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ORDER ESTIMATION IN ARMA-MODELS BY LAGRANGIAN
MULTIPLIER TESTS

By B. M. POTSCHER!
Technische Universitdat Wien

! A stepwise testing procedure using Lagrangian multiplier tests is devel-
oped to determine the order of an ARMA-process. The strong consistency of
this procedure under slightly weaker assumptions than in Hannan (1980)
(proof of the consistency of the order estimators obtained via BIC) is proved.

1. Introduction. In a series of papers Dunsmuir and Hannan [5] and Deistler,
Dunsmuir and Hannan [3], [8] proved the consistency and asymptotic normality of
maximum likelihood estimators in the ARMA and ARMAX model. They showed that if
the data are generated from an ARMA (or ARMAX) ‘process which is “within” the
parameterspace then the transferfunction can always be estimated consistently (in a
suitable topology) using a (Gaussian) ML-criterion or an approximation to it. The esti-
mators of the parameters, however, need not converge (they need not even exist) to the
true parameters if the true transferfunction is not uniquely parameterized (‘“not identified”)
in the given parameterspace. The processes at which this problem arises belong to those
which can already be described by a lower dimensional parameterspace, i.e. processes
which are of lower order. See also Deistler [2] for a discussion of this problem. Therefore
it is necessary to set up procedures to determine the true order of the process. One way to
do this is using criteria like the AIC, BIC criterion. Hannan [7] recently proved the
consistency of the order estimators obtained via BIC in the scalar ARMA case (given an
upper bound for the true order), Hannan and Quinn [6] in the multivariate AR-case, see
also [9] for a recursive algorithm and its asymptotic properties.

Another way to determine the order is to use a hypothesis testing framework. There
are some recent papers proposing this approach, favouring especially the Lagrange multi-
plier (LM) test for this sort of testing problems as a “diagnostic checking device”, see e.g.
[15]-[17]. In [19] we have shown that this way of using the LM-test has some flaws, due
to the special topological structure of the parameterspaces of ARMA-models. In the
present paper, however, we give a procedure which determines the order of a scalar ARMA
process consistently using LM-tests in a suitable way. Moreover the assumption for the
consistency proof in Hannan [7] namely that the zeroes of all the MA-polynomials in the
parameterspace have to be bounded away uniformly from the unit circle can be relaxed
(see Theorem 5.10). Note furthermore that in [13] there are some gaps in some proofs but
they do not affect the scalar case without exogenous variables; they are corrected in [14].

2. Preliminary and notation. Consider a scalar weakly stationary process x(t), t €
Z with zero mean defined on some probability space (2, </, P). Its spectral measure F is
assumed to be rational, i.e. of the form dF = (0%/27)| h(2)|* dA(2), 6® > 0, where A is the
Haarmeasure on the unit circle S = {z € C:| z| = 1} with A(S) = 27 and A(2) is a rational
function, i.e. 2 € R(z), with A(0) = 1 having no poles on S. Then it is well known that A can
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be chosen in a unique way as having no poles in D U S and no zeroes in D where D =
{z € C:| z] < 1}, having again A(0) = 1 and such that x(¢) is the (stationary) solution of

(1) ao(L)x(t) = bo(L)e(t) “ARMA-model”

where ao(z), bo(2) are polynomials (with real coefficients) with a¢(0) = b0(0) =1, ao 1(2)bo(2)
= h(z) and ao(z) # 0 on D U S, bo(2) # 0 on D; &(¢) is white noise with variance ¢? and is
called the (linear) innovation process of x. From (1) we can obtain

2 x(¢) = h(L)e(t)

where the right-hand side is to be understood in mean-square. A is called the transfer
function. Note that the polynomials @y, by are not unique because of possible common
factors. A further assumption is that (1/T') Z,T=1 x(t)x(t — s) converges to E (x(¢)x(¢ — s))
almost surely for every s € Z. Clearly there is then a set E C @ with P(E) = 1 such that
for every w € E the above mentioned sums converge to the corresponding expectations for
all s € Z. In the sequel we will mainly work on the set E’ C E, P(E’) = 1, defined in the
appendix, for convenience and forget about the rest of . With £(¢) we denote the process
£(t) = x(t) for ¢t = 1 and £(¢) = 0 otherwise. Next we define our parameter-spaces which
we will use in estimating 4. Note, however, that our parameterspaces may include rational
functions % with poles on S and therefore they are not itself transferfunctions of ARMA-
processes. However, their inverses £~ can be interpreted as prediction error transferfunc-
tions.

Denote by U the set of all rational functions 2 € R (z) with £(0) = 1, having no poles
and zeroes in D. Denote by U! C U the set consisting of rational functions with the
additional property of possessing no poles on S, and similarly let U 2 C U consist of those
% having no zeroes on S. If V C U we will write often V' := VN U", V?*:= VN U?and V'*
.= VN U'N U2 We view U as a subset of R" via the embedding £ € U — (T1(k), T>(k),

..) € R" where k(z) = Yo Ti(k)z' is the Taylor series expansion. The topology U
inherits in this way is called the “pointwise” topology (see Deistler [2], Dunsmuir and
Hannan [5]).

If 2 € U then define p(k), q(k) respectively, as the minimum of the degrees of all
denominators, all numerators respectively, of k. Clearly there are uniquely determined
polynomials a, b with a(0) = 5(0) = 1, degree a = p(k), degree b = q(k) and & = a™'b.
Trivially ¢ and b are prime and are called the denominator and the numerator of 2. Now
we are interested in special subsets of U which can be parameterized in an Euclidean way:
for p, ¢ € N U {0} let (,,, be the set of pairs (a, b) of prime polynomials such that a(0)
= 5(0) = 1, @ and b have no zeroes in D and deg a < p, deg b < g but not both deg a <p
and deg b < q. 0,4 is embedded in R”*? in a natural way and carries the Euclidean
(subspace) topology. The closure of 8,4 in R”*7 is denoted by 0., and contains all pairs
(a, b) of polynomials with a(0) = 5(0) = 1, @ and b have no zeroes in D and deg a = p,
deg b= q. 0, is open in 8,,,) (cf. Deistler [2]). Similarily as before if A C 0(p,q) We denote
by A!(A? respectively) that subset of A consisting only of those pairs (@, b) where a(2)
has no zeroes in D U S (b(z) has no zeroes in D U S, respectively). Again A = A’ N A%
Consider now the mapping 7(p.q): 85,9 — U defined by (a, b) — a™'b. It is easy to see (cf.
Deistler et al. [3]) that 7,4 is continuous with respect to the Euclidean topology and the
pointwise topology. Furthermore it can be shown (cf. Deistler [2]; note that in this paper
no stability nor invertibility condition is used. The results obviously carry over to our case)
that 7, restricted to 6,,) is a homeomorphism between 6,,,4) and its image 7(5,q)(8(»,))
which we abbreviate by Uy,,q). The closure Uy,,q) in U can be shown to be m(,, 205, (but
this is true only in the scalar case discussed here) and furthermore Upay =U {Ups:0=
r=p,0=s=<gq)but Uys N Ugy,q #* D is possible, see Deistler [2]. One should remark
that the set Uy, is exactly the set of all £ € Uy,,q), which have a unique parameterization
in 0, q), i.e. Uip,q) is the set of all “identified” transfer functions. For a fuller account of the
topological and algebraic structure of this parameterization see Deistler [2], Deistler and
Hannan [4].
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For every k € U define now é(t, k) = 2~'(L)%(t) the prediction error made when one
uses £ 7'(2) to predict the process one step ahead from his finite past x(1), -- -, x(¢). Our
criterion function is now defined as

3) To(hk, %(1), -+ -, x(T)) =% S E. &6, kY-

I is well-defined for all £ € U and sometimes we will omit the arguments x(1), ---, x(T).
We will also write Ir for the function l~T(7r(p,q)(-), x(1), «--, x(T)). Also the notations
Ir(k, w) or I7(a, b, w) where a™' b = k and w € 2 will be used. If we replace £ by x we will
then write I7 and e(¢, k) insofar these functions are then defined. Our estimators will be
obtained by minimizing I over suitable subsets of U. This criterion comes from the theory
of prediction error estimation and produces (under some additional assumptions) esti-
mators which are asymptotically as efficient as the Gaussian estimators (i.e. estimators
obtained by maximizing a Gaussian likelihood but without necessarily assuming the
process to be Gaussian) are; see Ljung and Caines [12], Pleberger [13], [14] and also the
appendix for further information. Now as already stated, if one minimizes Ir over some
U(y.q one gets estimators k7 which converge to 2 if 2 € Uy, 4 and to the set of those
rational functions which minimize the expected prediction error in the case that 2 & U, 4);
see Dunsmuir and Hannan [5], Ploberger [13], [14], Ljung and Caines [12]. For a precise
definition of kr see the appendix. Now in the first case but if 2 € Uip.o\U(p,q) the
parameter estimator (dr, br) will not converge, but “search” along the setw{, 4 (h), i.e.
along the equivalence class of “observational equivalent structures”. These equivalence
classes can be proved to be affine subspaces (intersected with the set given by the
conditions for the poles and zeroes, of course), see Deistler [2], and the criterion function
is clearly constant on them. Now A € U, 4)\ U(,,4) means that there are smaller integers
(r, s) such that A € U, ), so the problem of nonconvergence of the parameter estimators
stems from an overparameterization. This is the starting point of the present paper to give
a procedure which allows one to determine the “correct” (r, s). The assumptions of this
section stated above will be maintained throughout the paper except the converse is stated.
The following assumptions, however, will be used only when they are explicitly mentioned:
(A) The process x is strictly stationary and ergodic. Its innovations & are a martingale
difference sequence, i.e. E (¢(¢)| «/,—1) = 0 where o7, is the o-algebra generated by the
past {x(s):s < t}. Also E (e(t)?]| ;—1) = 0.
(B) & € U? (note that by definition as a transfer function, 4 is in U* anyway)
(C) Ee(t)* < oo
Note that we sometimes use the same symbols for different objects, but there should be no
confusion possible. Subsequences will often be indexed by the same index as the original
sequences; also T'(w) is used as a generic notation for a random time not always the same
and not necessarily measurable. The symbol A is used for the Haar-measure on S as well
as for the Lebesque measure on [—, 7], which parametrizes S in an obvious way; in the
first case the integrals are meant to be taken over S, in the second case over [—, 7] which
is then always indicated; the argument e® is sometimes omitted.

3. Some asymptotics. In this section we state some results on the asymptotic
behaviour of the score vector and its asymptotic covariance matrix which will be useful
later on. Suppose now that P =0, @ =0, P, Q € Z are given. For (a, b) € 0p,q), we write
also 7(a, ) = (a1, as, + -+, ap, by, - - -, bg)’ and conversely if 7 € 6, p,q) We write a,(z), b,(z)
for the polynomials which are associated to 7 in that way. Now for 7 € p o, the function
Ir(7) is clearly smooth and its vector of first derivatives is denoted by dr(r) (or by
d~T(T, w) to emphasize the dependence on the data). Note that iT(T) is defined and smooth
in an open neighborhood of 8 p,¢) so that the derivatives are also defined for boundary
points. Denote by f (¢, 7) the vector

L L? | a(L)L _ a(L)L® _ T
[__b(L) x(¢), Sy x(¢), - 55L) x(¢), i~y x(t)]
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of dimension (P + @) X 1, which is nothing else than 9é(¢, 7)/dr. If we replace £(¢) by ()
in the definition of f (¢, 7) we obtain a vector we will call f (¢, 7), which is at least defined for
T € 0%pq). We have dr(r) = (2/T) Y711 é(t, 7f(t, 7), where 7 = (a, b), by an easy
computation and the fact that (3/97) Ti(7(p,q)(1)) = Ti((8/37) 7 p,@)(7)).

Now if 7 € §?p,, then by Lemma A2 of the appendix we see thatVT dr(r) differs from
VT dr(7) only by a term which goes to zero in probability, where dr(r) is obtained by
replacing £(¢) by x(¢) in the formula for dr(r) above. Consequently they have the same
asymptotic distribution. The proofs of the following statements are given in [19}:

LemMa 3.1. If 1 € B7pq) then Edr(r) = 2Ee(t, 7)-f(¢, 1) = (6*/2mal(r)/or =: ()
where 1(7) = [7,| b7 (e?)a(e)h(e™)|? dA. (Note that I(7) is also differentiable in points
where a(z) has zeroes on S). '

THEOREM 3.2. If (A) holds and if o € 07p,q) is such that m p,q)(T0) = h (this clearly
implies that h fulfills (B)) then VT dr(10) is asymptotically normal N (0, 46%A(7o)) where
A(ro) = Ef (¢, 7o) f (¢, T0)'.

REMARK. Note that A(7) is defined for all 7 € 0%p,¢) even if A is a completely arbitrary
transfer function. Furthermore the assumptions in Theorem 3.2 imply that (B) must hold.

THEOREM 3.3. Suppose that V C 83sq) is such that there is M > 0,0 < X\ < 1 such
that | T;(b;")| = M.\ for all r € Vand i € N. Then
(a) A(7) = limr_A7(7) for all v € E and uniformly in r € V, where

Apr) = —IT— S, f(t, 7V f(t, 7V and r = (a, b).

(b) B(r) = limz_Br(7) for all w € E uniformly in + € V where B(1) is the expectation of
the expression (9%€(t, 7)*/dtd1’) after replacing £ by x in it and where Br(r) =
(1/T) T (3%€(2, 7)°/8707").

(c) If (A) holds and there is 7o € 0%p o) with m(p,q)(10) = h then A(ro) = (1/2) B(70).

(d) A(r), B(7) are continuous for T € 8¢p,q).

A(7) plays a central role in the construction of the LM-statistic, since every generalized
inverse of A (r,) is up to a constant factor a generalized inverse of the asymptotic covariance
matrix of the score vector and the rank of A (ro) determines the degrees of freedom of the
test statistic, see [19].

4. The procedure. Suppose P =0, @ =0 are given integers such that p (k) = P, g(h)
= @, i.e. the progess x can be described as an ARMA(P, @)-process. If we want to decide
whether it can already be modeled as an ARMA(P’, @’)-process with P’ = P, @' < @ we
could try to set up a test for the null hypothesis & € Ul{p,¢"). Using the parameterspaces
!0, and 81p o) this can be expressed as zero restrictions on the parametervector (a, b)
€ 0ip, o) in an obvious way, where (a, b) are the denominator and the numerator of h. If
one tried, however, to use the LM-test for this problem, one would see that the test
statistic has a pathological behaviour in several points of the null hypothesis due to the
fact first that some points in the null hypothesis need not be identified even there and
second that at some points identified within the null hypothesis the matrix A(r) changes
its rank, making the usual estimators of a generalized inverse of A (7o) inconsistent, as has
been discussed in [19]. This behaviour of the LM-statistic seems to have been overlooked
in the literature, cf. [15], [16], [17]. As a consequence, one has to be more specific about
what one’s null hypothesis really is and the use of a single LM-test as a diagnostic checking
device in the context of testing the orders of an ARMA-model may be challenged on the
basis of what was said above, see again [19].

A natural way out of this is to use a whole sequence of LM-tests, starting with the
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lowest possible order and then testing “upwards” as long as the test rejects. Loosely
speaking, the orders p, g where the test does not reject for the first time are then estimates
for p(k), (k). The precise definition will be given below. The question arising then is
under which circumstances these estimators are consistent. It will be shown below that
strong consistency of the estimators is achieved if the significance levels of all the tests
involved tend to zero with increasing sample size at a rate specified below. Next we define
the procedure:

First variant:

Step 1. Choose a (P, @) which is big enough to make you believe that the true transfer
function A is in U(p,Q).

Step 2. Choose a chain (0, 0) = (o, o), (P1, @), *++, (Px, gx) = (P, Q) such that
either piv1 =pi, ginn=¢qi+1orpimi=pi+1,qis1=q: (necessarily K = P + Q).

Step 3. Assign a number a(p;, g:) between 0 and 1 to every (p;, q:).
Thendo for k=0, ..., K—1:

Step 4. Calculate k1 for the (px, qk)-spgciﬁcation (i.e. fit an ARMA( Pr, qix)-model,
see the appendix for a precise definition of 27) and set 77 = Tim.a (kr) (more precisely,
take a mgasurable selection of 7(%, 4, (+), which clearly exists). (We will show below that
T(.qn (k1) consists only of one point for large T as long as h& Uppar R EUl a0
then this definition of 77 agrees with the one given before Theorem 4.2 in [19] and again
. an (Br) is a singleton for large T')

Step 5. Calculate RP»%)(71) = ( T/46%) (zl}'TfTT(»?T)*(?T where + denotes the Moore-
Penrose inverse, see e.g. [20]. If it is bigger than c,, 4, then do the (£ + 1)th-loop;
otherwise stop and set pr = px, 4r = qr (here c,(, q,) is the upper a(pe,qr)-quantile of a
Chi squared distribution with max(P — pr,@ — qi) degrees of freedom). Here o=

(1/T) Y L1 é(t, kr)? = Ir(37) anddr is short for dr(37).

The second variant of the procedure is obtained as follows:

Step 1’.  As Step 1 above.

Step 2. Do steps 2-5 of the above procedure for all possible chains. Among the
resulting p’s, §’s consider those pairs which have the smallest p + ¢ and select the one
which has also the smallest P (this last condition is imposed only to make the estimator

unique).

Note that if one is wi]ling to assign to a (p, g) in every chain where it appears the same
a, then one need not test every chain separately.

In order not to have to fit a too large number of models, one might be interested only
in looking at models where p = g. The third variant takes this into account:

Third variant:
Step 1”. Asstep 1but P = Q.

Step 2”. Do steps 3-5 as above but only for the models where p=¢q,p=0,1, ---, P.
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If one uses the second variant, one has of course to fit a large number of models, at most
all models in the range 0 =< p < P, 0 < g < @. Using criteria like AIC or BIC, one has to
fit all the models within this range in any case. Hannan and Rissanen recently proposed an
easy algorithm which gives “approximate” ML-estimators and showed that if one uses
these estimators instead of the ML-estimators in calculating the values of the BIC-
criterion, one also gets consistent estimates of the orders p, ¢ of an ARMA-process, see
[9]. Of course their algorithm can be used to calculate an approximation to 77 and one can
use this instead of 77 in calculating R{?»%’. We are sure that the consistency results below
would hold true also in this situation; this will be discussed in a separate paper.

The estimators obtained by means of the third variant will be shown to converge to
max(p(h), g(h)), i.e. the procedure selects the most parsimonious model of the form p =
g which is able to describe the process x. Note that 4 is identified in this parameterization,
since 7 =s)(h) consists only of one point where s = max(p(h), g(h)).

5. Weak and strong consistency. In this section we give the weak and strong
consistency results (Theorem 5.7 and 5.10) for the order estimators derived from the
procedure defined in the previous section.

THEOREM 5.1. (Astrom-Soderstrom). Suppose h € Utbq). Then the function
l(r(a, b)) = [7, |b7'a|’|h|* d\ with v € Opq) has its minimum exactly on the set
7B.9/(h). The gradient of I (restricted to 07s,q)) vanishes only there.

REMARK. First note that the Gaussian assumption in [1] is nowhere used in their
proofs. If 57'a has a pole on S we set I = ». Furthermore the proofs in Astrém and
Soderstrom allow a(z) also to have zeroes inside or on S. Consequently there is no problem
for the gradient in points (a, b) such that a(z) has a zero on S.

THEOREM 5.2. Let h € UY but h & U,,,. The set
D= {k € U(,,,q,:J |E 2| A2 dA =inf” |E (2| R|2 dAik € U(,,,q,}}

is nonempty, compact and lies in U?,.

ProOF. Sinceh€ U wehaveinf{[”, |k || k|2 dN:kE UL ) =inf{f7, |k |?| h|*
d\:k € U,p). Consequently D is the same as D,,q in the appendix and the compactness
and nonemptiness follows from the references cited there. To show the second statement
of the theorem, take a 2 € D and let us assume that £ € Ufpg). £ must be in U%,,) since
otherwise the integral would be infinite which is in contradiction to 2 € D. Consequently
k is not identified which implies that ((1 — az)/(1 — bz))k(2) is still inU?,, for all|a| <
1,|b| <1, a, b € R. By definition of % this implies that

11— be?|?, . _
F(a,b)=f :l___;,x—llilsz'hwd)\

has a minimum at all points a = b, | b| < 1. Consequently F/dbj,—, = 0 for all | b| < 1.
This entails

T 26— (e*+e™™ I
(16) £"1+b2—b(¢?’x+e‘7")lk h|?dA=0 forall bER,|b|<1.
Now
2b — (e® +e™®) —e? e @

fole™) + fole™)

1+b2—b(e""+e“")=1—be‘“—1—be_”‘=
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and f; is quadratic integrable. Also g(e®) = |k7'h|? is quadratic integrable since it is
continuous. The Fourier series of f;(e®) equals — ¥ =1 b’ ', Write g(e®) = gi(e™) +
gi(e™) + ao where gi(e”) = ¥ ;=1 aje”™ and the a; are the Fourier-coefficients of g. This is
possible as & = g. Then (16) becomes

(V) f [Fo(e® + foile ™ gi(e®) + gi(e™) + ao] dA = 0.

Observing that f,(e™) lies in the closure of the span of ', j = 1 we get

(18) [ foleMgie® dA =0 forall |b|<1.

We now want to show that B := {f,(e?):|b| <1, b € R} spans a dense subspace of the set
cl(span{e™:n = 1}): first we have e € span B by setting b = 0. Now adding e to f, and
dividing by b we get (1/b)(f, + e®) = — ¥ ;=2 & 2** which i is therefore in span B. Letting
b tend to zero, we see that this last expression tends to —e?” in quadratic mean,
consequently e”® € cl span B. Then adding e** to (1/b)(f, + e™), dividing by & and
proceeding as above we get successively e”™ € cl span B for all n = 1.

But now (18) implies gi(e™ = 0 A — almost everywhere or in other words
|k (e™h(e™|* = ao A — a.e. But this implies £ = A (since both are rational functions)
which is impossible since & & U 4. So we have proved D C U%,,).

REMARK. The same proof shows that the above result is true also for arbitrary Ls-
spectral densities which are bounded away from zero, and nearly the same proof shows
that the result is true also for & with zeroes on S if one replaces U%, 4 by Ui, in Theorem
5.2.

The proofs of the following two lemmata can be found in the appendix:

LEMMA 53. For 7 € Oipq let A(r)™ be any g-inverse of A(r). If u(r) + 0 then
w(7)'A(7)"p(r) > 0.

LeEMMA 54. If x, € R* converges to x and A, to A where A,, A are k X k matrices
which are symmetric and positive semidefinite then lim inf x,A;x, = x’A*x (A* Moore-
Penrose inverse).

LeEmMA 55. Leth € Ulgg but h & U,y . If cr = 0 is a sequence such that T 'cr —
0 then for all w € E’ there is a T(w) such that for all T > T(w) we have RP?(31) > cr.

ProorF. From Theorem 5.2 we conclude that D = Dy, is compact and D C U%,,).
Since (pq) is a homeomorphism between 6%, and U%,,, also wil, (D) is compact.
Therefore it is possible to find a compact neighborhood K of 7(4 4 (D) in 8%, such that
K has a positive distance to the set of points 7 = (a, b) such that b has zeroes on S.
Consequently the requirements of Lemma A4 in [19] are fulfilled and we have for all w €
E limz ,.sup.ex|| dT('T) w(7)|| = 0 since Edz(r) = p(r) by virtue of Lemma 3.1. Now since
77 converges to 7 (pq) (D) (see the appendix) we have for all w € E’ a T(w) such that for T
> T(w) the sequence 77 enters K. We now claim that lim infr_ . dTAT(TT) dT =>
infexp(r)’A(7) *(7). Suppose it would be false then we could find a subsequence (also
indexed by T for ease of notation) such that d7Ar(77)* dT <inf pu(r)’A(7)"u(r) — & for some
¢ > 0. Since 77 lies in K (for large T') which is compact, we can select a subsequence (of the
first subsequence) which converges to some point say 7; € K. But then

| dr(F1) — p(r) || < sup,ex || dr(r) — pir)|| + || uFr) — pir)].

The first term now on the right hand side goes to zero as shown above, the second one by
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continuity of p. Also by Theorem 3.3, A(37) tends to A(r1). Applymg now Lemma 5.4 we
get lim infr.. drAr(ir)t dT = u(r1)’A(r)*u(r1). But this is a contradiction to the
construction of the subsequence. Now using again Lemma 5.4 we see that u(7)’A(7) "u(7) is
lower semicontinuous on K and hence attains its minimum. From Lemma 5.3 and Theorem
5.1 we conclude that inf,exu(7)’A(7) *u(r) > 0. Consequently d7Ar(37)* dr>m >0 for large
T. Next, applying Lemma A4 of | 19| to Ir(1), we easily (as in Theorem 3.3) get Ir(r) >
(U(r).0%) /27 uniformly in K. Suppose now lim sup Ir(#7) > lim inf I7(37). Choose a subse-
quence such that Jr(77) — lim sup Ir(?7). By compactness there is a sub-subsequence 7r
— 11 E 7 (p, q)(D) and consequently by uniformity of the convergence of irand the continuity
of I(t) we get Ir(Gp) — l(11)02/277 Doing the same for another subsequence with Ir(37) —
lim inf Ir(37) we get Ir(37) — L(12)0%/2n with 7, € T (p, .,)(D) Now by definition of D,
I(r)) = l(r;) and hence lim sup = lim inf. In other words 6 6% — constant > 0. Hence
(1/T)R®?(77) stays bounded away from zero and therefore (1/ T)R®9(77) > T¢; for T
> T(w) forall wEE'.

THEOREM 5.6. Assume that h € Ul and choose a chain (0, 0) = (po, o), -+,
(px, gx) = (P, Q). Let ar(p;, ;) be between 0 and 1 such that we have T 'Cayp, ) = 0
when T — o for i =0, ..., K. Then the estimators Pr, §r derived from the first variant
of the procedure fulfill pr = p(h), §r = q(h) for T > T(w) and w € E’ (i.e. almost surely).
For the estimators of the third variant we have pr = max(p(h), q(h)) for T > T'(w) and
w € E’, if ar(p, p) has the same property as ar(p;, q;) above.

ProoF. Suppose it would be false; then one could choose a su_bsequence such that
(Pr, §7) = (pi,, g;,) with p;, < p(h) or q;, < q(h). But then h & U(‘;,zio,qio) and applying
Lemma 5.5 we get a contradiction. The second statement is proved similarly.

DEFINITION 5.1. Wi, = (k€ U: (p(k), g(®)) = (p, @)}, V&S = U{Win:ir=p,s
< g, min(P — p, @ — q) =min(P — r, @ — 5)}. It is shown in [19] that V{;:3 is the generic,
maximal set over whose preimage under 7(,,q) the matrices A(7) have constant rank.

THEOREM 5.7. Assume (A) holds and h € U{gq) (implies (B)). Then:

a) If one assigns (in every chain) ar(p, q) between 0 and 1to all (p,q),p =P, q=Q
(note that ar(p, q) may depend on the chain too) such that (for all assignments)
T Copip,— 0 and ar(p, g) = 0 (i.e. Cap(p,9) = ). Then the estimators pr, §r obtained
from the second variant are weakly consistent.

b) If P = Q and one assigns ar(p, p) to every 0 < p < P such that ar(p, p) = 0 and
T Cap(p) — 0 then the estimator pr obtained from the third variant of the procedure
converges to max(p(h), g(h)) in probability.

PrROOF. First choose a chain (po, qo), -+ +, (Di, i), - - +» (Pk, gx) such that p; = p(h),
¢ = q(h). Now by Corollary 4.14 in [19] R“" %) (37) is asymptotlca]ly Chi squared. Since
ar(pi, qi) = 0, P(RP*%(31) > Carip,ap) tends to zero by an easy argument. In other words
for every 8 > 0 and T large enough there is E; 7 C E’ such that P(Esr) =1 — d and on Es 7
we have R¥*% (1) < Cag(p,q- Also for large T the tests correspondmg to (pj, qj), J < i,
reject for w € E’ by Lemma 5.5. Consequently on Esr we have pr = p;, §r = qi, i.e. the
estimators obtained by the first variant with respect to this special chain are weakly
consistent. Now since on every other chain which does not contain (p(h), q(h)) the
estimator eventually must be bigger than (p(h), g(h)) at least in one component, we have
that the estimators of the second variant are on E; r determined by the estimators of the
first variant for the special chosen chain. And these are weakly consistent as just shown
above. To prove (b) observe that Theorem 5.6 implies that Pr=max(p(h), q(h)) eventually
on E’. Now for s = max(p(h), g(h)) we see that & € (V{£3’)"? defined above, and hence
R (7r) is asymptotically Chi squared again by Corollary 4.14 of [19], and one proceeds
as above.
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The next theorem relates the convergence speed of the ar(p, q)’s to zero to the
convergence speed of the c,,’s. Note that all asymptotic properties of the three variants of
the procedure depend only on the convergence rate of the c,,’s. Consequently we could
have defined the procedure without reference to ar’s and to Chi squared distributions,
merely letting cr(p, q) then be an arbitrary sequence of non-negative numbers; but of
course there is no loss of generality in not doing so.

THEOREM 5.8. Let 0 < ar <1 and c., be the corresponding upper quantile of a Chi
squared distribution with v degrees of freedom, i.e. P(x% > c,,) = ar. Then for any f: N
— R, limr_,f(T) = o we have (f(T)) 'c.,— 0 if and only if —log ar/f(T) — 0. (Note that
this is independent of v.)

The proof of Theorem 5.8. can be found in the appendix.

The next theorems will give the strong consistency results for the second and third
variant of the procedure under some mild additional assumptions.

LeEMMA 5.9. Suppose h € UlBq) (which implies (B)) and also (A), (C) hold. Let 77 be
the estimator—as in the definition of the procedure—corresponding to a (p, q)-specifi-
cation such that h € V() and denote the true parameter by 7o, i.e. 7o = w2 o (h). Then
VT dr(7r(w)) /g(T) tends to zero almost surely for all functions g: R* — R™ such that
8(T)/Vloglog T — » and ¥%-1 g(T)'T™! < 0.

Proor. First note that the assumptions of Theorem 4.2 of [19] are fulfilled since a
fortiori we have A € U{Z,. Then recall equation (8) of [19] which is of the form
VTar(#r) = VTdr(ro) + Dr(w)VT(#r — 7). Since #r is a restricted estimator and by
construction of 7o we see that both have theirp + 1, -.., Pand P+ q+ 1, ..., P+ Q
coordinate equal to zero. Now we skip the corresponding rows in (8) by premultiplying it
with JJ’, where J contains *;~ columns 1, -+, p, P+ 1, - .. P + q of the identity matrix of
order P + Q. Note that J "dr is zero since #7is a (restricted) local minimum of /7 over a
neighborhood of 7, intersected with 6, q (for large T'); see [19] and the appendix. So we
get

0 = VTJ'dr(r0) + J'Dr(w) VT (Fr(w) — 7o)
= VT J'dr(re) + J'Dr(@)INTI (Fr(w) — 7o)

the last equality being true since the coordinates in 77 — 7o which become deleted by J’ are
already zero. Now by Lemma A2, VTdr(ro) differs from VTdr(10) only by a term say
Ur which is of the order o(g(T')) (for every g as above) almost surely. Consequently 0 =
J'Ur + VT dr(10) + J'Dr(w)JVTJ' (7r(w) — 7o). Now from the proof of Theorem 3.2
and by assumption (A) we-see that every component of VTdr(ro) is a martingale with
strictly stationary square-integrable ergodic martingale differences and hence it obeys the
law of the iterated logarithm. (LIL); see for example [10] or [22]. (24) therefore implies

_JUr, T dr (10) . J'Dr(@)INTI (71 (w) — 7o)
g(T) g(T) g(T)

where the first and second term converge to zero a.s. Now as is shown before Theorem 4.2
in [19], Dr(w) — 2A(70) = B(7,) for all w € E’ and by virtue of the proof of Lemma 4.8 in
[19] we know that J’'B(1o) is regular. Consequently we have VTJT (77(w) = 70) /8(T) -
0 almost surely and since the remaining coordinates are identically zero we can replace it
by VT (7r(w) — 7o) /&(T) — 0. Using again equation (8) of [19] we get

(26) VTdr(#r) = Ur + VTdz(ro) + Dr(@) VT (#1(w) = 10).
Observing the second term on the right hand side of (26) obeying the LIL, we get

(24)

(25)



ORDER ESTIMATION IN ARMA-MODELS 881

VTdr(7r) /8(T) — 0 almost surely since Ur/g(T') goes to zero by Lemma A2 and the third
term of (26) divided by g(T') does as just shown.

THEOREM 5.10. Ifh € Ul g and if (A), (C) hold then the estimators pr, §r obtained
from the second variant of the procedure are strongly consistent provided that for all
assignments of ar (to-all (p, g)’s in all chains, compare Theorem 5.7) we have T cuy(p,q)
— 0 and lim inf g(T) 2Cap(p,e > O for some g as in Lemma 5.9. Secondly, if P = @ and
under the same assumptions (here ar(p, q) needs only be defined for p = q) the estimator
Pr of the third variant of the procedure converges to max(p(h), q(h)) almost surely.

ProoF. In view of Theorem 5.6, it remains only to prove that the first variant of the
procedure applied to a chain which passes through the point (p(h), g(h)) stops at this
point almost surely, i.e. R 7™ ™ (31(w)) < Car(p),q for almost all w € E’ and for large
T. Now in the proof of Corollary 4.14 in [19] we have shown that under the given
circumstances Az (#7)* — A(7)* and since 6% = Ir(?r) is a consistent estimator of o we
have from Lemma 5.9 that R #®9®(3,) /g(T)? — 0 almost surely. Since we have assumed
lim inf g(T) 2Capip.qy > O for all p = P, g = @ we clearly obtain the desired result. The
second statement is proved in completely the same way by looking now on R$?(7r), s =
max(p(h), g(h)) and again using Corollary 4.14 in [19] and Lemma 5.9 observing that A
€ (Va2

It is well known that the estimators obtained by minimizing Akaike’s criterion AIC
tend to overestimate p, q. The following theorem gives conditions under which our
procedure gives estimates overestimating the true orders:

THEOREM 5.11. a) Under the same conditions as in Theorem 5.7 but now ar(p, q)
> ¢ >0 for all T and all p, q (and in all chains) and if (p(h), q(h)) # (P, Q) then we have
that the estimators pr, §r obtained by the second variant fulfill limr_,. P(pr > p(h), §r
=q(h) or pr=p(h), Gr> q(h)) > 0. If ar(p, q) — 1 for all p, q then this limit equals one.

b) The same as a) is true for the estimators obtained by the third variant if P #*
max(p(h), q(h)), the limit under consideration being now limr_..P(pr > max(p(h),

q(h))).
The proof is easy and similar to the proof of Theorem 5.7.

6. Conclusion. The proposed procedure for estimating the orders of an ARMA-
process provides an alternative to the usual information criteria like AIC, BIC and so on.
The consistency of the resulting estimators is shown under similar conditions as the
corresponding result for the estimators obtained via BIC. The assumption that P, @ must
be known and fixed is not so severe a problem as it might seem since by an easy argument
we see that the consistency result holds also true if P, @ are allowed to increase slowly
enough with the sample size T, but we do not know at the moment how slow this increase
must be. Nevertheless we expect that the same rates of increase as in [9] will work. We are
pretty sure that the same results are true also for other criteria than the prediction error
criterion used here. It is well known that the estimators obtained via AIC overestimate the
true order asymptotically, but recent results of Shibata [21] show on the other hand that
these estimators are optimal in a certain sense if the underlying process is not an AR-
process and one fits only AR-models. It is not clear if the estimators considered in Theorem
5.11 have also such a property; moreover it is not clear whether one could find a behaviour
of the ar’s such that the resulting estimators combine both desirable properties, namely of
being consistent whenever 2 € Ul o and of being optimal in the sense mentioned above
whenever & & Uif o) (or x(¢) is even not an ARMA-process). Looking at Theorem 5.11, we
see that ar — 1 provides estimators which overestimate p(k), g (h)with probability one
asymptotically which is also true for the AIC-estimators. From a testing point of view,
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however, ar tending to one does not make much sense. In general, the behaviour of all the
order estimation procedures is not very well understood in the case & & Ul ). However,
the pathological behaviour of a single LM-test can also occur in this case, as has been
discussed in [19].

From a practical point of view all the order estimation procedures involve a lot of
computational burden. The third procedure given in this paper is one way of reducing the
number of models to be fitted. Of course the Hannan-Rissanen algorithm, [9], can be used
to obtain (approximations to) the estimators #r on which the test statistics R % (7r) are
based, compare Section 4.

The assumption that 2 has no MA-zeroes on S seems hardly to be removable. The
fourth moment condition seems to be minor.

APPENDIX

LEMMA Al. The function i: U — U defined by i(k) = k™' is a homeomorphism with
respect to the pointwise topology.

For a proof see the appendix of [19].

Now let x be a scalar weakly stationary process as in Section 2 but whose spectral
measure F (defined on the unit circle S) need not be necessarily rational. Following [13],
[14] we define d = inf{f |k~ |?> dF:k € U%,q}. Note that if dF = (¢/27) hd\h* then d
=inf{[ |k |*dF:k € U,q} where the integral is assigned the value infinity in the case
k™! is not in Ly(F), which can only happen if 2~ has a pole on S. (To be precise in this
case we would also have to define the value of 2! on that point of S where the pole occurs.
This assignment is clearly irrelevant if F' gives no mass to this point as in the case of
rational spectral measures). Now the set Dipq = {k € Upg: [ | k7| dF = d} can be
shown to be nonempty and compact, see [13], [14]. Note that if x is an ARMA-process and
the true transfer function z € Uy, ) then Dy, 4 = {h}.

For technical reasons we define as in [13], [14] the following criterion

lr(k) = f (X0 Tj(k™)e™) dIr(w)(Ti-0 Tj (k™')™ ™)

where dIr(w)/dA is the periodogram (1/T)| Y 7=1 x(t)e** |2
Define the set

Cr(w) = (k€ Ty Aein (k™) = 1 + %@ \Tr(k) = Tr(k) | < g Rmin(™)))

where Amin(2™") is the modulus of the absolutely smallest pole of 27, br is an arbitrary
sequence of real numbers such that 77 br | 0, br/InT — o and g is an arbitrary continuous,
strictly monotone function on R with g(1) = 0. Then it follows from Lemma Al and from
the results of Sections 4 and 8 in [13] as well as Sections 4 and 5 of [14] that there is at
least one sequence of (measurable) estimators £, € U noforT=1 such that for almost all
w€E Q there is a T(w) such that for T = T'(w) the following holds: (i) kr(w) € Cr(w), (ii)
Er(w) is a minimum of Ir over Cr(w). Furthermore every such sequence kr (termed “M-
estimator” in [13], [14]) converges almost surely to D(,q (see Theorem 8.7 in [13] or
Theorem 5.7 in [14]). Loosely speaking, one gets a “consistent” estimator regardless which
‘minimum of Ir over Cr(w) is chosen. From now on we will work (for every p, q) with an
arbitrary but fixed sequence £7. Denote by Ej, ) C € a set of measure one such that for
w € E(,, ), (i), (ii) and the convergence to D, is fulfilled for the fixed sequence Er. For
later uselet E' = En N {E(,q):p,q € NU {0}}. Then P(E’) =1 and on E’ our estimators
converge to D, q for all p, g (E is defined in Section 2). Note that our assumptions imply
the ones made in [13], [14]. We want to remark that the requirement of minimizing /r over
Cr(w) rather than over U, itself is only of technical importance and seems not to be
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very restrictive, since if the minima over U, lie all in Ut,,q) then they could have been
obtained as k7 by the above procedure by a suitable choice of b7 and g. Furthermore
Cr(w) 1 U%,q. Note also that if x is ARMA and 2 € UY,, then there is an open
neighborhood O of the unique parameters (a, b) of & (i.e. a”'b = h) in 6,4 such that
T(p,9(0) C Cr(w) for large T. That ensures that the estimators £ can be found as local
minima in the parameterspace by use of first derivatives. For a proof of this statement see
[13], Theorem 8.10.

For the proof of the following lemma see the appendix of [19].

LEMMA A2. If c and d are rational functions with no poles in D U S then Ur =
(1/VT) $L1 e(L)Z@B)dL)E(E) — (1/YT) T71 e(L)x(t)d(L)x(¢) tends to zero in L' and
probability. If additionally Ex*(t) = ¢, < » then Ur converges to zero in meansquare and
is 0(g(T)) almost surely for every g(T) such that ¥5-1 (g(T))'T™' <  and g(T) —
o(g:R*— R"). .

PROOF OF LEMMA 5.3. pu(r) being 62/27 times the gradient of (r) is orthogonal to the
set {T € Oip.g): 1(7) = (1)} 2 73,9 (m(r,@) (7)) in the point 7. To be precise u(r) is orthogonal
to the set obtained from 7 3 o) (7(,¢) () by translating 7 into the origin. But this is exactly
ker A(r), see Lemma 4.6 in [19], (intersected with the conditions for the zeroes and poles
which do not reduce the dimension!) so we have u(r) orthogonal to ker A (7) which implies
w(r) € ImA(7), i.e. p(r) = A(r)-z and z # O since u(r) ¥ 0. Now u(7)’A(7)"u(r) =
2’A(1)A(1)"A(7)z = 2’A(7) z = 0 by positive definiteness which implies also that equality
can only hold iff z € ker A(r) which is impossible since 0 # u(7) = A(r)z. Consequently
(1)’ A(r)"u(r) > 0.

PROOF OF LEMMA 5.4. Suppose the lemma is false. Then there must be a subsequence
(also denoted by n) such that x,A x, < x’A*x — e. Now the eigenvalues of A,, say (A1(n),
.«+, Az(n)) converge to the eigenvalues (A1, - - -, Ax) of A. By the symmetry of A, there is
an orthonormal basis (z1(n), - - -, zx(n)) =:Z(n) of eigenvectors corresponding to (A:(n),
««+, Ax(n)). Now it is possible to find a sub-subsequence such that Z(n) converges to some
matrix Z = (21, - - -, 2). Clearly the columns of Z are an orthonormal basis of eigenvectors
corresponding to (A1, - - -, Az). For the quadratic forms we find

xhAYxn = x0Z(n)Z(n)'AYZ(R)Z(n) x,
AT (n) O

= x,Z(n)(Z(n)'AnZ(n))*Z(n) x» = xn.Z(n) K Z(n)'x,
0 Af(n)

where A" = —>1—\— for A #% 0 and 0 otherwise. Similarly
ATO

x'Atx=x'Z E Z'x.
0 Af
From that x,A;x, — x’A*x = ¥ [\ (mui(n) — A\i'ui] + ¥ A (n)uj(n) where u(n) =
Z(n)'x., u = Z'x and the first sum ranges over all i such that A; # 0, the second one over
those j where A; = 0. Note that in the first sum A; }(n) is well defined for n = N for some

N. Observing now that the first sum goes to zero and the second one is always non-negative
by positive semidefiniteness, we have arrived at a contradiction to x,A7x, < x’A*x — &.

ProOF oF THEOREM 5.8. For ease of notation let ¢r = ¢a,. Now cr is bounded iff ar is
bounded away from zero. In this case the above statement is clearly true. Next consider
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the case where a7 — 0 and then clearly ¢z — . Now if » > 1 we have
(19) P(xk=cr) = ar=P(xi=cr)

where K is the biggest even number less than or equal to » and L is the smallest even
number bigger than ». Using the result of [11] page 173 we get

1 K/2—1 cr / . 1 L/2—1 Ccr / .
(20) exp 3 cr | T X% > J'=<ar=<exp 3 cr ,'éo— 03 J!

From that we obtain

L
Z-1

1 1 cr\? 1 .
(21) Diexp —3 cr | < ar < Dqexp ~3 cr ). 5 =< Dsexp| — 1 cer| with D;> 0.

This implies
—log D, er log ar - log D; LT
f(ry ~2f(T)  fT) —  f(T) 4f(T)

from which the claimed equivalence follows. To deal also with the remaining case » =1 we
use the result of [11] page 57 equation (29).

(22)

(23) 2{1 - % n+a- exp(—w))”“’]} = ar = 2{1 — $(Ver)}

=ofi3[1 (1-en(-3)) )

where ¢ is the standard normal cumulative function. This implies
1—-+V1—exp(—cr) =ar=1-— v1—exp(—%ecr)

which gives exp(—2c7) = ar < exp(—jcr) for large 7. From this last inequality we
immediately get the required result.
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