In P, 4, the subscript x
will be dropped for notational convenience. Let Y,,...,Y, be independent
random variables under Py, ), i = 1,..., n, let f(y|x;, 0(x;)) be the corresponding
densities and let P;' denote the product measure Py, X -+ X Fy, , on
(F X XY , B, X X%H, ) An estimator for 8 will be provided when
the form of F,, is known.

In the case of a sample of size n, having limited “information,” § cannot
be estimated perfectly. Since © 1is | ||, compact, we can consider
an a,| ||,,-dense subset ©, of it (a discretization of ©) and choose an element 0:,
of ®, as an estimator of 6. Note that at each point x; we have a density
estimation problem. This formulation and the treatment of the density estima-
tion problem presented in Yatracos (1985) suggest the use of empirical measures
for the solution of the regression type problem. So, instead of using a minimum
distance criterion for choosing a density fy,, at the point x; (the density
estimation problem), we use a global criterion, involving densities at all the
points x,,...,x, that will allow us to choose 6. Continuity of the regression
function and condition A3 (see below), which ensures that the observed values
Xy,..., X, of the independent variable are sufficiently dense in £, will allow us to
construct an estimator which is satisfactory globally.

DEFINITION. For any two functions 8 and § on % their L,(dx)-distance and
sup-norm distance are given, respectively, by

0 — 6| = j;]ﬂ(x) —§(x)|dx and |’|0 -0, = sup{l()(x) —4(x)];x € 3[}.

The assumptions to be used in this paper are listed below. It should be
observed, however, that contrary to what is usually done, here it will not be
assumed that

f@yf(ylx, tn(dy) = ¢.

Neither will an assumption be made on the existence of derivatives of f(y|x, t)
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with respect to ¢ or x. Instead, it is only assumed that:

Al. Cj|t = s| < || f(-|x, t) — f(-|x, 8)|| < Cy|t — s|, where C,, C, are constants in-
dependent of x and || | is the L,(p) norm. Al may be briefly expressed by
writing

1FC1x, ) = £(1x, 8) || ~ 12— s].
A2. The form of the conditional density f( y|x, 8(x)) is known.
A3. For every A € (0,1/d), d = 1,2, there exists a ¢ > 0 such that
: lim Q"(C, 42) =1,
n— oo

where

Cpanr= {(Xl,..., X,): #{i:|X,— x| <n*} > en' Mforallx € [O,I]d}

and Q" is the distribution of (X,,..., X,,).

REMARK. Assumption A3 is nonvacuous and has been used before in the
literature; see, for example, Stone [(1982), Condition 3, page 1043].

Assumption Al is satisfied in the examples that follow. Proofs are given in the
Appendix for the normal and the binomial examples.

ExXaAMPLE 1. Normal model. Let

f(ylx, 0(x), 0(x)) = (27) " *(o(x)) "exp{ - (¥ — 8(x))"/20%(x) },

where p is the Lebesgue measure. If we are interested in 6(x) and o(x) is
bounded away from 0 and infinity on %, then

[£(-1x, 8(x), o(x)) = f(-|x,0,0(x)) | ~[6(x)],
where the elements of O take values in [ —a, a] for all x. If we are interested in

the standard deviation and if the elements of O (i.e., the standard deviations) are
bounded away from 0 and infinity uniformly for all x, then

I1£(-1x, 8(x), o(x)) = f(-|x, 8(x), 6(x)) || ~|o(x) — &(x)].
If o(x) is known, then the model fits into the framework with functional
parameter 6(x) and similarly for o(x), if 8(x) is known. If o(x) is unknown, then
Remark 1 in Section 3 shows that the result still applies to the estimation of 4.

ExXAMPLE 2. Exponential model. Let f(y|t) = te”*” where p is the Lebesgue
measure on [0, 0] and ¢ € [a, b] C (0, ), the elements of ® taking values in
[a, b] for all x in &.

ExaMPLE 3. Poisson model. Let f(y|t) = t%e~!/y!, where p is the counting
measure on the nonnegative integers, ¢ € [a, b] C (0, ).

ExXAMPLE 4. Geometric model. Let f(y|t) = (1/(1 + t))(t/(1 + t))?, where p
is the counting measure on the nonnegative integers, ¢ € [a, b] C (0, ).
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EXAMPLE 5. Binomial model. Let f(y|t) = [V )t?(1 — t)¥~” where p is the
y

counting measure on the nonnegative integers, t € [a, b] C (0, 1), the elements
of © taking values in [a, b] for all x in Z.

EXAMPLE 6. Uniform (0, 8) model. Let f(y|t) =t', 0 <y < t, where p is
the Lebesgue measure on [0, ), ¢t € [a, b] C (0, ), the elements of ® taking
values in [a, b] for all x in Z.

ExampLE 7. Let f(y|t) =e'?, t <y, where p is the Lebesgue measure
on [0, ), t € [a, b] C (0, ), the elements of © taking values in [a, b] for all x
in .

DEFINITION. A sequence of estimators {0;(Y1,..., Y,)} is uniformly consis-
tent for 8 with rate of convergence §, with respect to a distance d if for every
n > 0 there exists b(n) > 0 such that

sup{Pp[(Yy,..., Y,): d(6,,0) > b(n) - 8,]; 6 € ©} <

for every n > 1.

Hoeffding’s inequality (1963). Let X,..., X, be independent random vari-
ables such that 0 < X, <1, Jj=1,...,n Let § =Y ,X;, ES, = np. Assume
that p < 0.5. Then

P[S,>np + k] < exp{ —k%*/2(np + k)}
and
P[S, < np — k] < exp{ —k?/2np(1 - p)}.

The space of smooth functions ©, ; to be considered in the sequel is the
collection of p-times differentiable functions in [0, 1}¢, d = 1,2, uniformly
bounded in sup-norm with the pth derivative satisfying a Lipschitz condition
with parameters (L, a), ¢ =p + a,0<p,0 < a < 1[ie, |§P(x) — 0P (y)| <
Lix — y|® for every 0 in O, 4; 6‘P)(x) is any pth order mixed partial derivative
of 8 at x]. ®, ; is sup-norm totally bounded and Kolmogorov and Tikhomirov
(1959) have shown that the most economical a,-dense subset of it, ©, , ,, has
cardinality

N, a(a,) - 20/

The function log, N, 4(8), B > 0, is called Kolmogorov’s entropy of the space
©, 4 Note that to avoid complicating the notation more we use 6, 4,0, , 4,
omitting L. A partition of [0,1]%, d = 1,2, will be considered by rectangles S;,
i=1,..., b9 with side length b,.

3. Construction of estimates, rates of convergence.

THEOREM. Let (X, Y,),...,(X,,Y,) be a sample, where Q" is the joint
distribution of X,, X,,..., X, (on [0,1]%, d = 1,2), 0 is an element of ©, , and
Y| X; = x; ~ Py, If assumptions A1-A3 are satisfied, uniformly consistent
estimates én of 6 can be constructed with rate of convergence a,, (in L,-distance)
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such that
= ((log Nq,d(a,,))/n)l/z = n—q/(2q+d)’ d=1,2.

Proor. Fix a, > 0 (to be determined later in order to get the best conver-

gence rate) Let (E)n 2a bean a, —| ||°°~dense subset of O, ;, with elements
o, N, 4(a,). [In the sequel ..a(a,) = N(a,).] Given that X, =
xl,..., X,, =xn, let

A, = {y: fl)i"x—”(y)> %(y)}, i=1,...,n,1<k<l<N(a,),
"o dp dp

which can be defined by A2.
The estimate 0 is defined by

sup{ é(IAk LX) = Py (A, ,))'; l<k<l< N(a,,)}

This is a minimum distance type estimate. Note also that minimum distance
estimates are maximum likelihood type estimates [Beran (1977)]. Further insight
is provided in the second paragraph of Section 2.

Note also that for the L,-distance,

18s.ce = Poyao| = 2(Pof(Ar, m, ) = Po(Ar, m,0))-
Let 6,, be the closest element of ©, , ; to 6. Then it follows that

f|o‘,,(x) ~6(x)|dx < a,+ [|a‘(x) ~ 0,(x)|dx

n
_E IAM_,-(Yi) - P0,,,(x,)(Ak,l,i))‘; l1<k<lc< N(an)};

l<mx< N(an)}.

(1)
<a,+ z/|a(x) 6,(x)| dx.
i=1
For any x in the rectangle S;, make a first degree Taylor expansion of én(x) and
6,,(x) around the point w; at the upper right corner of S; (the expansion could be
made at any other point in S;). Then for every x € S,
2 |6,(x) = 6,(x)| < Cb, +]6,(w;) — 6,(w))].

Recall that S; is a rectangle with side length b,. When 8 satisfies a Lipschitz
condition with parameters (L, a) but is not differentiable, (2) holds with Cb?
replacing Cb,. This is also the case in relations (3), (4) and (7) below. In (8), b,
should be replaced by bZ.

Note that in the sequel, all constants will be denoted by C. From (1) and (2)
one has

b d

(3) [16,(x) - 8(x)|dx < a, + Cb, +bdz|a(w) 6,(w;)|-
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We will now bound the last term in (3) using the observations x = (x,,..., x,)
conditionally on the fact that x is in C, , , (described in A3) with b, = n=*. Let
N; be the number of coordinates of x in S;. From A3, and on the event C, dn
one has cn! “*¥ < N.. For every x;in S, it then follows that

|0n(wi - 0m(wi)| = n(xj) - m(xj)|

or
Mlén(wl) - 0m(wz)| < Clvlbn +

n(x) 6 (xj)l

xE

or

b b ¢
enl MY Ién(wi) _ 0m(wi)| <Y M|§n(wi) - 0,,,(w,~)|
i=1 i=1

bd

< Cb, ZN+ Z| — 0,(x;))-

Jj=

Dividing both sides of the last expression by cn we get

b ¢ n
(4) b;;lz Ion(wt) - 0(wl)| =< Cbn + Cn_l Z lon(xj) - am(xj)"
i=1 j=1

Working on the last term of (4) we have, using Al twice and the relation
determining the estimator 0 (in the same way as for classical minimum distance
estimators),

n Y |6.(x;) = 6,(x,)]
Jj=1
Cn™' Y "Pén(xj) - P0,,.(x,~)"
j=1

< Cn_lsup{

Z (Pén(xj)(Ak,l,j) - IAk,l,j(Y})) ; 1 < k < l < N(an)}
j=1

Y (Poep(Ans i) — I, , ()

J=1

+ Cn~'sup ;1<k<l<N(a
(5) n

<C2n7! sup{

i (Pﬂ,n(x])(Ak L 1) 1, (Y)) l<k<lIc< N(an)}

<Ca, + Cn“sup{

.Zl (Po(xj)(Ak’lr j) - IAk.l’j(Yj)) ;
Jj=

lsk<lsN(an)}.
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A bound in probability will be derived for the random variable appearing in
the last expression using Hoeffding’s inequality as in Yatracos [(1985), (2) of
Theorem 1, page 770].

One then has

b o] | £ (Pu(11) = T ()| 1 54 <15 Ma) | 2 mn]
©)
< 2N%*(a,)exp{ —nmZ/(2m, + 1)}.
Choosing

m,, = (10(log N(a,))/n)""”

the right-hand side of (6) tends to 0.
From (3)-(6) and the choice of m,, one has with probability tending to 1, that

() J18.(x) = 6(x)|dx < C(a, + b, + ((10g N(a,))/n)""*).

Thus, given x € C, ; ,, an upper bound in (7) is obtained by choosing a, and b,
such that

(8) a, = b, = ((log N(a,))/n)"? = n~/Ca+d  g=1,2.
Finally,
Prob|||d, - 0] > Ca,]
= Eq: Py 116, = 01l > Ca,JX = x]I(x € C, 4,4/29+4)
+ EQ"I:’0n[”0An - 0” > Can'x = X] I(X € Crgd,q/2q+d)
-0
as n tends to infinity by means of (7) and A3. O

REMARK 1. We may allow the densities to be of the form f(y|x, 8(x), v(x))
if the sets

{7 f(5ix, 0,(x), v(x)) > f(51x, 6,(x), v(x))]

do not depend on v(x) [as in the normal model when v(x) = o(x)]; (6) still
remains valid.

REMARK 2. Under the assumptions of the theorem, the rate of convergence
is achieved in all the examples of Section 2 with densities depending on x and
0(x), the other parameters being known. The same is true for the example of
normal densities when our interest lies in the mean function 8(x) since the sets
A, ;. ; do not depend on the standard deviations o(x;). These rates are not
optimal for Examples 6 and 7 [see Yatracos (1988), Corollary 2, the examples
after Corollary 3 and Remark 2 at the end of the paper].
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REMARK 3. One could use the proposed estimate when & is a compact
subset in R, d > 3, but its rate of convergence to the true parameter 8 (in
L,-distance) is not optimal. The optimality of the estimates of Ibragimov and
Khas’minskii (1980) and Stone (1980, 1982) (for the classical regression problem,
when d > 3) and the results of Yatracos (1988) (on lower bounds on the error
when estimating a regression type function) lead us to conjecture that a refine-
ment of the proposed estimate would result in optimal convergence rates (when
d > 3).

APPENDIX

Normal model (Example 1). For 8(x) > 0, o(x) bounded away from 0 and
infinity on &,

” f(y'x’ 0(x)’ o(x)) - f(ylx’O’ o(x))||
0(x) —0(x) f(x)
= 2,:(D(m) - ‘I)( 2o(x) )] = 2;(x—)¢(c) g 0(x)
for © with elements taking values in [—a, a] for all x,0 < ¢ < 8(x), ® = ¢, ®

being the c.d.f. of N(0,1).
If we are interested in the standard deviations, for o(x) > o’(x),

” f(ylx: 0(x)’ o(x)) - f(ylx’ o(x)’ o'(x)) ”
_ 4/2 (o(x) — 0'(x))"*(log o(x) — log o’(x))""? '
(o(x) + o'(x))"*
V2o'(x) [log o(x) —loga'(x) ]1/2
(o(x) +0'(x))"*|  o(x) —o'(x)
V2o(x) [log o(x) —loga'(x) ]1/2.

S @ — @)L e@) - o(®)

Using the inequality (z — 1)/z <logz <z — 1 (for 2 > 0) we can bound ¢
such that

é(c),

V26'(x) V2a(x)

=5 o) + () P ()

(o(x) +0'(x))0(x)"* =~

If the elements of O (i.e., the standard deviations) are bounded away from 0 and
infinity uniformly for all x, then

(512, 6(x), o(x)) = f(5lx, 0(x), 0"(x)) || ~|o(x) — o (x)].
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Binomial model (Example 5). For §’ := 0'(x) > 0(x) =: 0, let

[ Nlogl(1 - 8)/(1 - 0)]
L(6,0) = [log[ﬂ(l ~6Y,/6(1 - 0)] } <N

Then
L(8,6) N
I(1000) = f0 Nl = X (§)lora - 0" * - gk - o)™ 4],

The right-hand side of the last relation is greater than
1-0O)"-@a-0)"=(0-0)Na - )" !

and consequently greater than or equal to C; (8" — 6), 6 < ¢ < ’. It can also
be written as

L(6,0") N
Py ()(er[a-o)¥*— -89 - (1 - 0) " * (8 - %))
L6,6%)
< N\jgripr _ _ N
< T (F)ere - -ma-c)
L(6,6") N-1 / 0 k
< X R _0)(min{ck})

x (min{c,})*(1 — min{c,})" "

< N(¢'-9)

since 8 < ¢, < 0’ for all k.
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