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AN INEQUALITY COMPARING SUMS AND MAXIMA WITH
APPLICATION TO BEHRENS-FISHER TYPE PROBLEM

By SipDHARTHA R. DaLaL! AND PETER FORTINI
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A sharp inequality comparing the probability content of the 4 ball and
that of 4. ball of the same volume is proved. The result is generalized to bound
the probability content of the 4, ball for arbitrary p = 1. Examples of the type
of bound include

P{(|Xi|? + | X, |?)"? = ¢} = F*(c/2V%"), p=1,

where X, X, are independent each with distribution function F. Applications
to multiple comparisons in Behrens-Fisher setting are discussed. Multivariate
generalizations and generalizations to non-independent and non-exchangeable
distributions are also discussed. In the process a majorization result giving the
stochastic ordering between Za. X, and 2b,X,, when (a, a3, - - -, a2) majorizes
(b7, b3, - - -, bZ), is also proved.

1. Introduction and summary. For independent random variables X and Y, it is
often difficult to evaluate the distribution of | X | + | Y|, while the distribution of max(| X|,
| Y]) is easily obtained. In Section 2 of this paper, conditions for a stochastic ordering
between the two are found using majorization results. Several illustrative examples are
included in Section 3. An inequality obtained in this section is applied in Section 4 to a
Behrens-Fisher type multiple comparisons problem (Dalal, 1978). In the last section, a
multivariate analogue to Theorem 1 of Section 2 is studied. As an example, it is shown
that, for independent standard normals, | X;| + ... + | X, | is stochastically larger than
VE max(| X1 ], - --, | Xz|).

2. Basic inequality. Before stating the basic inequality, notions associated with
majorization are defined. An n-vector x = (x1, x2, - - -, X,) majorizes an n-vector y if Zy;
= 3x; and for a decreasing arrangement of coordinates of x and y, Y x; = Y 3: (R =1, 2,
.+, n). A permutation symmetric function g of n variables is Schur-convex if g(x) = g(y)
whenever x majorizes y; g is Schur-concave if g(x) < g(y). General discussion of
majorization theory and some probabilistic implications can be found in Marshall and
Olkin (1979).

THEOREM 1. Let (X, Y) be a nonnegative random vector with symmetric density
f(x, ¥). If f( \/;, \6/) is Schur-convex, then for any real c,

(1) PX+ Y<c¢)=P{V2max(X, Y) < c}.
For Schur-concave f( «/;, «/;), the following reverse inequality holds:
2 P{X+ Y=<c}=P{V2max(X,Y) < c}.

ProoF. We prove the theorem for Schur-convex f( Vx, \/5). The proof for Schur-
concave f( «/;, «/_)_/) is similar. From the definition it follows that for any nonnegative (x, y)
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and (w, 2) such that x* + y* = w? + 2% and max(x, y) < max(w, ), (x%, »°) is majorized by
(w? z%). Consequently f(x, ¥) < f(w, ). Thus, along any circle x2 + y2 = r? the density
increases as one moves away from the line x = y. The opposite conclusion holds for Schur-
concave f( «/a_c, «/;).

Let S; be the square region for which V2 max(x, y) < c and S; be the triangular region
for which x + y < c. Denoting the locus of the circle x? + y* = r? on the positive quadrant
by C,, it follows that the arc-length of C. N S; coincides with that of C. N S,, while
C. N 8 is closer to the line x = y than C, N S;. Consequently by the monotonicity of f
along the circle described above,

P{¥2max(X,Y)=c|X’+ Y2=r} = P(X+ Y=c| X2+ Y2 =r?).

The theorem follows by averaging over the distribution of X* + Y2
In applying this result the needed Schur-convexity, or concavity, of a permutation
symmetric f( Vx, «/;) may be verified by Ostrowski’s criteria, namely,

) )
(x— y’(a - 5)1«& Yy =0,

or = 0, respectively, for all (x, y). In the important special case of i.i.d. random variables
with density £, f(x, ¥) = f(x) f(y); thus by Remark 2.2 of Marshall and Olkin (1974), Schur-
convexity or concavity of f( Vx, \/3—') is equivalent to log-convexity or concavity of
f( Vx). We state this important result as follows.

COROLLARY 1. For iid. positive random variables X, Y with density f, (1) holds
whenever log f( Vx) is convex. The reverse inequality (2) holds if log f( Vx) is concave.

A generalization to nonexchangeable random variables X and Y is provided by

COROLLARY 2. Let X and Y be positive random variables with joint density f(x, y).
Then PX+ Y=<¢) = P{\/§ max(X, Y) =< ¢} iff(\/a—c, \/&) + f(\/;/, Vx) is Schur-convex.
The inequality reverses for Schur-concavity.

PROOF. I/zf(«/;, \/;') + % f( «/3—/, Vx) is the density function of exchangeable variables
(X', Y’) generated by taking X and Y in random order.

Finally we state without proof the following theorem comparing the minimum and the
range of two i.i.d. nonnegative random variables. The proof, although involving different
regions, follows from arguments similar to those employed in the proof of Theorem 1.

THEOREM 2. Under the conditions of Theorem 1, for Schur-convex f (s/;, \/5),
P(|X-Y|<¢)<P{minX, Y) < ¢/v2},

and P((%|X2-Y* )"’ =c) = P((|XY|)"*=¢).
The inequality between the probabilities reverses if f( «/a_c, «/;) is Schur-concave.

3. Examples. We briefly illustrate Theorem 1 for several pairs of random variables.
a) i.i.d. random variables and their powers. Fori.i.d. (S, T') bilateral exponential, Student’s
t, logistic, or Weibull with exponent < 1, logf( \/g) is convex for s = 0, hence (1) holds by
Corollary 1 with (X, Y) = (| S|, | T|). For (S, T') i.i.d. normal, N(0, o), logf(«/g) is in fact
linear so that equality holds in (2). In all these cases convexity of logf(vx) implies that
the density of X7, ¢ = 1, has the same property and thus

Pr{(|S|?+|T|)"" =< ¢} = Pr{max(| S|, | T|) < c/2"*}.

For the Weibull distribution with exponent = 2 and Pearson type II distributions,
log £( \/;) is concave and in these cases (2) holds.
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b) Non-i.i.d. random variables.

i) Bivariate normal variables. For (S, T) bivariate normal with means 0, variances o®
and correlation p, f («/J_c, «/;) is Schur-concave by Ostrowski’s criterion and hence (2) holds
with (X, Y) = (|S|, | T]).

ii) Scale mixtures of independent normals and powers of t. Let X* = |aZ;,|7, Y* =
| 8Z5 |7, where Z1, Z, are ii.d. N(0, 1), and ¢ = 1. By Corollary 2 it can be shown that (1)
holds for (X*, Y*). Now let X =¢,|% | Y| =|t.|? where ¢, and ¢, are independent Student’s
t with » and p degrees of freedom and g = 1. Then, since Student’s ¢ is a scale mixture of
normals, the preceding argument about (X*, Y*) implies that

(3) P{(|t,|7+ |t.|9)" < ¢} = P{max(| ¢, ], | t.]) = ¢/2"%}.

This result will be applied in the next section. Equality holds for p = » = 0 and ¢ = 1. To
gauge the precision of (3) for the application we compare the two sides of (3) in Table 1
below for various ¢, ¢ and » = p. .

TABLE 1
Comparison of P{(| t,|? + | £, |?)"/? < ¢} with the lower bound (3)

v=p= 5 10 o (Normal)
Lower Lower Lower
q c Value bound Value bound Value bound
1 239 239 255 254 — —
1 2 617 614 .663 .660 — —
3 .845 .833 .891 .884 — —
4 941 928 971 965 — —
1 344 315 .368 .336 .393 .360
2 2 759 717 811 .768 .864 .823
3 925 .897 962 .940 989 977
1 374 344 400 .367 428 .393
3 2 787 748 .839 .801 .892 .856
3 935 914 970 .954 993 .985

4. An application to multiple comparisons in Behrens-Fisher type
problems. This investigation was originally motivated by the following Behrens-Fisher
type situation. From each of 2 N(p;, o7) populations a random sample (Xi1, - -, Xin) is
obtained. The purpose is to obtain simultaneous confidence intervals for all linear combi-
nations of the s with exact confidence 1 — a.

For this problem, if #(q, ) denotes the upper a-point of the distribution of ||, =
(2| tn,-1]9)"9, then Dalal (1978) showed that

(4) Pr{Sap; € Sa.X; * t(q, a) (2| a;|PS?/n??)/? forall ain R*} =1 — «

where nonnegative (p, q) are such that 1/p + 1/¢ = 1.

Among this infinite class of procedures, only the procedure corresponding to p = 1
(g = ») was examined earlier as the percentage point (0, a) (tabulated in Dalal, 1978) is
easily obtained by solving IT Pr(| ¢,-1| < ¢) = 1 — a. Now we examine the case £ = 2, and
compare various procedures supposing that comparisons of the form g, * y, are of primary
interest.

From (3) it follows that for 2 = 2, ¢(g, a) < 2Y*¢(w, a). Using this bound as a critical
constant conservative simultaneous intervals can be constructed for all linear combinations
for any given p. Table 1 as well as more detailed computations indicate that this bound
yields a good approximation to the true value.

The above bound may also be used for comparing various p’s. If W, . is the width of
the confidence intervals for p; + . for a given p, then the bound on #(g, «) implies that
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Wian/ Waan = (1 + p)/2Y%(1 + pP?)? where p? = n,S3/n.S? is the ratio of sample
variances. Values of the lower bound can be computed for comparing various procedures.
Numerical computations using this bound indicate that p = 2 is superior to p = 1 for u; +
uz unless the ratio of standard errors exceeds about 7.

5. A multivariate analogue. Two multivariate results are proved here. Theorem 4
is of independent interest as it compares linear combination of i.i.d. positive random
variables in a majorization sense. We use this result to prove Theorem 5, a multivariate
extension of Theorem 1 for Schur-concavity. The hypotheses of both Theorems 4 and 5
are satisfied in the important case of absolute normal random variables.

THEOREM 4. Let X;, - -+, X, be nonnegative i.i.d. random variables with density f(x),
where log f(Vx) is concave. Further, let nonnegative vectors a and b be such that (ai, a3,
.+, a2) majorizes (b%, b2, ---, bZ). Then for allc =0

P(ZaiXi<c) =z PEbX;<c).

Proor. It suffices to prove the theorem for n = 2. The n > 2 case follows from n = 2
by applying the technique of 7T-transforms described in Marshall and Olkin (1974). Without
loss of generality, assume a? + af=bi+ bi=1,0<a:<b;=b =a; =<1

As in the proof of Theorem 1, we argue conditionally on the value of R = (X? + Y?)"/2
The loci of points for which a;x: + azx2 = ¢ and b:x; + b2x; = ¢ are half-spaces both
tangent to a circle of radius c¢. Each of P(a:X; + a:Xz = ¢| X3 + X5 =r?) and P(b: X1 +
b X = c| X} + X3 = r) is the conditional probability content of an arc obtained as the
intersection of the circle X? + X3 = r? with the appropriate half-space. The second arc,
however, is more centrally placed relative to x; = x; and has equal or greater length in the
positive quadrant than the first. Hence, when f{( «/x—l, Vx1) is Schur-concave,

Pl Xi+ X = c| X2+ X3 =1 <= P Xi + b Xo = c| XT + X5 =17).

The theorem follows by averaging over X? + X% and reversing all inequalities.

Let S, denote the sum and M, the maximum of positive ii.d. random variables X,
- ++, X, having density f(x) and cdf F(x). To derive a stochastic ordering between S, and
M,, we require the following.

LEmMA 1. Iflog f( V) is concave and f(x)/x is decreasing, then
(i) P(M,+ M, < c) < P(My, < c/v2) for M,, M}, iid.
(i) P(M, + M1 < ¢) < P(Manir < c/N2), for M, independent of My, .

PrROOF. Let f.(x) = nf(x)F"'(x) be the density function of M,. Since f(\/;)/ vz
is decreasing, F(\/;) = [ f(«/;)/2«/; dz and hence log F(x/;) is concave. Therefore
log f,,(«/a_c) is concave. (i) follows from Corollary 1, while (ii) follows from Corollary 2 and
a short calculation. '

Using the above results we finally prove a multivariate analogue of Theorem 1.

THEOREM 5. Let Xi, X;, «-+, X, be iid. positive random variables with density
function f(x). If log f( Vx) is concave and f(x)/x is nonincreasing, then for all c =0

PCEX; < c) < P{Vnmax(Xi, Xz, + -+, X,) < ¢}.
ProOF. We proceed by induction on n. Abbreviate the relation P(Z < ¢) = P(W = ¢)

for all ¢ by Z = stW. The conclusion, that S, =stvn M,,, is trivial if n = 1, and is true by
Corollary 1if n = 2.
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If n is even, set n = 2p. Write S, = 34 X; + Z;,,.X; =S, + S;. Then
S, =S, + S, =stvp M, + Vp M}, = stVn M,

by the induction hypothesis and Lemma 1(i). It is easily shown that if Z; = stZ, and W,
= stW, with (Z;, Z;) independent of (W1, W>), then Z; + Wy = stZ; + Wo.

If n is odd, set n = 2p + 1. By Theorem 4 with a* = (n/2p, ---, n/2p,n/2p + 2, - -,
n/2p + 2) and B> = (1, --+, 1), S, = S, + Sp1 =stVn/2p S, +Vn/2p +2 Sp1. By
induction and Lemma 1(ii), this is stochastically larger thanvn M,.
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