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A NOTE ON EMPIRICAL BAYES ESTIMATION OF A
DISTRIBUTION FUNCTION BASED ON CENSORED DATA'

By E. G. PHADIA

University of California, Davis and The William Paterson College of
New Jersey

Susarla and Van Ryzin exhibited an empirical Bayes estimator of a
distribution function F based on randomly right-censored observations. In a
later paper they obtained a different estimator which alleviates the weaknesses
of their earlier estimator and showed that it is asymptotically optimal with rate
of convergence n~!. The purpose of this note is to present a slightly different
estimator which is simpler and is also asymptotically optimal with the same rate
of convergence. Their numerical example is reworked to show that the estima-
tor is a proper distribution function.

1. Introduction. In their recent paper, Susarla and Van Ryzin [2] considered the
empirical Bayes approach and obtained estimators of a distribution function (df)
based on randomly right-censored data. Unfortunately, their estimators have
certain weaknesses, foremost among them being that they are not monotonic (see
their remark at the end of their example in the Appendix). In a later paper [4],
while avoiding these weaknesses, they obtained an estimator which is asymptoti-
cally optimal with rate of convergence n~! when the censoring random variables
are independent but not identically distributed. About the same time, the author
obtained an estimator which is slightly different from theirs, looks simpler, and is
also free from the weaknesses their earlier estimators suffered. The purpose of this
note is to report this estimator, show that it is also asymptotically optimal with the
same rate of convergence n~', and rework their numerical example.

In Section 2 we first introduce the notation and define our estimator. Since this
note is directly related to [2], we shall mostly adopt their notation. For the sake of
brevity many of the details will be omitted and the reader is referred to their papers
for further details. The asymptotic optimality is discussed in Section 3. In Section
4, we rework their example to show that the monotonicity of the estimator need not
be compromised.

2. Notation and formulation of the problem. Let (F, X)), i=1,2,--- be a
sequence of independent random variables. The F’s are distributed according to
the Dirichlet process with parameter a, to be denoted by 9 (). (Here « is a finite
nonnull measure defined on the Borel o-field ® of R the real line). Given F; = F,
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X, is distributed according to F. Further, let ¥, i =1,2,- - - be a sequence of
independent random variables (censoring variables), independent of (F,X,) and
each distributed according to a continuous df H (censoring distribution). (Here we
slightly differ from Susarla and Van Ryzin since they do not consider the Y;’s to be
identically distributed. However, we feel that in practice the assumption of a
common censoring distribution is reasonable. Moreover, it is possible to extend this
result to the nonidentical case with a little more complexity). We take both F and
H to be right-sided df’s, i.e., H(u) = P(Y, > u) and F(u) = P(X; > u|F, = F).

With this set up, the problem is to estimate the survival fnction F(u), based on
the observable random variables §; and Z; where 8, = I[X; < Y;] and Z, = X; A\
Y,i=1,2,---.Here I[4] denotes the indicator function of set 4. We note that
Z,,Z,, - - - are independent and that P(Z; > u) = F(u)H(u) for all i’s. The usual
integrated squared error loss function L(F, F ) given by

2.1) L(F, F) = [(F(u) — F(u))* dW(u)

is also considered here, where W is some known weight function on R.
The following empirical Bayes estimator (at the (n + 1)th stage) is proposed:

A

22) [1+ a(R)]S,(#) =[1 + a(R) ],y 2(4)

&(u,0)
= Z + X s + I 6 = O,Zn < —_—T
I[ n+1 >u] a(u, o) [0ns1 +1 u] OI[Z,H_],OO)
where
23 a(uoo)  N*(w), (N*(Z)+1+c\B=0z<
@9 o®)  n N\ TENAZ) v e
and N *(u4) = number of Z’s >u,i=1,2,- - - , n, and c a positive constant. We

shall hereafter denote a(u,00) = a(u) and a(u,0) = a(u). The estimator differs
from the Susarla and Van Ryzin estimators in the estimate of a.

Observe that this estimator is a proper right-sided distribution function, and is
independent of the censoring distribution. The estimator of a involves a product
and very much looks like the Bayes estimator or the Kaplan and Meier maximum
likelihood estimator. The role of the constant ¢ in this estimate may be viewed as
follows. When made arbitrarily large, it will tend to minimize the influence of
censored observations and &(u) will behave more like the sample distribution
function of Z; fori = 1, 2, - - - , n. On the other hand, if ¢ is made arbitrarily small
a(u) will tend to be close to the product-limit estimator of Kaplan and Meier [1].
By a suitable choice of ¢, a desired degree of smoothness in the empirical Bayes
estimator S, may be obtained.

3. Asymptotic optimality of S,(«). Under the same assumptions as in [2] and [3],
namely, a(R) is known and for any fixed but arbitrary u, a(u) > 0, H(u) > 0, it
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can readily be verified that
E|a(u) — a(u) = 0(n™")
by following their steps (Theorem 2.2 [3]).
The asymptotic optimality with rate of convergence 0(n~') can now easily be
verified by following Susarla and Van Ryzin’s approach (Theorem 3 [2] or Theo-

rem 5 [4]). The details of the proof are omitted here, but are available with the
author.

4. Example. As an example, Susarla and Van Ryzin [2] considered the data of
survival times (in weeks) of 81 patients from a melonoma study conducted by the
Central Oncology Group of the University of Wisconsin, Madison. They used
n = 80, zg, = 16" where the plus sign indicates that the 81st observation was
censored. Further they used a negative exponential distribution with parameter 8
as the censoring distribution, where 8 was estimated from the data, and obtained
the empirical Bayes estimator of the survival function by using their formula for
the case of known censoring distribution. They did not work out their example for
the case of unknown censoring distribution. The problem does not arise in our case
since our estimator does not depend upon the censoring distribution.

The estimator (2.2) for this example with a(R) = 1 reduces to

(4.1 S,(u) = F, .1 4(u) =1(1 + é(u,0))  foru <z = 16,
- Gwoo) f( 1 u > zg) = 16,
2 @[ zg;,0)

where d(u, o) is computed using the formula (2.3) with ¢ = 1 and a[zg;, ) = %%.
In the table we give the values of S,(u) evaluated at several values of u along with
Susarla and Van Ryzin’s (S-¥") estimator.

u <13 li<16 16 20 40 60 80 100 120 140 160 180 200 220 233 >234
u

S-V

estimator 1 1 1 .980 .835 .745 .681 .615 .529 .326 .180 .198 .093 .034 036 O

Our

estimator 1 988 988 .962 .744 .650 .593 .552 .479 .380 .302 .302 .259 .173 .173 O

Several comments on this estimate S,(#) are in order. First, note that our
estimator is nonincreasing, unlike theirs. Second, unlike their estimator, our estima-
tor remains constant between two values of u (for e.g., 160-180 and 220-233) in
the absence of any observations in-between.- Third, their estimator when u is
around 220 is close to zero which is enforced by taking a negative exponential
censoring distribution, whereas this estimator still gives higher values for the
estimator. This may be explained by the fact that 34 of 80 observations (42.5%) are
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censored and six out of seven beyond u = 180! However, if further smoothening is
desired toward the tail end, this can be achieved by taking the value of ¢ somewhat
larger. The choice of ¢ in this example was arbitrary and was set to be equal to one
for simplicity. It appears in the estimator S, via the estimator & of the parameter a
of the prior distribution for F. Any modest amount of variation in ¢ will not
drastically affect the estimator S, especially if we have more than one observation
at the (n + 1)th stage. But it seems difficult to specify the exact value. A value of 3
to 5 seems reasonable. However, we feel that this should be left to the discretion of
the user who might combine his own intuition and past experience in selecting a
suitable value of ¢. The choice of ¢ may also depend on some optimality criterion.
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