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ESTIMATION IN SOME COUNTING PROCESS MODELS WITH
MULTIPLICATIVE STRUCTURE!

BY AKE SVENSSON
University of Stockholm

It is assumed that we observe one realization of an r-dimensional
counting process with intensities that are products of a predictable weight
process, a common function of time and parameters B,, i = 1,..., r, which
distinguish the components. Provided the realization observed brings increas-
ing information on B as the observed time grows, strong consistency of a
partial ML estimator is proved. For such realizations it is also proved that
the estimate, after applying a random normalization, is asymptotically stan-
dard normal.

1. Introduction. We will consider an r-dimensional counting process (r > 2),

N(t) = (N(2),..., N(¢)),
defined on a probability space (2, &/, P) and adapted to the filtration 2/,
t € [0, o[. The components, N, are integer-valued, right-continuous functions
with jumps of size 1 only. Two components can not jump at the same time, and
N,(0) =0, i=1,..., r. The basic assumption is that the process has an intensity

A(E) = (M), 0, A, (8))

of the form
(1.1) Ai(2) = exp{B;} a(2)Y;(2),

i=1,...,r. The weight processes Y, are predictable (relative to the filtration
&,) and nonnegative. The function « is an unknown nuisance parameter. The
parameters fB,,..., 8, describe the proportionality between the intensities of the
component processes. We will use the arbitrary normalization 8, = 0 and write
B=(By--sB_1)

Our aim is to estimate 8 when one realization of N is observed during a long
period of time. If new information is added as time goes on it should be possible
to obtain reasonable estimates. In this paper we will verify this belief and give
asymptotic results for one particular estimator.

The model has the structure of a Cox regression model [cf. Cox (1972)].
Andersen and Gill (1982) studied a situation where many independent realiza-
tions of a process were observed during a bounded time interval and Pons and
Turckheim (1987) studied a Cox periodic regression model where the function a
was periodic with period 1 and one realization was observed during a long period
of time. In these two cases it is reasonable to try to estimate both the parameter
B and the underlying cumulative intensity [j‘a(¢) d¢. Here we will only consider
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1502 A. SVENSSON

estimates of B. It turns out that the asymptotic behaviour of the estimate is
different and that other kind of limit theorems are needed in the proofs. Both
Andersen and Gill (1982) and Pons and de Turckheim (1987) used a more general
form for the intensities than the one defined by (1.1).

2. Estimation of B. Assume that we have observed the process N and the
weight process Y up till time ¢ = u. Following Cox (1972) and Andersen and Gill
(1982), we will use a partial ML estimate, i.e., we will estimate 8 with the value
of y that.maximizes the function

@) Hew) = Ex) - [ el v(0) a¥0)

where y, = 0 and N(t) = LN(¢). This estimate is denoted by B(u). [Observe
that dN(¢) # 0 implies that Y exp{y;}Y,(t) # 0 with probability 1 and that (2.1)
is well defined.]

The estimate will solve the equations

22)  Gi(y,u) = 9H(y,u)/3v,= N(u) - /O”pxy, t) dN(t) = 0,

i=1,...,r — 1, where

p1.0) = ) (0 || Eexp() 0.
1
The r’ = (r — 1)-dimensional vector

G(,B, u) = (Gl(:B’ u)""» Gr'(:B» u))
is a martingale with the predictable quadratic variation
W(B,u) = [TI(B, X(t) dt,
where A(t) = TA,(¢) and TI(B, t) is the r' X r’ matrix with elements
I0,,(B,t) = dp(B, t) /9B, = 8/p,(B, t) — p(B, t)pi(B, t).

In the asymptotic expressions it will be convenient to replace W(S, u) with an
r’ X r’ matrix S(B, u), which does not involve the nuisance parameter a,

S(B,u) = j()"n(,e, t) dN(t).

We will also need the optional quadratic variation U(B, u), which is a r’ X r’
matrix with elements

(8 u) = 3 [(5! - pi(B,0)(0 = p,(8, ) aNi()

2.1. Consistency. In order to find consistent estimates of 8 based on one
realization of the process it is necessary that the realization adds new informa-
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tion as u increases. This will, of course, not always be the case. If, e.g., the weight
process equals 0 from a finite time and onward we will only observe a finite
number of jumps. Since information on 8 can only be obtained when the process
jumps we cannot, in this case, expect to obtain consistent estimates. We will
consider a subset F of  on which the realizations carry sufficiently much new
information as u increases. We will make conditions that guarantee that the
number of jumps grows large asymptotically and that we can use the informa-
tion to distinguish between the components of the 8 parameter. Let F € &/ be a
set on which

() [EN(t)dt - o0 as u - oo, and _
(ii) the smallest eigenvalue » of W(B, u)/ [,’A(t) dt is bounded away from 0
for large u-values.

LEmMa 2.1. S(B, u)W-XB,u) » I, S(B, w)U (B, u) » I and
W(B, w)U (B, u) » I a.s. on F.

PROOF. If the norm of a matrix A is defined on ||A|| = sup,_;|Ax’|, then

IS(8, w)W='(B, u) — I| <»*|IS(B, u) - W(B, u)ll/fo A(t) dt.
The (Z, j)th element of S(B, u) — W(B, u) equals
Rij(u) = ["T1,,(8, u)(dN(2) - X(¢) de)
and is a martingale with predictable quadratic variation

Lun?j(ﬁ, t)A(t) dt < /;”X(t) dt.

Using Theorem 4.2, we see that R, (u)/[;*A(¢) dt — 0 as. on F. Thus

I5(8,u) - (B, W)/ [Ny dt 0

and S(B, u)W Y(B,u) > I as.on F.

It is easy to verify that U, (8, u) — S;(B, w), i, j = 1,..., r’, are martingales
with predictable quadratic variations which are majorized by [;*A(¢) d¢. Thus
U(B, u) — S(B, )|/ [ A(¢) dt = 0 as. on F. Using the same argument as above,
it follows that also S(B8, u)U ™8, u) and consequently W(B, u)U B, u) tend

tol as.on F.O

LEMMA 2.2. For any ¢ > 0 and almost all realizations in F there exist a
p >0 and a u, < o such that ||S(y,u)S™ (B, u)—I||<eif |y— Bl <p and
u > u,.
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Proor. If Y. (£)Y«(¢t) # 0 and max|y, — B,| = 8 it is easy to verify that
exp{ —48} < pl(Y? t)p]('}’, t)/(pz(ﬁ) t)pj(By t))

~en(n= f.+ v~ ) éexp{ﬂkmmf/ |Lesnvico)

< exp{48}.

If Y(2)Y,(t) = 0, then either p,(y, t) = 0 or Ppi(v, t) = 0 for all values of y. This
implies that for any n > 0 there exists a p > 0 such that

(2.3) IHij(Y» t) - IT,,(8, t)| Sn|Hij(:B»t)|

for i, j=1,...,r if |y — Bl <p and i # j. That (2.3) holds also when i =j
follows from the fact that I1,(y, ¢) = (Y, L .;pi(v, t).
Using (2.3), we conclude that

|S:/(v, u) = S,;(8, u)| < /(;ulnij(% t) — I1,;;(B, t)| dN(¢)

< nf()ulﬂij(ﬂ, t)ldﬁ(t) = nlsij(ﬁ’ t)l,
since II, (B, t) has the same sign for all ¢. Then
IS(v,t) — S(B, t)”2 = Z(Sij(% t) - S;;(8, t))2 < "12ZSi2,'(B, t)
171

172

< ro*max ) S%(B, t) < ro?|S(B, t)|".
L

From Lemma 2.1 it follows that for almost all realizations in F there exists a u,
such that

IS8, )l < @+ DIWB, )] < (1 +n) [K(e) at

and

Is7 (Bl < 0= m 1w (8,0 < (=) (5 K(orat]
if u > u,. For these realizations
ISCr, w878, w) = 1] <18(r, ) - S8, w) S8, )|
< VPS8, )] 158, w)]

<Vra(1 +1)/(»(1 - n))

if |y — B] < p and u > u,. We can choose 7 such that ¢ = Vral + 1)/(¥(1 = 7)).
This proves the lemma. O

THEOREM 2.3. ﬁ(u) - a.s.onF.
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Proor. The martingale G,(8, u) has the predictable quadratic variation

WiB,u) = [TLi(B, w)N(e) dt < LX) a.

It follows from Theorem 4.2 that G,(B,u)/[iA(¢)dt - 0 as. on F. Thus
G(B, u)W~Y(B,u) = 0 as. on F. By Lemma 2.1 also G(8, u)S~ (B, u) - 0 as.
on F. A Taylor expansion yields

G(y,u)STH (B, u)(v — B) = G(B,u)S™'(B, u)(vy = BY

= (v = B)S(v*, u)S™H(B, u)(vy - BY

for some y* such that |y* — B| < |y — B]. Combining this with Lemma 2.2, we
find that on F if p is small and u is large G(y, u)S™XB, u)(y — B) < 0 for all
|y — B] = p. According to Theorem 4.1 the equation G(y, u)S™Y(8, u) = 0 and
thus G(v, u) = 0 then has a solution in the set |y — 8| < p. O

After combining Lemma 2.2 and Theorem 2.3 we obtain the following lemma.
LEMMA 2.4. S(B(w), u)S™YB,u) » I a.s. on F.
2.2. Asymptotic distribution of ,é(u). We have the following theorem.

THEOREM 2.5. Assume that there exists an s/;measurable scalar function
b(u), a positive definite matrix D and an sf-measurable random matrix ¥ such
that

(i) b(u) = oo,
(ii) U(B, u)/b(u) — ¥ in probability and
(iii) EU(B, u)/b(u) - D

as u — oo, then (B(u) — B)SV%(B(u), u) is asymptotically N(0, I)-distributed
conditionally on F N {¥ > 0}.

Proor. We start by applying Theorem 4.3 to the r’-dimensional martingale
G(B, - ). Since |AG(B, u)| < 1 for all u all conditions of the theorem are satisfied.
Thus G(B, u)U~V*(B, u) is asymptotically N(0, I)-distributed conditionally on
the event F N {¥ > 0}. Using Lemma 2.1, we see that the same is true for
G(B, )W~ *(B, u) and G(B, u)S™V*B, u). R

The next step of the proof is to show that (B(u)— B8)SV*(B,u) and
G(B, u)S™'*(B, u) are symptotically equivalent on F. A Taylor expansion
yields for any @ € R

0= G(B(u),u)S™*(B, u)a’
= G(B,u)S™V*(B, u)a’
—(B(u) = B)SY*(B, u)(S(v#, u)S~(B, u))a,
where |y} — B| < 1B(u) - B|. Since B(u) —» B on F it follows from Lemma
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2.2 that S(vz*, u)S™%(B,u)— 1 as u— oo. Thus G(B,u)S™"/*(B,u)a’ and
(B(u) — B)SY*(B, u)a’ are asymptotically equivalent on F for all a € R”. This
implies the desired result. By Lemma 2.4 (B(u) — B)S%(8(u), u) is asymptoti-
cally equivalent to these two variables on F. The theorem is thus proved. O

3. Examples. As a first example we will consider a system of n particles
that moves between two states (A and B) independently of each other. The
intensity for a jump from state A to state B (B to A) at time ¢ is assumed to be
p,0(t) [p,0(t)]. Here the unknown nuisance parameter § describes a common
jump proneness that depends on time. Let N,(t) [ Ny(¢)] denote the number of
jumps from A to B (B to A) up till time ¢. If the system starts at ¢ = 0 with n,
particles in state A and ny particles in state B, then just before time ¢ there are
F(t) = n, + Nyt —) — Ny(t — ) particles in state A. Now N(t) = (N,(%), Ny(t))
is a two-dimensional counting process with intensities A,(¢) = exp {B}a(¢)F(¢t)
and A,(t) = a(t)(n — F(t)), where B = In(p,/p,) and a(t) = p,0(t).

We can now use the results obtained to study the behaviour of the estimate
B(u) that solves the equation

Nu) = [ “exp{B}F(t)/(exp{B}F(t) + n — F(t)) dN(¢).

Let 7, 7,... be the successive jump times of the process. Then
(F(0), F(1)), F(7y),...) is a time-homogeneous Markov chain with state space
(0,1,..., n). The estimate of B and its asymptotic properties will depend on this
embedded chain. If [fa(¢) dt - o as u — oo, then

foux(t)dtz (exp{B} A 1)nf0ua(t)dt S oo

and N(u)/[#A(t)dt > 1 as. as u — oo (cf. Theorem 4.2). The chain will thus
asymptotically have infinitely many jumps. The embedded chain will have a
stationary distribution given by the positive probabilities g;, f =0,...,n. It
follows from standard ergodic theory that

S(B,u)/N(u)

(3.1) - fi exp{,B}f(n—f)(exp{,B}f+n—f)_2g,=Dl>O
=0

a.s. as u — oo. This implies (by an argument analogous to the one used in the
proof of Lemma 2.1) that W(B, u)/[#\(t) dt is bounded away from 0 for large
u-values with probability 1. By Theorem 2.3, f(u) - B as. as u - . Next
consider the martingale T(u) = [ dN(t)/P(t) — [;‘a(t) dt, where P(t) =
exp{B}F(¢t) + n — F(t). Since the predictable quadratic variation of T is ma-
jorized by (exp{B} A 1)"YJa(t) dt/n it follows from Theorem 4.2 that
T(u)/ [ya(t) dt = 0 and

(3.2) ( jo"dﬁ(t)/P(t)) / fo “a(t) dt - 1
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a.s. as u — 00. Using the same ergodic theory, we also find

n

| [a¥(0/p0) [Fw) = £ @(s)i+n=1) g~ 0,20

f=0

a.s. as u = oo. Together with (3.1) and (3.2) this implies that

S(8, u)/fua(t) dt >D=D,/D,> 0
0

as. as u — oo. According to Lemma 2.1 also U(B, u)/[fa(t) dt and
W(B, u)/[Ja(t) dt tend to D a.s. By dominated convergence

EW(ﬁ,u)//O"a(t) dt = EU(,B,u)/fOua(t)dt - D.

Using b(u) = [ya(t) dt in Theorem 2.5, we conclude that ( B(u) —
B)SY%(B(u), u) is asymptotically N(0, 1)-distributed.

In the second example we will omit a detailed proof. Consider a two-dimen-
sional counting process N(t) = (N(2), Ny(t)) with intensities A (t) =
exp{Bla(t)F(t) and Ay (¢) = a()F(t), where F(t) =1+ Ny(t—) — Nyt —).
This is a birth-and-death process starting with one individual at time £ = 0 and
developing with proportional birth-and-death intensities. The number of individ-
uals living just before time ¢ equals F(¢). The estimate B(u) = In(V,(u)/Ny(uw)).
The set F can be chosen as the set of nonextinction, i.e., the set of realizations
for which F(u) —» o as u — . F will not be the complete sample space
Q, since there is always a positive probability of extinction. If a(f) > a >
0 for all ¢t and B > 0, then the set F will have positive probability. Using
known theory for the asymptotic behaviour of birth-and-death processes,
the conditions of Theorem 2.5 can be verified. The conclusion is that
(Ny(u)Ny(w))/(Ny(u) + Ny(u))/*(B(u) — B) is asymptotically N(0,1)-distrib-
uted conditionally on the set of nonextinction.

4. Some auxiliary theorems. In this section some of the results used above
are stated.

THEOREM 4.1. Let f(y) be a continuous function from R™ to R" such that
f(¥)(y — BY <O for all y such that |y — B| = p. Then there exists a ¥ such that
I¥ — Bl <p and f(¥) = 0.

ProoOF. A proof of this result can be found in Aitchison and Silvey (1958). O

THEOREM 4.2. Let M(u) be a scalar local square integrable martingale
and let A(u) be any process such that A(u) = (M(u))(u) for all u. Then
M(u)/A(u) = 0 a.s. on the set lim A(u) = .
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Proor. From Lepingle (1978) it follows that M(u) has a finite limit if
(M )() < oo and that M(u)/{M)(u) — 0 a.s. on the set (M )(u) = co. These
two results combined prove the theorem. O

THEOREM 4.3. Let M(u) be a k-dimensional square integrable martingale
on (2, «, P) and let b(u) be a scalar /;-measurable function such that

(1) b(u) — oo,

(ii) sup, . ,|AM(t)|/b"*(u) — 0,
(iii) [M1(u)/b(u) - ¥ in probability and
(iv) E[M](u)/b(u) » D

as u — oo, where D is a positive definite matrix and ¥ is an <measurable
random matrix, then M(u)/b**(u) converges stably to Z*. The characteristic
function of Z* equals Eexp{—sW¥s’/2}. M(u)[M] Y*(u) is asymptotically
N(0, I)-distributed conditionally on F N {¥ > 0} if F € «.

ProOOF. For a proof of this theorem we refer to Hutton and Nelson (1984,
1986) [cf. also Feigin (1985)]. O
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