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ADMISSIBLE REPRESENTATION OF ASYMPTOTICALLY
OPTIMAL ESTIMATES

By H. STRASSER
University of Bayreuth

A sequence of medians of posterior distributions is approximately me-
dian unbiased of order o(n-!) iff the prior density is equal to the square
root of Fisher’s information function. It is shown that in this case the se-
quence of medians of posterior distributions is even an optimum sequence
of estimates within the class of all estimator sequences being approximately
median unbiased of order o(n-1). The result is proved by showing equiv-
alence with an expansion of an optimum sequence given by Pfanzagl. In
the case of a location parameter family the Bayesian representation is
admissible.

1. Introduction. Let (Q, %) be a sample space and P,|.%, e ® C R, a
family of probability measures. A measurable mapping S,: Q* — O is called
estimate of @ for the sample size n. Recall that S, is median unbiased if

PMS, =0t =1 and PMS,<0}=1 forall 6e¢0O.
A median unbiased estimate T, is called optimal within the class of all median
unbiased estimates if
P —c< T, <0 4+c} =P —c<S,<0+c}

for all # € ®, ¢ > 0, and any further median unbiased estimate S,,.

It is well known that for certain families with monotone likelihood ratios
there exist optimal median unbiased estimates (e.g., cf. Lehmann (1959) and
Pfanzagl (1970a)). In general, however, optimal median unbiased estimates
need not exist. This is the reason why the weaker concept of approximately
median unbiased estimates has been introduced by Pfanzagl (1970b, 1973 and

1975).
DEFINITION 1. A sequence (S,) of estimates is (approximately) median unbiased
of order o(n™?) if for every compact K < ©
1.nfoeK Pﬁn{sn = 0} Z % - o(n_l)
infy.x Py(S, < 0} =} — o(n™) .
Let & be the class of all sequences (T,) being median unbiased of order o(n~?).
DEFINITION 2. A sequence (T,) e < is called asymptotically optimal in & of
order o(nY) if
PO —tnt < T, <0+ tnt} =P —tn < S, <0+ tnt} —o(n?)
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868 H. STRASSER

for any further sequence (S,) € € and uniformly for ¢ > 0 and ¢ ¢ K where
K < O is compact.

If there exists any optimal sequence in & then there exist infinitely many
different sequences which are optimal. A particular sequence in & which is
optimal is called a representation of an optimal sequence. (More exactly we
should call it a representation of the equivalence class of optimal sequences.)

The problem of existence of optimal sequences in & has been solved by
Pfanzagl (1975). In this paper Pfanzagl describes the optimal sequences in &
by their asymptotic expansions of order o(n~') around some initial estimates.
By way of illustration, it turns out that maximum likelihood estimates have to
be improved by a bias correction of magnitude »n~! in order to become an optimal
sequence in &".

In the present paper we give a Bayesian representation of optimal sequences
in €. The main result is as follows. Consider a sequence (z,) of approximate
medians of posterior distributions. If the prior distribution is chosen in such a
way that (y,) is an element of < then (g,) is optimal in &°. It has been shown
previously by Peers and Welch (1963) that (p,) € < iff the prior density equals
the square root of Fisher’s information function. A related result is due to
Hartigan (1965). In general, however, this function does not define a proba-
bility measure and conditions are required which imply consistency of posterior
distributions. In this respect our conditions are weaker than Hartigan’s.

Let us stress that we are not interested in Bayesian representations for reasons
of Bayesian philosophy. The true reason is that Bayes estimates (for finite priors
and sometimes even for o-finite priors) are fairly good from the finite sample'
point of view. We will illustrate this fact for the particular case of a location
parameter family.

Assume that (Q, %) = (R, &%), © = R, and that {P,},., is a location family
having Lebesgue densities 4,(®) = A(w — 0), (o, 0) € R*. If the equation

2o II H(@; — 0)do = } {13 ]I (@, — o) do, xeR,

admits a unique solution x,(w) for every @ € R", then g, is an (exactly) median
unbiased estimate of §. It is known that gz, is the best equivariant estimate of
6 for the loss function L(¢, §) = |t — 6|, and under weak conditions on # it is
even an admissible estimate (Fox and Rubin (1964)). Nothing seems to be known
about the role of y, within the class of all median unbiased estimates.

The main result of the present paper implies that under appropriate regularity
conditions on % the sequence (y,) is asymptotically optimal of order o(n™?).
Thus, in the case of a location parameter family we have obtained an admissible
representation of an optimal sequence in &". This result could be an answer to
a question posed by Pfanzagl (1975), page 35: “Why should we study the be-
haviour of Bayes or Pitman estimates if know that none of these can serve better
than the estimators of our essentially complete class?” In this paper Pfanzagl
describes the elements of an asymptotically complete class of order o(n~') by
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their asymptotic expansions of order o(n~!). In view of our results an answer
to Pfanzagl’s question could be as follows: Bayes or Pitman estimates might
lead to equivalent representations of elements of Pfanzagl’s complete class which
are superior to asymptotic expansions as far as finite sample size properties are
concerned.

2. Notations. Let (Q, .%") be a measurable space and P, | %, § € O, a family
of probability measures. The n-fold product of (Q, %) is denoted by (Q", ™)
and a single element of Q" by ® = (w,, - - -, ®,). Let ® < R be an open interval
and let &% be the Borel-g-algebra of R.

Assume that the family {P,},.e is dominated by a o-finite measure | % and
let by = dPy/dyu, 6 €®. Forallwe®Q, 6¢0,j=1,2, ... define

l(a), 0) = IOg h(,(a))
d?

I(0,0) =2 (w0

(@, 0) = = l(w, 6)

x; (@, 0) = nt 31 (I(w, 0) — Ey(l,(, 0))) .
Moreover, denote
Lijkm(a) = Eo(l1(‘ ’ 0)i12(" 0)jla(" 0)1:14("0)”») .

For L, or L;,, we will write L,; or L,, respectively. Recall that L, = — L, is
Fisher’s information function.

A positive measure 1|.<% N O is called Borel measure if A(K) < oo for every
compact K £ ©. If 1 has a positive Lebesgue density p, let A = log p.

Let @ denote the standard normal distribution and ¢ its density. If G is a
distribution function on R then G(B), B e <%, denotes the value of the Borel
measure of B defined by G.

Let P, Q denote probability measures on (Q, .%"). Then

|P — Q|| = sup,., |P(4) — Q(A4)|
is called variational distance of P and Q.

3. Results. The present section contains the results of the paper. Regularity
conditions and proofs are collected in Sections 4 and 5.

DEFINITION 3. Let 2| <% n O be a Borel measure. For those @ € Q", ne N,

for which

Ps" (@)adt) < oo ,
dur

0< e

the posterior distribution R, ,|.# N © is defined by
dpP,"

n

(@)4(d0)

SBHO

1o 4

0 S Be ?.
" (@) A(d0)
dur

R, (BN ©) =
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The posterior distribution R, , depends on the prior distribution 2, the sample
size n e N and the sample @ € Q".

Our first result states that posterior distributions concentrate on arbitrary
neighbourhoods of the true parameter value. If 1isa probability measure there
are previous results of this kind in Le Cam (1953) and Schwartz (1965). Estimates
of the speed of convergence are given in Strasser (1976a). The present result
covers also the case of o-finite measures 2. A similar result has been given by
Hartigan (1965), Theorem 1. Hartigan’s condition II2 requires boundedness of
o +— § h,(w)A(do) which implies

(3.1) § Ey(h,)A(do) < oo .
This condition is stronger than our condition
(3.2) { exp(E,(log h,))A(do) < oo .

This is easily seen from k, = exp(logh,) and applying Jensen’s inequality. A
slightly more general condition than (3.1) is used by Bickel and Yahav (1967)
(condition A’2.2, page 274). The same generalization could be applied to our
condition (3.2).

ExaMmpLE 1. Let Q = R, % = Zand h an absolutely continuous probability
density. If hy(w) = k(e — 0), (v, 0) € R?, then Fisher’s information function L,
is constant. It can easily be seen that the Lebesgue measure (having constant
Lebesgue density) satisfies conditions (3.1) and (3.2).

ExaMpLE 2. Let Q = (0, 00), .2 = <& N (0, 00) and k an absolutely con-
tinuous probability density on (0, co). Assume that A is strongly unimodal
(i-e., log k is concave) and has finite expectation. Define k,(0) = 6-'h(w07),
(@, 0) € (0, o). If {P}, ., has finite Fisher’s information L, then L,;}(0) = c6~*
for some ¢ > 0. It can easily be shown that the measure 2 with Lebesgue density
L,} satisfies condition (3.2).

THEOREM 1. Assume that conditions (i)—(iv) are satisfied. Assume that 2| <8N O
is a Borel measure satisfying conditions (j) and (jjj). Let 6 > O be arbitrary and let
Uy={0e0®:|c — 0 < 6}, 0 €O. Then uniformly on every compact K — ©
P rdo) < oo} >1— o(n)
du"

Pr{0 < fo

and
PR, (U)=1—Ce*} =1 —o(n).

Here and in the following C, ¢ denote finite, positive constants depending on
the compact set K < 0.

The result of Theorem 1 leads to the question whether a similar assertion is
true when U, is replaced by a sequence of shrinking neighbourhoods. The first
result in this direction is due to Le Cam (1953). Estimates for the speed of
convergence can be found in Strasser (1976a). Lemma 1 is a related result which
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is concerned with neighbourhoods centered at

X, (@) = 0 + (nLy(6))" 7, é% log hy(w), @eQ, 0eO.
For some a > 1 denote
Wy, 0) = {0e0: |0 — X, (@)] < (nL(0))~}(log n)*} .

Recall that X, , is the beginning of the asymptotic expansion of any asymptotic-
ally efficient estimate around 6.

LEMMA 1. Assume that conditions (i)—(ix), (jj) and (jj]) are satisfied. Leta > 1
and r > 0 be arbitrary. Then
PHoe W, (w,0)} =1 —o(n?)
and
P*R, (W (®,0)) =1 —Cn "} =1 —o(n?)

uniformly for |t — 0| < (log n)n~%.

It should be noted that the assertion of Lemma 1 is true even if the true
parameter value 7 deviates slightly from the parameter value # which is the
starting point for the expansion X, ,. The same holds for all results which
follow.

DEFINITION 4. Let F! | <# be the Borel measure which is induced by
R, .| n O and the mapping T} ,: ©® — R defined by

T (0) = (nLy(0))}(c — X, 4(®)) .

Those transformed posterior distributions F?, will be approximated by
probability measures whose densities relative to the normal distribution are
polynomials.

DEFINITION 5. Let

P'n(s) = 1 + n—i Z?=1 rlisi + n~! Z?:] rzjsj ) S e R )

be polynomials with coefficients y,, = 7,,(n, @, 0) defined below (Remark 1).
Then

{5 P.(w, 6)(s)D(ds)

OnelB) = @ B)(5)0(ds)

Be %,

The next theorem is related to the famous result of Bernstein and von Mises
which approximates posterior distributions by normal distributions. Numerous
authors have contributed to this subject (e.g., Le Cam (1953), Bickel and Yahav
(1967)). Estimates for the speed of convergence are given in Strasser (1976a),
and Hipp and Michel (1976). Asymptotic expansions of the posterior distri-
bution functions are due to Johnson (1970). Our Theorem 2 shows that the
asymptotic expansions G/ , approximate the posterior distributions F; , with

n,@

respect to the variational distance.

o
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THEOREM 2. Assume that conditions (i)—(ix), (jj) and (jjj) are satisfied. Let
K < © be compact. Then
P{supse o |F7.u(B) — Giu(B)| = C(logmyn™) = 1 — o(n™)
uniformly for 0 ¢ K, | — 0| < (logn)n~%.
REMARK 1. The coefficients y,; depend on x, = x,"" (@, ), 1 < k < 3, and

on L;;,.(0). We give these coefficients in a coded form in order to avoid com-
plicated expressions.

Tu = au + by
712 = Gz
T3 = g3
Ta = Gy + b21
_ 2 2
T = Qg + by + %au + ay by + %bu
Tis = Gy + A1y + Q3,0
Taa = Gy + %afz + ay a3 4 a,by,
Tas = G12G53
1.2
T = 3%
ay = x; %, L, + Ix2L, L,
a, = 2.’(2 _1 —|— _XILOOIL —2
Lo Ly~ -

Ay = $x°x L, 4 $xP Loy Ly

S
w
||

Ay = FX, X, L7 + §x,"Logyy L,
Qg3 = €x3L2 % + §x1 Lo Lyt
Ay = 7Logr Ly~
b, = Ale_i
b21 = xlA”L;g
by, = AL,
DEFINITION 6. A sequence of . ‘v"*-measurable functions g, : Q" — © is called

a sequence of (approximate) medians of the posterior distributions R, , if for every
compact K < ©

SUPye i Po"{| R, {0 ta} — 3| = Clognyni} = 1 —o(n7?) .

Lemma 2 gives an asymptotic expansion of medians of posterior distributions
for arbitrary regular prior densities p. The expansion is given as a polynomial
in x,™, x,, x,. Related expansions around the maximum likelihood estimate

have been given by Johnson (1970).
LEMMA 2. Assume that conditions (i)—(ix), (jj) and (jjj) are satisfied. Let (1,)
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be a sequence of medians of the posterior distributions. Then there exist polynomials
C.o=0a,+ nta, + n'a,
+ X
+ ¥ bx, + kb X)
+ 0 (X + Lk XX + 2ipar CparXpXeXe
such that for every compact K — ©
PAImLy(O) (1 — 8) — Co ol < Cllog nyn~3) = 1 — o(n™)
uniformly for 0 e K, |t — 6] < (log n)n~%.
REMARK 2. The coefficients of the polynomials in Lemma 2 are
a, = 4Ly, L, + A’
by = 4Ly L,?
by, = L,!
¢, = $Looy Ly + ALyt 4 3L3, L% + ALy, L,
¢ = 3Ly L, 4+ AL,
c; = 3L,7!
¢y = #Llogy Ly 4+ L5, L,
¢y = 3Ly L3
Cys = 3L,7?
Cpp = L,
Coefficients not specified are zero.
Lemma 3 gives the bias correction for (p,) which is needed to obtain median
unbiasedness of order o(n~"). The proof is based on Edgeworth expansions which
require additional regularity conditions to exclude lattice distributions. The

same result has been obtained previously by Peers and Welch (1963) (without
stating any regularity conditions or uniformity assertions).

LemMMA 3. Assume that conditions (i)—(xii), (jj) and (jjj) are satisfied. Let (p,,)
be a sequence of medians of the posterior distributions. Then

PPl = 0 — nr,(0) = § + o(nY)
uniformly on every compact K < © iff
r,=L*L, + 3L, — AN'L,).

It follows that the bias correction vanishes iff p = L} (use L, = 2L, + L,
and Ly, = —3L,; — L;). Thus we obtain a characterization of those prior dis-
tributions for which (g,) is median unbiased of order o(n™).

COROLLARY 1. Assume that conditions (i)—(xii) are satisfied and let (p,) be a
sequence of medians of posterior distributions.
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(1) If p = Ly} satisfies conditions (jj) and (jjj) then (u,) is median unbiased of
order o(n").

(2) If an arbitrary prior density p satisfies conditions (jj) and (jjj) and if () is
median unbiased of order o(n~') then p = L,}.

The next theorem is our main result. It states that if p = L,} then medians
of the posterior distributions are optimal in &”. Pfanzagl (1973) proves for certain
asymptotic expansions that the abovementioned result holds with o (n~?) instead
of o(n™Y). In another paper Pfanzagl (1975) announces that for the same
asymptotic expansions the result is even true of order o(n~"). Therefore we have
to show that medians of posterior distributions for p = L,} are equivalent of
order o (n~?) with Pfanzagl’s expansions. Let us denote those expansions by B,™.

THEOREM 3. Assume that (i)—(xii) are satisfied and -that p = L} fulfills condi-
tions (jj) and (jjj). Then for every compact K  ©

SUPpex [P{1ts = 0 + 173} — Pr{B™ = 0 + tn7H}| = o(n™)
SUPgex |[Py*{ptn < 0 — tn7}} — P{B™ < 0 — tnt}| = o(n7")
uniformly for t = 0.

4. Regularity conditions. Let 2| <Z N © be an absolutely continuous Borel
measure with positive and continuous density p. Denote A = log p.

(j) For every 6 > 0 and every compact K  ©
inf, . foeO:|c — 0 <} >0.
(jj) A is twice differentiable and the second derivative satisfies for every
compact K £ ©
|A"(0) — A"'(7)| < cklo — 7| if |o—7|<ex, o,7€kK.
(jjj) For every compact K — ©

SUPyc ¢ S0 €XP(Ey(L,))A(do) < oo .
The following regularity conditions deal with log-likelihood functions.

(i) 6 — P, is continuous with respect to the supremum metric.
(i) For every weQ, 6+ l(w, 6) is continuous on ©.
(ili) For every 6 ¢ © there exists a neighbourhood W, of ¢ such that
Sup:-eWg Er(supaeWo |la|3) < .
(iv) For every 0 ¢ © there exists a neighbourhood U, of § such that for every
neighbourhood U of #, U < U,, and every compact K & (C]
SupreK Ef(lsupael/ la|3) < 0 .
(v) I (o, 6) is four times differentiable on © for every w € Q and L,(6) = 0.
(vi) For every 6 ¢ © there exists a neighbourhood U, of ¢ such that

inf_ ., Ly(r) > 0.
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(vii) For every ¢ ¢ © there exists a neighbourhood U, of # such that
suprl,ﬁevo Er(llz(a)lkl) < 0, 1 é i é 4 ’

where k1 =5, k2 =135, k3 =3, k4 = 4.
(viii) For every @ € © there exists a neighbourhood U, of # and a function
m(., ) such that

(a) (@, 7) — I(®, 8)] < |t — d|m(, 0), weQ,(r,d)cor.

(b) SUP.cy, Eo(Im(+, O)) < oo .

(ix) For every 6 € O there exists a neighbourhood U, and a function (-, 6)
such that

h(®, 9) — — tlk(w w T 2
(2) o 1\ < |6 — t|k(w, 0) , eQ, (5,7) e,
(b) SUp. gy E([k(es 7)) < o0 .

Letr€®, 0e0©. Let Q,,|<%* be the probability measure which is induced
by P_ and
(L(0) — E(L(0)), L(0) — E(1(0)), ,(6) — E(19))) -
Let Q7 , be the n-fold product measure of Q_, and let Q") be the distribution
of the mapping R** — IR* defined by
[(§1is €205 S Lisisn = 17 F 20001 (S1oo € €50)

under Q7 ,.
(x) For every # € © there exists a neighbourhood U, such that

1im SUp|y)—co SUP. 50, 1§ €Xp U 251 4;6,)Q: 5(d6)| < 1.

(xi) The covariance matrix of Q, , is positive definite for every 6 ¢ ©.
(xii) For every 6 € © there exists a neighbourhood U, such that

lim, o, sup. scp, § (€111 i>e) Q- 5(d6) = 0.
5. Proofs.

ProoF oF THEOREM 1. Forevery e e, every compact K < © and every ¢ > 0
there exists a neighbourhood V_ of z such that uniformly for 6 ¢ K

(5.1 Pﬁ”‘{weQ”: sup, .. <% " w,, 0) — 9(1,,)) < e} >1—o(n.

The proof of (5.1) is almost the same as for part one of Lemma 6 in Michel and
Pfanzagl (1970). The only difference consists in using a stronger version of the
law of large numbers, e.g., Lemma 1 in Pfanzagl (1973).

We prove that uniformly for 6 ¢ K
“’1” " (@)A(do) < oo} >1—o(n).

(5.2) P,,n{mem; 0<§
o
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Moreover there exists a compact interval K, < © and « > 0 such that uniformly
forfe kK
(5.3) PrMweQ": R, (K)=1—Ce"}>1—o0(n).

Let K < © be compact. Let 6, 6, be such that ® = [6,, §,]. Choose neigh-
bourhoods U, = U,, U, = U, such that (U, U U,) N K= . Since (¢, 0)—

60
E,(l,) — E,(l,) is upper semlcontinuous and negative on K X (U, U U,) there
exist ¢ > 0, @ > 0 such that

SupﬁeK superouUl Eﬁ(l ) - Eg(lg) + 3 S —a .

Choose V, =V, S U, V, =V, < U, according to (5.1). Let K, © be a
compact interval such that K Ko, O\K, < ¥, U V,. Then

1
SuPaevouV171— o l(w, 0) — E(l,) < e
implies for every 6 ¢ K
Youx, €Xp (21 U@y, 0) — nEy(ly))A(do)
= Yok, eXP(M(Ey(l,) — Ey(ly) + €))A(do)
s exp(—a(n — 1) — Ey(ly) + ¢) §o exp(Ey(L;))A(do)
Cexp(—an).
Now (5.1) proves (5.2) and (5.3).
It remains to show that

PR, (U K) 2 1 — Ce™) = 1 — o(n?)

A

uniformly for # € K. Since K & I%O and A(K;) < oo this assertion is equivalent
with Theorem 1 in Strasser (1976a). []

Proor oF LEMMA 1. According to conditions (vii) and (viii)(b) there exist
neighbourhoods ¥, such that uniformly for r e V,
P {n~Hx, (e, )| < 2Ly(0)} = 1 — o(n7Y)
and
Pnt Sty m(wy, 0) < BLy(0)) = 1 — o(n7) .
Moreover we have
P™M|x, ™| < Clogn} =21 — o(n™)
uniformly for |z — 8| < (logn)n—t. LetU, ={6€®: |6 — 0] < 6},0 > 0. Since
PRy — Ry (U < Ce=} = 1 — o(n7)
uniformly for | — | < (log n)n~* we may restrict our attention to R, (-
Expanding likelihood ratios yields
dpr

log 72t (@) = 13,(@)  rin, (@) — gL,

U,).

+ 270 2 (l(0s 0u(@, 1)) — L(@y 6))
= tx,™ — 1L, + 3*R, (1)
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where |0,(w, ) — 0] < tn~} and
PR, ()| < 1L, forall [f < ont} =1 — o(n™Y)
uniformly for [ — 0| < (log n)n—%.
Condition (jj) implies that p is bounded away from zero on bounded intervals.

Let p,(f) = p(6 + tn7}), te R.
Recall that X, , = 6 + L,”'n"'x,'”. Easy computations show that

R, (W, | Uy)

1 le(n) 2
S1e1<amd, Ldie—2i® 251z (1ogma exp(—sz(f— T ))Pn(’)dt

2

2 (n)\ 2
§ie1<ont exp<_%Lz (t - ;:}‘ >>Pn(t) dt

2
N

= exp(§(n™)’Ly™)

The leading factor is bounded by exp(C(logn)?). The numerator is bounded
from above by

exp(—1((log n)* — C(log 1))*) §jy<snt pu(f) dt < exp(— C(log n)*)
for all > 0. The denominator is bounded from below by

(S0<ont je-320m1<p Pa(?) dE) exp(—3D7)
where D > 0 is chosen arbitrary. The points § + tn~* stay in bounded intervals
as long as |x,'”| < C(log n) which implies that p,(¢) is bounded away from zero
whenever |t — 2x,"| < D. []

ProoF oF THEOREM 2. Let K O be compact. Keep 6 € K fixed. The fol-
lowing statements hold uniformly for § € K and [t — 6] < (log n)n—%. Fora > 1
and Be <Z let

, dpP» (0)

ARy po)

u(B) = Swontnzpbio—o- "
Then Lemma 1 implies that

Ro((nL)/o = 0) —xoLe By — 2 < o)

Pr” {SupBe &
=1—o(n).
We find approximations of ¢,(B) by expanding

dP5L+m—% , log P(0 + m_é) .
dp, p(9)

Put s = L}(t — x,L,™"). Then a Taylor expansion yields

log

dPo+mi ) — 4 _]in"‘/z » (o, 0 R 0
4P, (@) b (D=1 (@i 0)) + R, (@, 1, 0)

= (1x; + $°Ly,) + n~¥(E0x, + §Ly)
+ 1m0 + Jal'Ln) + Ri + Ry,

2
= =2 AL + A + Q0 4 R+ R
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where
Ay(5) = sa,, + say, + s*ay
Ay(S) = say + S'ay, 4 SPay + s'a,, ,
Q,™ does not depend on s and R, ,, R, , are residuals. (Terms like Q, vanish

when considering the quotients ¢,(B)/¢,(R). The residual terms will be estimated
below.) Another Taylor expansion yields

-4
logﬂ(iim‘l — n‘*Bl(s) + n“Bz(s) + Q”(z) + Rs’”
p(9)

where

By(s) = sby,

B2(S) = by, + $%by, ,
Q.® does not depend on s and R, , is a residual term. Putting terms together
we get

dPj, ..~ p(0 + tn7t) _ 52 2 @
dPo'"’ P(e) - exp< 7 _’_ Qn + Qn )

X (1 4+ n~¥A, + B)) + n~"(4, + B, + 3(4, + B)*) + R,)
where ‘
Rn = Rl,n + Rz,n + Ra,n _’_ O(Ri,n + R;,n + Rg,'n)
+ n720(4y + ByY) + n~O0(|A,* + |B,[")

provided that 4,, B, R, ,, do not grow too fast. This implies

¢n(B) — S]s|<(logn)‘l.seB (P'n(s) + Rn(S))(D(dS) .

(/bn(R) S|8I<(logn)“,seR (Pn(s) + Rn(s))(p(ds)
It remains to show that

(5-4) P {sUP<qogma [Ru(5)] < Clog nyn=} = 1 — o(n™?)

and

(5.5) P*{§1s<aogme |[Pa(3)| @(ds) = e} = 1 — o(n™)

for some ¢ > 0. In doing so we restrict our attention to points @ ¢ Q" where
|x." (@, 0)] < C(log n) , 1<k<4.

The P *-probabilities of those sets do not fall below 1 — o(n~?).
Choose 6 > 0 such that for U, = {c€©: |¢ — 0] < 6} conditions (vii) and
(viii) are true. Computing the residuals we obtain

I ) A
R, (w,¢t,0) = 24 n? 3, (I, 0,(@, 1) — (o, 0)),

4
R, (®,1,0) = ,2’2 n=ix, (@, 0) ,

R, (1) = %_2' n=(A”(0,()) — A”(6)) ,
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where |0,(®, 1) — 0] < tn, |§n(t) — 6| < tn=%; The regularity conditions imply
PR, ()] = CltPnt if J1] < ont} = 1 — o(n™)
PR, (t)] < Ct¥(log m)n~? if |t| < dnt} =1 — o(n™))
[Rs, (1) = Cltf’n~?
(e.g., by Corollary 17.12 in Bhattacharya and Rao (1976)). Since |s| < (log n)*
implies || £ C(log n)* the residuals R, , are bounded by C(log n)’n-. Moreover,
since |x,| < C(logn), both O(A4,* + B,*) and O(|4,* + |B,|*) do not exceed C(log n)°
aslongas|s| < (logn)®. Thuswe have proved (5.4). The proofof (5.5) is obvious

by remarking that |1 — P,(s)| is uniformly smaller than one for |s| < (log n)*
and sufficiently large n. ]

ProoOF oF LEMMA 2. From Theorem 2 we obtain that
P{|Ga o((nL) (¢t — 0) — x,Ly™Y) — }| = C(log n)n~?} = o(n™)
uniformly for § e K, |r — 0] < (log n)n=t. Expanding G, , around zero shows
that
fin = 0 + (nLy)7Hx, Ly~ + (3 — Gau(0))(G1..(0)7)
satisfies '
Pr{nt|f, — pu] Z C(log nfn1} = o(n™)
uniformly for § € K, |t — 6| < (log n)n~%. Now elementary computations finish
the proof. []
Proor oF LEMMA 3. Lemma 3 in Pfanzagl (1973b) implies
Py{(nLo)(ptn — 0) = u}
= O(—u + n~iL,"%a,)
— n Ly ho(—u + (nLy)~hay) 3o, ry(6)(—u + (nLy)~ta,)?
— n Ly ip(—u) X5y (O)(— 1)’ + o(n7) .
The coefficients r,,(¢) can be obtained by tedious but elementary computations.

(Explicit expressions are published in Strasser (1976b).) Then an application
of Lemma 7 in Pfanzagl (1973a) proves the assertion. []

ProoF oF THEOREM 3. Let K £ © be compact. Since

SUpycx Py™{|pta — 6| = (log n)n~t} = o(n™?)
and ,
SUpye x Pp{|B)'™ — 6| = (log n)n~t} = o(n™")

we need only show that the assertion holds uniformly for |f| < (logn). In
Pfanzagl (1975), however, the expansion of

Py B™ = 0}, |t < logn,
is given instead of the expansion of

PMBy™ = 0 — tn1}, [t < logn.
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Therefore we will show that
SUPgex |P;+tn—5{/’tn = 0} - P;+m—i{Bo(m = 0}1 = o(n_l)

uniformly for |¢| < log n.

We prove this assertion by arguing that the expansion of (x,) (given in Lemma
2) differs from the expansion of (B,*) by a term n~'Q, where Q is a polynomial
in x,, x,, x, of degree two. It is known that power functions of one-sided tests
based on such expansions coincide of order o(n~?) provided that their levels
coincide of order o(n~') (cf. Pfanzagl (1975), pages 10f.). Since our expansions
could be used for testing one-sided hypotheses at levels § + o(r~"), thisargument
proves the assertion. []

An explicit proof of Theorem 2 could be based on Lemma 3 in Pfanzagl
(1973b), and needs lengthy computations. In fact power functions of tests are
computed which are based on medians of posterior distributions. The explicit
proof for the more general case of arbitrary quantiles of posterior distributions
is published in Strasser (1976Db).
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