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A FIXED POINT CHARACTERIZATION FOR BIAS OF
AUTOREGRESSIVE ESTIMATORS

BY ROBERT A. STINE AND PAUL SHAMAN

University of Pennsylvania

Least squares estimators of the coefficients of an autoregression of
known, finite order are biased to order 1/T, where T is the sample length,
unless the observed time series is generated by a unique model for that order.
The coefficients of this special model are the fixed point of a linear mapping
defined by the bias of the least squares estimator. Separate results are given
for models with known mean and unknown mean. The “fixed point models”
for different orders of autoregression are least squares approximations to an
infinite-order autoregression which is unique but for arbitrary scaling. Ex-
plicit expressions are given for the coefficients of the fixed point models at
each order. The autocorrelation function and spectral density of the underly-
ing infinite-order process are also presented. Numerical calculations suggest
similar properties hold for Yule-Walker estimators. Implications for boot-
strapping autoregressive models are discussed.

1. Introduction. The effect of bias on least squares estimators in autore-
gressions has often been studied, but seldom fully understood. The bias expres-
sions of Bhansali (1981) and Tjestheim and Paulsen (1983) are sufficiently
complex that one cannot tell, for example, if bias is moving the estimated model
closer to nonstationarity. Shaman and Stine (1988) recently showed that the bias
of least squares estimators for models of known, finite order is a linear function
of the unknown model coefficients, to order 1/7T. We employ a matrix represen-
tation of the bias to develop our results, which are illustrated by the following
example. If &), a, and a; are the coefficients of an autoregressive model of order
3 with known mean, then the bias to order 1/7 of the least squares estimator is
(—a, — ag,1 — 3ay, —4a3)/T. Only the autoregressive model with coefficients
(0, 3,0) has no bias to this order of approximation. This simple example general-
izes to autoregressive models of any known, finite order. In fact, the finite-order
models for which least squares estimation is unbiased are projections of an
infinite-order process that is unique up to scale.

The coefficient vector of each of these projections is the fixed point of the
linear mapping defined by the bias approximation. If the time series used in
estimation is not generated by this unique model, then the bias of least squares
pulls the estimator closer to its coefficients. The fixed point coefficients may
define a model whose roots are closer to the region of nonstationarity. Thus the
tendency for bias to shrink the least squares coefficient estimator toward 0 in a
first-order model with known mean does not extend to higher-order models.

The following section presents notation, estimators and the linear bias map-
ping. Section 3 summarizes the results, with the proofs in Section 4. The

Received March 1988; revised October 1988.

AMS 1980 subject classification. Primary 62M10.

Key words and phrases. Autoregressive process, least squares estimator, bias, fixed point,
contraction, Durbin-Levinson recursion, Yule-Walker estimator.

1275

[ ,4’2

\% &')

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[& )z
The Annals of Statistics. MIKOIE ®

WWWw.jstor.org



1276 R. A. STINE AND P. SHAMAN

discussion of Section 5 describes the effect on Yule-Walker estimators and
implications for bootstrap methods.

2. The bias of least squares estimators. Let {y,) be a discrete time
autoregression of known, finite order p,

p
(2.1) Ya,(yj—pm)=¢, .t=--,-2,-1,0,1,2,...,

j=0
where p = E(y,) and a,, = 1. Observations from this process are denoted y =
(¥ +++, ¥7) and the vector of coefficients is a, = (ay,, Q... y,). The error
terms {e,} are iid with mean 0 and variance o® The zeros of L?_a;,z”~/ lie
strictly inside the unit circle so that the process {1} is stationary.

The least squares estimator is the solution of an approximation to the
Yule-Walker equations. When p is known, the covariance estimators are

T
ci= X (Gi=w)(y,-w)/(T-p), ij=0,1,..,p.

t=p+1

Let C, be the p X p matrix with elements {¢.jp 1, 7 =1,2,..., p} and define
¢, = (Cop) Cogs - -5 Cop). The least squares estimator of a, is then @&, =
(1, —¢;C,’'Y. When p is not known, the covariances are estimated by

T
ci’;'= E (yt—i_yi)(yt—j'-yj)/(T_p), i,j"_‘O,]-,-”’p,

t=p+1

where y, = Z,T=p+1 Y%-/(T — p) and C} and c; are defined analogously. The
least squares estimator is thus &} = (1, —c}'C* Y.

An additional assumption is needed to ensure the validity of the approxima-
tions to the bias used in this paper. We assume [see Lewis and Reinsel (1988)]
that the errors {¢,} have finite moment of order 16 and that

(2.2) E(IC;' ~ T, Y*) =0(1) asT - oo fork <8,

where || A|| is the matrix norm given by the largest absolute eigenvalue of A and
I, = E(C,) with elements v;; = v,,_;; = Cov( ¥, Y1i—j))» & J = 1,..., p. See also
Bhansali (1981), whose assumption (A3) is stronger than (2.2).

The approximate bias of &, has a simple, linear form. If p is known,
E(a,)=(I- B,/T)a, + o(1/T), where I is the (p + 1) X (p + 1) identity
matrix and the (p + 1) X (p + 1) matrix B, = B,, + B,,. The matrix B,, =
diag(0,1,2,..., p). The columns of B,, are arrangements of vectors e; or d;
where e; is (p + 1) X 1 with I’s in rows j+ 3,/ +5,...,p+ 1~ and 0’s
elsewhere and d; is (p + 1) X 1 with I'sinrows j + 2, j+ 4,...,p+ 1 —jand
0’s elsewhere. When p is even, B,, =[—ey, —€;, ..., ~¢€,,5_1,0,€,,5 4, ...,
e, €], and when p is odd, By, =[—d;, =dy, ..., =d,_1)2,0,d(p_1) /2, .- -5
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d,, dy]. For example,

0 0 0 0 000 0 O0 0 O]
0 1 0 0 000 0O 0 O
-1 0 2 0 000 OO0 0 1
0 -1 0 3 000 0O0 1 O
-1 0 -1 0 4 00 01 0 1
Bo=| 0 -1 0 -1 05 0 10 1 0
-1 0 -1 0 -1 07 01 0 1
0 -1 0 -1 000 8 0 1 0
-1 0 -1 0 ©0 00 09 0 1
0 -1 0 0 000 0 O0 10 O
-1 0 0 ©0 0 0 0 0 O O 11|

Estimation of p requires adding a term to the bias. If the O(1/T') bias of &% is
—Bfa,/T, then B} = B, + B,,, where the (i, j) element of B;, is —1 for
J<i<p-—j,1for p—j<ix<jand O elsewhere. See Shaman and Stine (1988),

Section 5 for details.

3. A fixed point characterization for the bias. The first theorem shows
for each order of autoregression that only one model exists for which least
squares is unbiased to terms of order 1/7.

THEOREM 1. If T > (p + 1)/2, the expectation mapping I — B,/T is a
contraction with a unique fixed point &, satisfying (I — B,/T)d, = &, with first
coordinate d,, = 1. Similarly, if T > (p +2)/2, I - B}/T is a contraction
with a unique fixed point &} having first coordinate &g, = 1.

The next two theorems give formulas for the coefficients of these models.

THEOREM 2. The autoregressive model of even order p with known mean for
which least squares is unbiased to order 1/T has coefficients

b (pr2-2))/0))
(3.1) Uop,p = 1.1;11 (p+3-25)/(2j-1)’

and 0 otherwise. If the order p is odd, the coefficients are

) B k (p+1-25)/(2))
(32) gy, ,= le (p+2-2j)/(2j-1)°

and 0 otherwise.

k=1,...,p/2,

k=1,....,(p-1)/2,

THEOREM 3. The autoregressive model with unknown mean for which least
squares is unbiased to order 1/T has coefficients

. k (p+2—j_8j)/(j+8j)
(3.3) akp=j1:[1 (p+3-5)/(j+1)

bl
It
—

ey Py
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when p is even, where 8;=1 if j is odd and is 0 otherwise. If p is odd, the
coefficients are

(34)  ar, - ﬁ (p+1-J4)/

: ; , k=1,...,p.
jei(p+2-j+8)/(j+1-8) p

The nonzero elements of @, are monotonically decreasing; those of &y are not.
As p increases, some elements of &3 become greater than 1.
Our next pair of theorems shows that the autoregressive processes defined by

the fixed point coefficients are stationary. Define the polynomials

5 [p/2]
(3'5) p(z) = Z &jpzp_j = Z &Z‘k,pzp_zk:
j=0 k=0
b
(3.6) Ax(z) = ¥ @hzP,
Jj=0

where [x] denotes the greatest integer less than or equal to x.
THEOREM 4. The zeros z; of .xz?p(z) satisfy |z <1, j=1,..., p.
THEOREM 5. The zeros z; of jp*(z) satisfy |z}l <1, j=1,..., p.

Figure 1 shows the location of the fixed points for orders p = 4 and 20.
Estimation of the mean shifts the zeros toward — 1 and the zeros increase in
norm as the order increases. Theorem 1 implies for any coefficient vector a that
lim;_, (- Bp/T)fa = @,. To interpret this convergence, begin with a time
series generated by a pth order autoregressive model with coefficients a so that

F16. 1. Zeros of the fixed point models for order 4 with mean known (¢) and unknown () and for
order 20 with mean known (®) and unkrown (O).
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F1G. 2. Zeros defined by iterating the bias mapping I — B,/50 twenty times with AR(4) models
having known mean. The zeros defined by the initial model are the filled circles at —0.2, 0.9 and
0.5 + i0.5 and the arrows indicate the movement of the zeros.

Ea,=(I-B,/T)a+ o(1/T). Let (I - B,/T)a become the vector of coefi-
cients of a second generating model. The expected value of the least squares
estimator applied to data from this second model is (I — B,/T )2ap +0(1/T).
Continuing in this fashion, bias eventually pulls the coefficients to the fixed point
d@,. As Figure 2 shows, the movement of the zeros associated with this sequence
of coefficients toward those of the fixed point is rather chaotic and depends upon
the location of the zeros of the underlying model. Notice that bias favors models
with complex zeros. In this example, two real zeros merge and form a complex
pair at considerable distance from each other. ‘

Our final theorem describes how these fixed point models are related for
different orders of autoregression. A single infinite-order autoregression generates
all of the fixed point models.

THEOREM 6. The fixed point models defined by G,, p =1,2,..., are least
squares approximations to an infinite-order autoregression with correlation

function
. o0, Jjodd,
(3.7) Pi= { -1/(j%2-1), Jj even.

The models defined by d; are the least squares approximations to an infinite-

order autoregression with correlation function
1/(J% - 4), Jodd,

(38) o= { -1/(j2-1), Jj even.
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Fi1c. 3. Spectral densities of fixed point models with mean unknown and orders 10 (---), 30 (---)
and infinite (—).

Since Theorem 6 only specifies the correlation function, the underlying pro-
cess is unique up to choice of scale. The following corollary gives the spectral
density of the underlying process.

COROLLARY 1. The spectral density of the process defined by (3.7) is (v, = 1)
(3.9) g(w) = |sinw|/4, -T<w<m.

The spectral density defined by the mean-unknown case (3.8) is (v, = 1)
(3.10) & (w) = |sinw — (sin2w)/2|/4, -7T<w<w.

Notice that (3.9) is not differentiable at 0. This corollary is easily verified by
computing the Fourier coefficients. Figure 3 shows &* and the spectral densities

of the finite-order approximations defined by &} for p = 10 and 30. Plots of &
and its approximations are similar, though symmetric about = /2.

4. Proofs. Proofs of the first two lemmas rely upon the triangular structure
of the matrices B, and B that define the O(1/T) component of the bias.

LEMMA 1. The matrices B, and B are similar to lower triangular matrices.

LEMMA 2. The eigenvalues of B, and B} are their diagonal elements.
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Proor oF THEOREM 1. If T > ( p +1)/2, I - B,/T has a single eigenvalue
of 1, with the remaining less than 1 in absolute value. "The normalization a,, = 1
yields a unique solution which is the fixed point coefficient vector. A similar
argument applies if the mean is unknown. O

The next two lemmas simplify the proof of Theorem 2.

LemMma 3. For p odd, &, = d; ,,_1,1'=-0,1,-~~,P—1» and dp,, = 0.

LeEMMA 4. Forj odd, &, = 0.

Proor oF THEOREM 2. Lemmas 3 and 4 imply that it is sufficient to
consider even-indexed coefficients with p even. Considering, in order,
Gpps Gy Gp_o py Gyp, ..., We obtain a, o, , = dyy 2k + 1)/(p + 1 — 2k),
k=01,..., [(p — 2)/4), and dyy , = dpi0-0p (P — 2k)/2k, k=

2,...,[ p/4], and (3.1) and (3.2) follow. O

ProoF oF THEOREM 3. Again use an alternating recursion. If p is even,
&};; = &;+l—j,p(p + 2 _] - 8])/(] + 81)’ ] = 1’ 2""’ P/2, .and &;_j'l.’ =
a(Jj+2/(p+2-j), j=01,..., p/2 — 1, where 8j= 1if j is odd and is 0
(:therwise If pisodd, &}, = dp.,_; p(p +1-5/,7=12,....,(p — 1)/2, and
ay jp= (J+1+8)/(p+2 J=98) j=01,..,(p—-1)/20

ProOF OF THEOREM 4. Lemma 3 implies that it is sufficient to consider p
even. Use Lemma 4 and define %, 2?) = &/,(z). Theorem 2 shows that the
coefficients of %, are strictly decreasing and the Enestrom-Kakeya theorem
[Marden (1966), Section 30] implies that its zeros lie strictly inside the unit
circle. Since the zeros of /,(2) are square roots of the zeros of #,(2), they also
lie inside the unit circle. O

The coefficients of &} do not satisfy the monotonicity needed to apply the
Enestrom-Kakeya theorem and we give an inductive proof for Theorem 5. This
proof requires the following lemma which is important in understanding the
relationship among the fixed points for different orders of autoregression.

LEMMA 5. The coefficients of the fixed point with unknown mean satisfy

Tk — F* = F* %
(4-1) Arp — Ck,p-1 pp"p—k,p—1°

k=1,...,p—-1,p=2,3,....

Proor. By Theorem 3, the &, are products v,, - - - v,,, where for j odd,
v, = (P +1=/)/(p+3-j) For j even, v, =[(j+ 1Xp+2 -}
[J(pl +3—))]if pisevenand v, =[(j +1Xp+1-NI/[Ap+2-))]if p
is odd. Thus if j is even, v,,v,,5_; , = 1if p is even and v, =1if pis

+1-
odd. We establish (4.1) for p even; the details of the proof ;grpp O(idpare similar.
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Suppose % is even. Then

&l’:p - &;:,p—l = (vlp ”k—l,p)(vzp vkp)
—(vl,p—l vk—l,p—l)(v2,p_1 vk,p—l)
becomes
p+2—-k*22j+1p+2-2j
p+2 j=1 2j p+3-2j
p+1-k*22j+1 p-2j
(4.2) _

p+1 ;=5 2j p+1-2j
2 k+1%2-12j+1 p-2j
T p+2p+1 j=1 2] p+1-2j’

where I1_; = 1. Theorem 3 gives &}, = 2/(p + 2) and the remaining factors on
the last line of (4.2) are (With v, ,_; *** Vp_y ,_, = 1for k =2)

k+1
I)_ﬁv2,p—l *tt Vg9 p-1
= (vl,p—l tee vp—k—l,p—l)(v2,p—l tee vp—k,p—l) = &;—k,p—l'
If % is odd, the left side of (4.1) is
(vlp ce vkp)(va o vk—l,p) - (vl,p—l te vk,p—l)(v2,p—1 ce ”k—1,p—1}"

2 E * V2241 p-2j
p+2p+1 ;5 2j p+1-2j

~

* ok
pp-p—k,p—1° o

ProOF OoF THEOREM 5. We use induction on the order p of the autoregres-
sion. For p = 1, the zero is — }. Assume that the zeros of .sip*_ 1(2) lie inside the
unit circle. Lemma 5 implies I.,JP*(z) - z.xa?p*_l(22| < |z.sip*_1(z)| = LJP*_ 1(2)]
for |z| = 1 and, by Rouché’s theorem, the zeros of &7,*(2) also lie inside the unit
circle. O

Equation (4.1) is the well-known Durbin-Levinson recursion [see, e.g.,
Brockwell and Davis (1987)]. Given a correlation function, this recursion pro-
duces the coefficients of the autoregressive models of orders 1,2,..., which
minimize the expected squared error of one-step-ahead prediction. Thus, each
fixed point model is the sequential approximation to some infinite-order model
and we need only find the correlation function of the latter.

PrOOF OF THEOREM 6. We sketch the argument for the case of known mean.
The Yule-Walker equations are

~

p
b= — z&kpﬁp_k, p=12,....

If p is odd, Lemma 4 implies the first ﬁalf of (38.7) since the Yule—Walker
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equations pair odd-indexed coefficients, which are 0, with even-indexed correla-
tions. For p even, one verifies the second half of (3.7) by summing —Yf_,& 6,
in reverse order. The partial sums are

N s s o L3 @D (- 2))
C R=(p/D-J 2k pTp2k 2-4---2j(p+1)(p-1)---(p—-2j+1)°

i=12,...,(p/2) - 1.

For j = (p/2) — 1, the factors cancel and this reduces to —1/(p? — 1).O

5. Discussion and extensions. That least squares tends to “shrink” roots
toward the origin is a part of the folklore of time series analysis. This description
shows that the bias does not necessarily have such an effect. Our results show
that the effect of bias, on average, is to move &, toward the fixed point. The
zeros of the fixed point polynomials are inside the unit circle, but move close to
the boundary as the order of autoregression increases.

Though one seldom has occasion to iterate the estimation process, bootstrap-
ping does involve two or more such iterations. To bootstrap an autoregression,
one initially obtains &, from the observed realization of {y,}. One then uses this
estimate in place of the true coefficients a, to generate bootstrap replications of
the observations. For the bootstrap series, &, becomes the “true” coefficient
vector [see, e.g., Efron and Tibshirani (1986)]. Thus, when one computes esti-
mates of a, from the bootstrap series, the expected value of these is approxi-
mately (I — B,/T)%,, not (I — B,/T)a,. The bootstrap estimate of bias is
approximately —(B,/T X! — B,/T)a,, not —B,a,/T.

Our results may be extended to polynomial trends. Suppose that the mean p
in (2.1) is replaced by the trend in time p(¢) = £%23B;t/, where we use k = 0 to
denote a known mean. If i(¢) is the least squares estimator of u(?), let &@,(k) be
the fixed point vector associated with least squares estimation of an autoregres-
sion of order p in the residuals y, — A(¢). Then B,(k)d,(k) = 0, where B,(k) =
B, + kB3, for k=0,1,2,... . Thus, &, = d,0) and day = d,(1).

p
As k increases, d@,(k) moves toward the vector with elements (‘j ), Jj=0,1,..., p,

and the zeros of the associated polynomial move toward —1. The asymmetric
location of the zeros of Jz?p*(z) in Figure 1 illustrates this effect. The limiting
behavior of &@,(k) follows from arguments similar to those used above and
Theorems 10.3.2 and 10.3.4 of Anderson (1971). Related results appear in Pantula
and Fuller (1985).

The bias of the Yule-Walker estimator has nonlinear dependence on a,,.
Numerical calculations based on the bias approximation in Shaman and Stine
(1988) suggest that a unique fixed point again exists. The zeros associated with
Yule-Walker estimation are also symmetric about the complex axis when p is
known, but lie closer to the origin than those defined by least squares. One
should note that the O(1/T) bias approximation is not particularly accurate
for Yule—Walker estimators. However, Zhang (1988) has shown that an
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appropriately tapered Yule-Walker estimator has O(1/T) bias and variance
equal to those of the least squares estimator.
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