The Annals of Statistics
1982, Vol. 10, No. 1. 190-196

CONFIDENCE INTERVALS FOR THE COVERAGE OF LOW
COVERAGE SAMPLES

By WARREN W. EsTY

Montana State University

The coverage of a random sample from a multinomial population is
defined to be the sum of the probabilities of the observed classes. The problem
is to estimate the coverage of a random sample given only the number of
classes observed exactly once, twice, etc. This problem is related to the
problem of estimating the number of classes in the population. Non-parametric
confidence intervals are given when the coverage is low such that a Poisson
approximation holds. These intervals are related to a coverage estimator of
Good (1953).

1. Introduction. Assume that a random sample of size N is drawn from a multinomial
population with a perhaps countably infinite number of classes. Denote the probability
that any particular observation belongs to class i by p;, where ¥ p; = 1. The coverage, C,
of the sample is defined to be the sum of the probabilities of the observed classes. Let X;
denote the number of observations of class i and let Y; = 1 if X, =1 and Y; = 0 otherwise.
Then the coverage, C, is given by '

(1) C=YpY.

This concept makes sense even if the number of classes is countably infinite. Also, if each
class is equally likely, i.e. p;, = 1/sforeachi =1, 2, ---, s, then C = Ngy/s, where Ny =
Y r=1 N denotes the number of distinct classes observed, and statements about C can be
converted into statements about s. Thus there is a relationship with the “unobserved
species” and “author’s vocabulary” problems which develop estimators for s.

The problem is to estimate C given {N.; k2 =1, 2, - ..} where N, denotes the number
of classes observed exactly % times and N = ¥ kN,. Good (1953) found the estimator

@) C” =1- (Ni/N)

for the coverage. The following results will not improve upon this point estimator, but
rather will address the question of a limiting distribution and confidence intervals for C.

Robbins (1968) proved an exact relationship for E(C) similar to (2). Harris (1959)
obtained an approximation,

E{(C - C")*} = E(N: + 2N,)/N?,

under different conditions. Under (3) it is not an improvement on Robbin’s “universal
inequality” for the variance of C — C”. With either result, if the observed number of
duplicates is small, the lower confidence limit may be 0, which is trivial, and the lack of a
limiting distribution leaves the calculation of the confidence interval in doubt. The
following result handles both problems. An example comparing these confidence intervals
follows the theorems.

Let D = Y, N, denote the number of classes observed at least twice. If all the p,’s are
sufficiently small, then D is approximately Poisson in distribution. This fact can be used
to create confidence intervals for the coverage when few duplicates are observed. It will be
shown that, under certain conditions, (N — 1) C/2 —p E(D) > 0. Then the usual confidence
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interval for E(D) based on the observation of D yields a confidence interval for C.
Furthermore, the result improves upon previously obtained confidence intervals if the
conditions hold.

The above formulation assumes sampling with replacement. If each class, i, 1 < s < oo,
when s is the number of classes in the populatior, is represented in the population by a
finite number of elements, M,, and a random sample is drawn without replacement by
selection of each of the Y{-; M, members with probability p, related results are obtained.

2. Theorems. In order to obtain a formal limit theorem sequences of N’s and { p.}’s
are required, so a subscript n is implied but often suppressed for notational simplicity.

THEOREM 1. Let {pin, Yipin=11=1,2, ---} and {N,} be such that
(3) Nmax p;— 0 and N(N-1)Y,p?/2—-m>0.
Then

(1) D and N, are asymptotically Poisson distributed with mean m, and Y r-3 kN,
converges in probability to 0,

and

(i) (N—1)C/2—,m.

COROLLARY 1. If Np; is small for all i, then D is approximately Poisson distributed
with mean m’ = N(N — 1) ¥ p?/2 and P(D = 0| N) is approximately e ™.

COROLLARY 2. Let d and n, denote the observed values of D and Ni. If n, is nearly
N and much larger than d, an estimator for the coverage, C, is given by

4) C’'=2d/(N-1).

Furthermore if (a, b) is a (1 — a) confidence interval for the mean of a Poisson random
variable based on a single observation d, then an approximate confidence interval for C
of size (1 — a) is given by

(5) ' 2a/(N —1) < C=2b/(N —1).

COROLLARY 3. Ifall s classes are equally likely (p; = 1/s for all i), and if n, is nearly
N and much greater than d, an estimator, s’, for s is given by

(6) s’ =nq4(N —1)/2d,

where ny denotes the number of distinct classes observed. Furthermore, an approximate
confidence interval for s of size (1 — a) is given by

(7) ng(N —1)/2b=s=nqs(N—1)/2a

where a and b are as in (5).

COMMENTS. Although N and N — 1 are asymptotic, the proof (see equation (14))
suggests that N — 1 is the appropriate factor. In relatively small sample problems, such as
Example 3, it performs better.

By (i) the results hold with N, replacing D. As an approximation, however, D is
preferable since the asymptotically negligible term of (14) in C corresponds approximately
to the term of (13) in D that is not in N,.

The estimator of (4) is in essential agreement with Good’s result (2), since, using
Theorem 1 (i),

1= (Ni/N) = Yi2 ENy/N ~ 2 ¥ -5 Ni/(N — 1) = 2D/(N - 1).
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Unfortunately, the linear combination of N,’s in a calculation paralleling (13) which best
approximates (14) is Y x-2 £N./2, which is not necessarily integer valued and does not
satisfy the limit law that integer valued linear combinations with coefficient 1 on N satisfy.
Good’s result would suggest using Y -2 (¢ — 1) N,. It and Y.-2 Nix = D have expectations
differing from (14) by the same amount, the former overestimating it and the latter
underestimating it. I have opted to use the latter because of the type of application in
Example 1 where the randomness assumption is sometimes violated by groups of obser-
vations in the same class. In that case D gives less weight to the extra duplicates.

In the equally likely case of Corollary 3, a computation shows that the maximum
likelihood estimator of s (Good, 1950, page 73) is asymptotic to s’ of (6). Also, C = n4/s so
that an estimate or limit on C corresponds to an estimate or limit on s.

The second theorem pertains to a different formulation of the problem: suppose each
class, i, is represented in a population by a finite number of elements, M;, and a random
sample is drawn without replacement from the population of ¥{-; M; members by selecting
each element with probability p. Then the sample size, N, is itself random. By making p
small and s large, results paralleling those of Theorem 1 may be obtained. If the M;’s are
not all very large, the effect of sampling without replacement alters the result somewhat.
In this context let

C=Y-1MY/Yi-1 M,
where Y, is as in (1).

THEOREM 2. Let {M;} be a fixed sequence of positive integers (not necessarily large)
and let s — o and p — 0 such that

(8) pPYi-iMi—> x

9) p max;=s M; - 0,

and

(10) Py Mi(M; — 1)/2 > m > 0.
Then

(i) D and N, are asymptotically Poisson distributed with mean m, and Y ;-3 kN
converges to 0 in probability,

and
(i) N(C—-p)/2—>pm.
Furthermore, if M; = M for all i,
(iii) {M/(M —1)}NC/2 —, m.

REMARKS. The results of Theorem 2 can be used to give point estimates and confi-
dence intervals for C. Also, (iii) gives us a feeling for how large the M,’s should be to be
able to disregard their effect if they are not precisely known. One obvious corollary is that
if M; is large for all i and the observed value of N is large and n; is much larger than n,,
then the results of the previous corollaries hold. The accuracy of the approximations is,
however, diminished by using N for E(N) and disregarding {M;}. Note that in (ii) and (iii)
and the associated corollaries, N is the proper factor and not N — 1 as in Theorem 1.

This sampling approach has a further generalization. Suppose that the M;’s are
themselves i.i.d. positive integer-valued random variables, but that otherwise the context
of Theorem 2 is maintained. The conclusions would hold if the hypotheses held with
probability one.

THEOREM 3. The hypotheses to Theorem 2 hold with probability one if p — 0, p’s
— m’ >0, E(M®) exists and M is not trivially always one.
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3. Examples.

ExampLE 1. Eddy (1967), in a hoard of ancient coins, found among 662 coins of the
emperor Gordian III (244-249 AD) only two pairs struck from the same dies. The die
varieties observed differ so minutely that numismatists are satisfied that they do not form
a collection of differing varieties. Assuming, then, that the sample was random, this implies
that a huge number of dies were employed in producing the coins. Numismatists would
like a confidence interval for C. Theorem 3 is appropriate since the dies produced
independent, identically distributed random numbers of coins. It is known that each M; is
on the order of 10,000 (Sellwood, 1963). Therefore we cite (iii) to justify using NC/2 =
E (D). The corollary parallel to (4), with N in place of N — 1, as in all corollaries to
Theorems 2 and 3, yields C = 4/662 = .00604 which is the same as (2). A bound on the
variance from Robbins’s “universal inequality” would be 1/(N + 1) and no non-trivial
lower confidence limit for C would be possible since (1/663)"/? = .039 is much too large.
Harris’s approximation (page 548) E{(C — C”)?} = E(N; + 2N,)/N? is not smaller and
inappropriate under (3). But (5) gives non-trivial justified intervals for any desired
confidence. For instance, a 95 per cent confidence interval of the form Cp < C is given by
.701/662 = .00106 = Cp = C. Numismatists examining this data find the coverage surpris-
ingly low and are therefore interested in a confidence interval of the form C < C;. Such a
95 per cent confidence interval is C = C; = 12.6/662 = .0190. This result also differs
substantially from any obtained from the naive incorrect application of a normal limit law.
If it is assumed that p; = 1/s for all i, confidence intervals for s have been obtained under
assumptions other than (3). Usually a sample contains many duplicate observations and a
normal limit law can be obtained as, say N/s — k > 0 ((3) implies £ = 0). Results based on
a normal limit law (for example, Darroch, 1958; or see Seber, 1973, Section 4.1.2) require
a normal limit law for D which is not reasonable unless D is large. Of course, if D is large
and yet the present hypotheses hold, the Poisson distribution is well approximated by a
normal distribution and the two results coincide.

ExaMPLE 2. The calculation of P(D = 0| N) when not all p;’s are the same is the
“generalized birthday problem.” Gail et al (1979) noted an application to cancer research
of the case when s is large and N is moderate. They obtained Corollary 1 and calculated
P(D = 0| N = 40) when p; = 1/10,000 for each i. The approximation, .924964, differs from
the true value, .924869, by one digit in the fourth decimal place, accurate enough for most

purposes.

ExXAMPLE 3. Suppose a sample of size 23 from s (unknown) equally likely classes yields
no duplicates. Even in this extreme case (7) can be used to obtain a confidence interval for
s (although not with an upper limit) and also a point estimator. The estimate from (6)
would be s = %, which is not likely to be useful. This reflects the fact that the probability
of no duplications is increasing in s. In that case a 50 per cent confidence point may be of
some use. Choosing b such that (0, b) is a 50 per cent confidence interval yields 26 = 1.386
and the point estimate s5 = 365.08. This is the reverse of the birthday problem. An
approximate 95 per cent confidence interval of the form s = s, is given by s = 84.5. The
true 96 per cent confidence interval is s = 92. This and other examples show that the lower
confidence bounds for s and upper bounds for C tend to be conservative.

4. Proofs of Theorems.

ProoF oF THEOREM 1. Let X; denote the number of observations of class ¢ in the
sample of size N. For notational simplicity the subscripts, n, on X;, N, and p; are suppressed.
Under (3)

(11) Y =2 JP(X;=j) ~ kP(X;= k)

uniformly in i, since
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(k+1D)PXi=k+1)=N(N=1) --- (N = k)pti1 - p)V"*/k
= {(N—=k)p:/(1 = p:)} P(X, = E).

By (3) the first factor can be made less than ¢ for all £ uniformly in i for n sufficiently
large. Summing from & + 1 to infinity yields (11).
Now

E(Xr-3 kNi) =3, Yi-3 kP(X, = k) ~ 3} P(X, = 3)

(12)
=(N-2maxp; Y, N(N - )pi(1 —p)" /20

by (3). Since Y ;-3 kN, is nonnegative, by (12) it converges in probability to 0, proving part
of (i).
For the other half of (i), let D;=1if X;=2and D;,=0if X; < 1. Then D = } D,, and
EMD)=YED)=YPX;=2)=YPXi=2)+ Y P(X;=3)

(13)
~ N(N — )pi(1 = p)"~*/2 ~ N(N — )p}/2—>m,

where we have used (11) and (3) in the last three steps.

Note that the variables D; are dependent. That N, and D converge in distribution to
the Poisson distribution with mean m will follow (Sevastyanov, 1972) if we show the r-
dimensional joint probabilities are uniformly asymptotic to the corresponding product of
the marginals. .

PX,=X,=---=X, =2)/{P(X,,=2) .- P(X, =2)}
_ N1 =py=p,= - =D, ~
(N-2r{N(N-1)}(1—-p,)"? ... A =p,)"*

uniformly, since N max p; — 0 by hypothesis. We did not need to separate out Sevastyanov’s
“rare” sets. This proves the result for N;. The result for D follows from (12).
Recall the definition of C given by (1).

E{(N-1)C/2} =% (N—-1)p;E(Y;)/2
(14) =Y N(N-1pi1—-p)"""/2+ ¥ (N - 1)p:P(X;=2)/2
~ N(N - 1)p?¥/2—> m.

)N—Zr

1

Also
Var{(N — 1)C/2} = ¥ Var{(N — 1)p;Y./2}
since the covariances are negative, and the right hand side is bounded above by
Y N(N — 1)°’p}/4 < (max Np;) ¥ N(N — 1)pi/4— 0.

Thus (N — 1)C/2 —p m, and Theorem 1 is proven.

The condition that n; is nearly N in Corollary 2 is required since E(N;) = 2 P(X; = 1)
~ 3 Np; = N — . Since E(D) is finite, d is required to be much less than N. Since the
sample mean is an estimator for the mean of a Poisson distribution, and since D is
approximately Poisson distributed, combining (i) and (ii) we obtain (4) and (5). If, in
addition, all s classes are equally likely, C = ng/s. Solving for s in (4) and (5) yields
Corollary 3.

The role of the “low coverage” assumption in this paper is to compel a function of C,
(ii), to converge in probability to a constant. It is important to recall that C is not a
parameter of any distribution, but rather a random variable. Thus the estimation of C by
arandom variable has sources of error in each random variable. The restrictive assumptions
reduce that to one source of error, which is handled by (i). Presumably the coverage of a
moderate coverage sample could be made to conform to a normal limit law, but it is not
clear how to do so. Normal limit laws were discussed further in Example 1.
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ProOF OF THEOREM 2. The proof of Theorem 2 is similar to that of Theorem 1, but
the differences are worth noting. In the context of Theorem 2,

E(D) = E(Y D;) =Y P(X;=2) ~ ¥ Mi(M; — 1)p*(1 — p)*~*/2
~YM;M; — )p*/2 > m

by (9) and (10). Since the D;’s are independent and P(D; = 1) — 0 uniformly in i, D is
asymptotically Poisson with mean m. This proves (i).
Since N is binomially distributed and E(N) = p = M; — o,

(15) {N—E(N)}/E(N) —r0.
Combining

(16) E(C—-p)E(N)/2—>m
and )
a7 Var{(C — p)E(N)/2} - 0
yields

(18) (C—p)E(N)/2 —>pm.
This and (15) yield

(19) (C—p)N/2 —»pm.

This is (ii). To prove (16),

(C-pE(N)={(EMY,/S M) —p}pE Mi=p L MY:—p* T M;

=pY M, - 1)Yi+pYY.—p* I M,
and
E(pYY.—p°Y M) ~pYMip(1—p)™" " —=p* T M:—0
and
E{pY M, —1)Y)} ~¥ M~ DMp*1 - p™"" > m.
To prove (17),
Var{(C — p)E(N)} = E*(N)Var C < p*(3 M.)* ¥ Mi(pM,)/(¥ M.)*
<pmax M; ¥ Mip?*— 0

By (9) and (10). Then (19) follows from (18) and (15) by adding and subtracting E(N).
Suppose, for (iii), that M; = M for all i. Then

E(N)E(C) ~ Y M*’ = {M/(M — 1)} ¥ M(M — 1)p* — 2Mm/(M — 1).

PrOOF OF THEOREM 3. Note that the existence of E(M?®) implies the existence of
E(M?) and E(M). The first two conditions imply ps — o, so (8) holds with probability 1.
Because p2s— m’ > 0 and because E {M(M — 1)} exists and is not zero, (10) is implied. To
obtain (9), note first that

1= P(p maxie,M; < &) = F*(e/p) = [1 — {1 — F(¢/p)}* = 1 — s(1 — F(e/p)).

Since p%s — m’, ¢/p ~ ¢’s"? and since s — o we need only that x*{1 — F(¢'x)} — 0. Recall
that if E(M®) exists then [ x?{1 — F(x)} dx exists, implying x*{1 — F(x)} — 0, which
suffices for (9). Theorem 3 is proven.
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