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Let {Ya}nz1 be a sequence of i.i.d. m-dimensional random vectors, and
let fi, -, fi be real-valued Borel measurable functions on Rm. Assume
that Zn = (fi(Yn), + - -, f&(¥x)) has finite moments of order s = 3. Rates of
convergence to normality and asymptotic expansions of distributions of
statistics of the form W, = nt[H(Z) — H(y)] are obtained for functions A
on R* having continuous derivatives of order s in a ngighborhood of » =
EZ,. This asymptotic expansion is shown to be identical with a formal
Edgeworth expansion of the distribution function of W,. This settles a
conjecture of Wallace (1958). The class of statistics considered includes all
appropriately smooth functions of sample moments. An application yields
asymptotic expansions of distributions of maximum likelihood estimators
and, more generally, minimum contrast estimators of vector parameters
under readily verifiable distributional assumptions.

1. Introduction. Consider a sequence of independent and identically distri-

buted m-dimensional random vectors {Y,},»;- Let f;, - - -, f; be real-valued Borel
measurable functions on R™. Consider the statistic
(1.1) W, = ni(H(Z) — H()

where H is a real-valued Borel measurable function on R¥, and
1
(1.2) Z, = (flY.), - filY2)» Z = — Sz, r=EZ,.

Note that all functions of sample moments are of the form H(Z). For example,
H(Z)becomes the bivariate sample correlation coefficient if one takes m = 2, k =
5, A() =y A) =07 ) = O L) = 0P, fiy) = y0y® (for y =
(y(l),y(2))), H(z) — (2(5)_2(1)2(2))(2(3)_(z(l))2)—§(z(4)_(2(2))2)——5 fOrZ — (z(l), cee, z(ﬁ))
belonging to a neighborhood Nof p=(EY,", EY,®, E(Y,")’, E(Y,?)*, (EY,Y,?))
contained in the set {ze R®: z¥ > (zV), z¥ > (z?), —1 < H(z) < 1}; H may
be defined arbitrarily outside N.

It is well known (see Cramér (1946), page 366, and Wilks (1962), page 260)
that if Z, has finite second moments and H is continuously differentiable in a
neighborhood of g, then W, has a limiting normal distribution with mean zero
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and variance
(1.3) a* = Nk v,k
where V = ((v;;)) is the dispersion matrix of Z, and

(1.4) I, = (D,H)() = 3;’5? l<i<k z=(2v, .-, 20).
FARBRPE

Throughout this article ir is assumed that o* is positive. As a first refinement of

asymptotic normality one has

THEOREM 1. If Z, has finite third moments and if all third order derivatives of H
are continuous in a neighborhood of 11 = EZ,, then

(1.5) SUpz. ., |Prob (W, € B) — {; ¢,9(v) dv| O(n t)

for every class <# of Borel sets satisfying

(1.6) . SuPye., Vo $a(v)dv = O(¢) (£10).

Here 3B is the boundary of B, (0B): is the e-neighborhood of B, and

(1.7) P,2(v) = (2ma?)~t exp{—*/(20%)} —o0 < v < 0.

It is important to note that the mean H(x) and the variance ¢°/n of the asymp-
totic distribution of H(Z) are not the mean and variance of H(Z). Indeed, in
many common examples (e.g., the t-statistic, the sample correlation) the mean
and higher moments of H(Z) may not even be finite. This feature of the problem
shows up in a more serious manner when one attempts an asymptotic expansion
going beyond (1.5). It is common practice among applied statisticians to calcu-
late “approximate moments” of W, by expanding H(Z) around p, keeping a cer-
tain number of terms, raising to an appropriate power and taking expectations
term by term. This is the so-called delta method. These ‘“‘approximate moments”
are sometimes used to obtain a formal Edgeworth expansion of the distribution
function of W,. It was conjectured by Wallace (1958) (also see Bickel (1974))
that such a formal expansion would be valid if suitable assumptions were made.
One of the principal aims in this article is to prove that a more precisely formu-
lated version of this conjecture, as described in the following paragraphs, is
valid. As pointed out by Wallace, such a formal expansion is easier to compute
compared to the alternative procedure of reducing a multivariate Edgeworth
expansion to a univariate one.

Denote the derivatives of H at u by

(1.8) Ly ...y = Dy, Dy, -+ - D, H)(12) 1<i, -, i, <k,
where D, denotes differentiation with respect to the ith coordinate. A Taylor ex-
pansion of W, yields the statistic '

(1.9) W) =n{Th, L(ZD — p®) + § Bi; 1,29 — p)ZP — pP) + -

Gy i@ = ) e (20 = )
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Since W, — W, = o,(n=“~»/%), one may expect that an asymptotic expansion of
the distribution function of W,’ may coincide with that of W,. Also, it is easy
to check that (if Z, has sufficiently many finite moments) the jth cumulant K;n
of W,’ is given by

(1.10) Kjn=FK;, +‘b(n—(s-2)/2) i=1,
where
.1 fo= Setnh, i 2,

=0+ TiZin b, if j=2,

and b, ;’s depend only on appropriate moments of Z, and on derivatives of H
at p of orders s — 1 and less. We refer to £, , as “approximate cumulants” of W,’
(or W,). The expression

(1.12)  exp ik, + (,;).2 (Faw — %) + Doy (;,")j f,.,,,} exp{—ar/2)

is an approximation of the characteristic function of W, (or W,). Expanding
the first exponential factor one may reduce (1.12) to
(1.13)  exp{—a*?/2}[1 + 3332 n~""rx (it)] + o(n~-?7)

L = dul) o),

say, where r,’s are polynomials whose coefficients do not depend on n. The
formal Edgeworth expansion W, , of the distribution function of W, is defined by

19 g =1+ mEen (-4 ),
¥, (1) = ("0 b, .(v) dv . |

Note that the Fourier-Stieltjes transform of ¥, , is ¢, ,.
To state the next result let ||, { , > denote Euclidean norm and inner product,
respectively. -

THEOREM 2. Assume that, for some integer s > 3, all the derivatives of H of or-
ders s and less are continuous in a neighborhood of . = EZ, and that E|Z,|° is finite.

(a) If; in addition, (i) the distribution of Y, has a nonzero absolutely continuous
component (with respect to Lebesgue measure on R™) and (ii) the density of this com-
ponent is strictly positive on some nonempty open set U on which f,, - - -, f, are con-
tinuously differentiable and 1, f,, - - -, f, are linearly independent (as elements of the
vector space of continuous functions on U), then

(1.15) Sup, [Prob (W, & B) — 1, ¢,.(v) do| = o(n+-7),

where the supremum is over all Borel sets B.
(b) If, instead of (a), it is merely assumed that

(1.16) limsup, . |E(exp{i{t, Z)})| < 1,
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then the relation
(1.17) SUpy. ., [Prob (W, € B) — {5 ¢, (v) dv| = o(n-4-"7)
holds uniformly over every class <& of Borel sets satisfying (1.6).

REMARK 1.1. Theorems I and 2 extend in a straightforward manner to vector-
valued H(z) = (Hy(2),- - -, H,(2)) provﬁided that the dispersion matrix M = LV’
of ({Z,, grad H,(1)), - - -, {Z,, grad H,(p))) is nonsingular. Here ¥ is the p X k
matrix whose rth row is grad H,(¢) = (D, H,(y), - - -, D, H,(¢)). In this case one
must replace ¢, , by

(1.18) [1+ X3zt nr2,(—D)1g(x) xe R,

where ¢, is the normal density on R? with mean zero and dispersion M, 7%, isa
polynomial in p variables (whosé coefficients do not depend on #), and —D =
(=D, -+, —D,). There is virtuaily no difference in the proofs for vector-
valued H, apart from an additional complexity in notation.

REMARK 1.2. Let G denote the distribution of Y,. If the density g, say, of
the absolutely continuous part of G is such that U, = {y: g(y) > 0} is open and
G(U,) = 1, then one may replace (ii) in the statement of Theorem 2(a) by (ii)":
fis ++» fi are continuously differentiable on U,. For, in this case, the functions
1, fy, ++ -, [, are linearly dependent as continuous functions on U, if and only if
1, f(Y,), - -+, fi(Y,) are linearly dependent as elements of the L* space of random
variables, and, as explained in the first paragraph of Section 2, one may always
replace {1, f, - --, f;} by a maximal linearly independent set {1, ﬂl, cee, ﬁk,}
(1 £k £k). :

REMARK 1.3. Assuming, in addition to the hypothesis of Theorem 2(a), that
f.’s are analytic, Chibishov (1972) proved that an asymptotic expansion

Prob (W, e C) — (o[l + XiZi n77q.(x)]¢u(x) dx = o(n~¢=2"%)

holds uniformly over all measurable convex sets C (intervals, in case H is real).
For the special case of polynomial H he was able to prove that this expansion
was uniform over all Borel sets. For many applications (see, e.g., Theorem 3)
analyticity of f;’s is a severe restriction. Also, he was not concerned with the
problem of identifying this expansion with the formal Edgeworth expansion.

REMARK 1.4. Note that in Theorem 2 we only require E|Z,|* < oo, whereas
an algebraic computation of the moments of W,’ yields expressions for «; ,
(1 £ j < s) as polynomials in n~t whose coefficients are (polynomial) functions
of moments of Z, of orders up to s(s — 1). This apparent anomaly is resolved by
the fact that the “approximate cumulants” £;,, 1 < j < s, only involve mo-
ments (of Z,),of orders s and less so that (1.14) is well defined. In the course of
proving Theorem 2 it is first shown that under the hypothesis of Theorem 2(b)
there exists an asymptotic expansion of the distribution function of W, in the
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form
(1.19) F(u) + o(n=27),
Fo(u) = (%o [1 + Zi2n7772q,(v)]¢a(v) dv,

where ¢,’s are polynomials. The coefficients of ¢, (1 < r < s — 2) are polyno-
mials in the moments of Z, of orders s and less, and the coefficients of these last
polynomials are constants which do not depend on the distribution of Z,. It is
next shown that, in case Z, has finite moments of all orders,

(1.20) 0.0)¢a(0) = 7, (=0 g,0) l<r<s—2.

It follows that z,’s (1 < r < s — 2) depend only on those moments of Z;, which
are of orders s and less, and the same is, therefore, true of £, , (1 < j < 5). In
view of (1.11)—(1.13), and (1.21) below, the jth moment of ¥, , (j = 0) differs
from that computed from £;, (using the familiar relations between moments
and cumulants) by o (n=“~2/%). In other words, under the hypothesis of Theorem
2(b) it is a valid procedure to compute moments of the asymptotic expansion by
the so-called delta method in which W,’ is raised to a power, expectations taken
term by term (formally) and terms of order o (n=-*/?) neglected. Expansions of
moments as well as expectations of other smooth functions of W,’ (and of W,
if it has enough moments) are valid solely under moment conditions on Z, (see
Gotze and Hipp (1977)), and these expansions may be obtained by integrating
the smooth function with respect to the formal Edgeworth expansion ¥, ,, even
when the distribution function of W, does not admit an expansion. Finally, the proof
of the identification (1.20) depends crucially on the following important com-
binatorial result of James (1955), (1958), and James and Mayne (1962):

(1.21) i = O(n15707) jz3.

which holds if E|Z,|i*-? < co. There may, however, be statistics whose cumu-
lants satisfy (1.10), (1.11), but not (1.21). Consider such a statistic 7',, assume
(for simplicity) that it has finite moments of all orders, and define, for each
r = 3, the polynomials z; , by -

exp {iifl,n + % (Bon — %) + T (";,)’ f,.,,.} exp{—a*f/2}

(1.22) = exp{—a*[2[1 + L3 n~n; (in)] + o(n=*)
= (ﬁmm(t) + o(n==v7%)

say. Define the formal Edgeworth expansion of type (r, s) by
(123) W) = | 14 Sy, (=) [gu) v
v “

It is easy to see from (1.22) that the polynomials r; , have no constant terms, and
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&, ,.(0) = 1. It follows that there exists a smallest integer r, such that
(1.24) & log g, at)  =o(muny  if >,

dt Y t=0

If now the distribution function of the statistic T', has a valid asymptotic ex-
pansion given by (1.19), then the same procedure as used in verifying (1.20)
leads to the conclusion: F, = W, ifand only if r = r,.

REMARK 1.5. Theorem 2, incidentally, justifies the remark made in Ghosh
and Subramanyam (1974), page 356, that their EY(T, — 6,)* is the second mo-
ment of an Edgeworth expansion.

AN APPLICATION. We now apply Theorem 2(a) for vector-valued H (see Re-
mark 1.1) to obtain asymptotic expansions of distributions of a class of statistics
including maximum likelihood estimators and the so-called minimum contrast esti-
mators for vector parameters.

Let {Y,},, be a sequence of i.i.d. m-dimensional random vectors whose com-
mon distribution G, is parametrized by § = (6%, - . -, 6”’) belonging to an open
subset © of R?. For each 6 let f(y; 0) be an extended real-valued Borel measur-
able function on R™. For nonnegative integral vectors v = (v, ..., V) write
|| = v 4 -0 40, pl =y ...y and let DY = (D,)*'" - .. (D,)*” denote
the vth derivative with respect to §. We shall write P, to denote the product prob-
ability measure on the space of all sequences in R™ and regard Y,’s as coordinate
maps on this space. Expectation with respect to P, will be denoted by E,. The
following assumptions will be made:

(A,) There is an open subset U of R™ such that (i) for each § € ® one has
G,(U) =1, and (ii) for each v, 1 < || < 5+ 1, f(y; 6) has a vth derivative
D*f(y; ) with respect to § on U X ©.

(A;) For each compact K ¢ © and each v, 1 < |v| < 5, supy e E, |D*f(Yy;
0,)*** < oo; and for each compact K there exists ¢ >0 such that
SUPy, e x Ep(Maxy_gy<. [D*(Yy; 0)|)* < oo if o] =5 4 1.

(A;) Foreach§,e0, E, D,f(Y,;60,) = 0 for 1 <r < p, and the matrices
(1.25) K(0,) = ((—E4,D: D, f(Yy; 0))) »

D(0o) = ((Eyy(D: (Y3 6o) - D, (Y55 60))))
are nonsingular.

(A,) The functions I(6), E,(D*f(Yy; 6) - D*'f(Yy; 0)), 1 < |v|, || < s, are con-
tinuous on ©.

(A,) The map & — G, on @ into the space of all probability measures on (the
Borel sigma field of) R™ is continuous when the latter space is given the (vari-
ation) norm topology.

(A) For each 6 € ©, G, has a nonzero absolutely continuous component (with
respect to Lebesgue measure) whose density has a version g(y; §) which is strictly
positive on U. Also, for each § and eachv, 1 < |v| < s, D*f(y; 0) is continuously
differentiable in y on U.
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Now write
(1.26) L(0) = X1 (Y5 0),  Ly(0) = (¥ 0),

and consider the p equations

(127) 0= :; D,L.(0,) + _1_ B (60 =)D, L(60) + -+

1 6 — @0
+ An_ lv|=8— 1(— ! 0) DVD L (00) + R'n 7(0)
=1p.10), l<r<p,
n
where x* = (xV)*? ... (x®)? for x = (x¥, ..., x») e R?, and R, (0) is the

usual remainder in the Taylor expansion, so that
(s, . ,
(1:28) R (O] = L0 — B max, oy UPgsi0-og 1D Lul0)]

The statistics §, considered below are measurable maps on the probability space
into some compactification of ©. '

THEOREM 3.
(a) Assume (Al)—(A4) hold for some s > 3. There exists a sequence of statistics
{6,},.21 such that for every compact K C ©
(1.29) infy, e x Po (|0, — 6ol < dyn~i(log )}, 8, solves (1.27))
=1—= o(n—(s—z)m) ,
where d is a constant which may depend on K.
(b) If (A))—(A,) kold, then there exist polynomtals 4,0, (in p variables), not de-

pending on n, such that for every sequence {6} =, satisfying ( 1.29) and every compact
K c O one has the asymptotic expansion

(1.30)  supy,cx [P (nH(8, — 60) € B) — §5[1 + X323 n777q,,0(%)1Bu(x) dx]

e o(n—(a—Z)/Z)
uniformly over every class &% of Borel sets of R” satisfying
(1.31) SUPy ek SUPse 5 §ome Pu(x) dx = O(e) as ¢|0.

Here M = I-Y(8,)D(6,)1-'(6,), where I(8,), D(6,) are defined by (1.25). Also, the
coeffiicients of the polynomials q,, are themselves polynomials in the moments of
D*L,(8,), 1 < |v| < s, under P, , and are consequently bounded on compacts.

REMARK 1.6. Theorem 3 is actually proved under the weaker hypothesis
(A,)—(A,) and (in place of (A,)) (A,)": the distribution of Z, under Py satisfies
Cramér’s condition (1.16), for each 8. Under this latter condition, and for one-
dimensional parameters, relations similar to (1.30) were established (with analo-
gous regularity assumptions) for the class of intervals, in place of general <%
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satisfying (1.31), by Pfanzagl (1973b, Theorem 1) and Chibishov (1973b).
Pfanzag] also provided a verifiable condition (see [21], page 1012) under which
his distributional assumption may be checked. The situation is more complex
in the multiparameter case. For this case Chibishov (1972, 1973a) was able to
prove a result analogous to (1.30) for the special class of all measurable convex
sets (which, of course, satisfies (1.31); see [4], page 24) under the additional as-
sumption that D*f(y; ), 1 < [v| < s, be analytic in y. In the present context
this assumption is' severely restrictive. Note that assumption (A,) provides a
simple verifiable sufficient condition for the validity of (A,)’ (see Lemma 2.2
and Remark 1.2). Finally, it is also possible (see the proof in Section 2) to re-
place the continuity conditions in (A,) by ‘boundedness’ conditions (as, e.g., in
Pfanzagl (1973a)).

REMARK 1.7. Under assumptions (A )—(A,) with s = 3 one may easily prove
(using Theorem 1 for vector H, instead of Theorem 2) that the error of normal
approximation is O(n~t) uniformly over every compact K C © and every class
 satisfying (1.31). However, for the special class of all Borel measurable
convex sets such a result has been proved by Pfanzagl (1973b).

REMARK 1.8. Assume that for some s > 2 one has (A,), (A), E,|D*Y;;
o))" < oo for 1 < |v| < s, and E,(max,,_g <. [D*f(Y;; 0)])* < oo for some ¢ > 0
and all v with |v| =s+ 1. Then one may prove using (1.27), (1.28) and the
law of the iterated logarithm that there exists an a.s. (P,) finite integer-valued
random variable N(+) such that with P, probability one for n > N( ) one has

(1.32) ll D,L,(6)| < d,n¥(1og n)t ,
) n

|l D'L,(0,) — E, D'f(Ys; 8)| < dini(logm)t 22 b < s,
n

|Ru,(0)] < |60 — 0if'{ds + dyn~*(log n)t}
for all @ satisfying |0 — 6| < ¢ 1<r<p,

for any positive constant d, and a suitable constant d;,. Using the Brouwer fixed
point theorem, as in the proof of Theorem 3(a), one can then show that there
exists a sequence of statistics {f,},, such that for every d > 0 with P,- proba-
bility one

(1.33) 0, — 0, < dn—t(logn)t* and @, solves (1.27)if n > N(+).

If, due to some additional structure (e.g., convexity or concavity of L,(f) as a
function @ for every n, a.s. (P, )), the equations (1.27) have at most one solution
for each n (a.s. (P, )), then of course one may define 8, to be this solution when
it exists and arbltrarlly (measurably) if it does not, and such a §, will satisfy
(1.33) with P, probability one (strong consistency) and, under the hypothesis
(A)—(Ay) Wlll also admit the asymptotic expansion (1.30). Finally, we consider
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the so-called minimum contrast estimators (see Pfanzagl (1973b)). It is known
(see [21], Lemma 3, which admits extension to p > 1) that for such estimators
9,“ say, one has, under certain regularity conditions,

(1.34) SUPy, e x Pﬂo(lén — 0, > d'(8,)n~*(log n)t) = o(n~1+-2)

for every compact K  ©. Here &’ is bounded on compacts. Since 4, minimizes
(or maximizes) L,(0) it follows that (1.29) holds. Augmenting these regularity
conditions, if necessary, so that (A,)—(A,) hold one has’(1.30). Conditions not
significantly different from (A;)—(A,) are generally included among these regu-
larity conditions. Finally, the reason for not restricting the context of Theorem
3 to minimum contrast estimators is that in its present from this theorem also
applies to problems, e.g., in mathematical economi¢s (see Bhattacharya and
Majumdar (1973)), in which §, is not a statistical estimator.

Among the earliest results on asymptotic expansion of some special functions
of sample moments we refer to Hsu (1945) who obtained an asymptotic expan-
sion for the sample variance.

For relations with questions concerning asymptotic efficiencies of statistical
estimators we refer to Pfanzagl (1973a), Ghosh and Subramanyam (1974), and
Ghosh, Sinha and Wieand (1977).

Some of the results of this article in weaker form were announced earlier in
Bhattacharya (1977). It may be noted that the entire Section 4 of that article
([2]) was based on joint work by the authors.

2. Proofs. For proving Theorems 1 and 2 it will be assumed, without any es-
sential loss of generality, that the dispersion matrix V of Z,, is nonsingular. For, if
V is singular, then 1, fi(Y,), - - -, fi(Y,) are linearly dependent when considered
as elements of the L* space of random variables. Then there exist a maximal inte-
ger k' and distinct indices i, - - -, i, among 1, 2, - .., k such that l,f,.l, .. -,ﬁk,
are linearly independent. Defining Z, = ( Si(Y2), -+, fi, (Y,)) one can define
a function H’ defined on R* and as smooth as H such that H'(Z) = H(Z) where
Z= (1/n) $1_, Z,. In view of the positivity of ¢%, k' > 1.

Throughout the letters ¢, d will denote constants (i.e., nonrandom numbers
not depending on n, x, z, u, or v).

Let x,(¢) denote the jth cumulant of (t, Z, — py = Y *_, t"(Z, — p), and
introduce the Cramér-Edgeworth polynomials

. 5 . Xi.+2(i) x; +2(it)
@2.1) Bty = 7. {Z* iy o Ky }
TR Gy G+ 2
24(i1) = ¥x(1) teRsr=1,2, ...,
where the sum 3;* is over all p-tuples of positive integers (j,, - - -, j,) satisfying

2 jo = r. Letting D, denote differentiation with respect to the ith coordinate,
write

(2.2) D=(D, -+, D).
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Then P (—D) is a differential operator. Write
(2.3) §(2) = (2m)¥(det V) exp{—h(z, Vi2y)
§,(2) = [1 + ZiZin~*P,(—D)]$,(2) ZeR".
Define the functions
02) = m[H(p + n¥2) — H@)] . (2) = Di, L2,
(2.4) he(2) = D 1,20 4 Fnd 31 29790 -

1 —(s-2)/2
+ G—;_l—)—' n P lil ..... i

AL U (L PR Y)
1

z= (2", ..., z®)e Rk
Note that #,_, is a Taylor expansion of g, and write °
(2.5) W, = g (nYZ — p)), W, = h,_(n"HZ — p)).
Define the maps
(2.6)  T() = (2, -, 250, g,(2),  T(2) = (2, -+, 20, By (2)
where p =1 or s — 1. Assume without loss of generality that /, > 0. For the
following discussion n, is an integer such that for n > n, the map T, ((T)is a
C=(C*) diffeomorphism on the set
(2.7) M, = {|z] < ((s — 1)A log n)t}
onto its image. Here A is the largest eigenvalue of V.

LEMMA 2.1. Assume p, = E|Z,|" < oo and that all derivatives of H of orders s
and less are continuous in a neighborhood of u = EZ,, for some s = 3. Then there
exist polynomials q, (in one variable), whose coefficients do not depend on n, such
that uniformly over all Borel subsets B of R* one has

(2.8) Vionmren §an(2) d2 = 5 dF,(u) + o(n~0727),

where

(2.9) Fu() = §%a [l 4+ 222 n773q,(0)]da(v) do ueR'.
Also, for all nonnegative integers j

(2.10) Vir,, 907(2)60,u(2) d2 = (2o w7 dF () + o(n=0727),

Cpr BI_(2)6, (2) dz = (=, w? dF (u) + o(n=—27) .,
Proor. By the change of variables x = T,7'T(z), the first integral in (2.8),
when restricted to the set M,, becomes
(2.11) Sioremariizan So T T/ Degu(TTi(x))] dx .

Now the elements of the Jacobian matrix of 7(z) and those of the inverse of this
matrix, as well as their derivatives of orders s — 1 and less, are bounded on M,
by constants independent of n. Hence a Taylor expansion yields

(2.12) (T ()% — 2% = (T ()% — (T T(x)*
= it p(x) + R(jx) - o(no-n),
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where p,’s are polynomials in k variables and R is a polynomial in one variable
whose coefficients do not depend on n; and the factor o(n~“~*/?) does not involve
x. Using (2.12) and the fact that (7-'Ty(x))"” = x** for 1 < i<k — 1, one
reduces (2.11) to
(2.13)  Suwemaryirar, [+ 2323077 (X)]gy(x) dx + o(n==27),
where p,”’s are polynomials (in k variables) whose coefficients do not depend on
n. Since T,7'T(M,) D {|x| < ((s — §)A log n)t} if n > n,, (2.13) reduces to
Vogwen [1 4 252 n77%p, (0)]8y(x) dx 4 o(n==7)..

Recall that &,(x) = Y] I,x9 = (I, x) and write

Got) = Siurmpsn [1 + T2k nm72p, ()] (x) dx ueR.
The Fourier-Stieljes transform of G, is

o’

[+ Szt nrp (—iD)Igy () = [1 + T3zt nrig(in)] exp { — 2}

where ¢,”’s are polynomials (in one variable) whose coefficients do not depend

on n. Define .
0.0) = [ 4/ (=) 4] $ato)

to complete the proof of (2.8). The first relation in (2.10) is proved in the same
manner, while the second follows from the first and the inequalities

(2.14) SUP, ey, [9.(2) — hi_(2)| < dyn~*P"(log n)**,

Vizewy Hi(2)60,(2) d2 = o(n=727%) jz0.0

Proor oF THEOREM 1. Let Q, denote the distribution of n¥(Z — ) and let @,

be the k-variate normal distribution with mean zero and dispersion matrix V. It
follows from a recent result of Sweeting (1977), Corollary 3 (also see [4], pages
160-162) that
(2.15) 1Qu(4) — Su(A)| < ;7 8pnt + €16, ((04)7)

&, = ¢ At ipnt ps = E|Z,|*.
Here 1 is the smallest (and A the largest) eigenvalue of V. Fix Be %, where
2% satisfies (1.6), and in (2.15) take

(2.16) A=1{zeR*: g,(2)e B}.
Since ¢, is continuous,
(2.17) 0AC {zeRk: g,(z)edB}.

Now if z € (0A4), then there exists z’ such that g,(z’)€dB and |z — /| < e. If,
in addition, ze M, (see (2.7)), then |g,(z) — g.(Z’)| < d’e, where d’ is an upper
bound of |grad g,| on M, (the e-neighborhood of M,). Since the ®@,.-probability
of the complement of M, is o(n="*=%7%), it follows that

(2.18) D, ((04)) £ P, ({9.(2) € (0B)}) + o(n~+=272) 0<eg 1.
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But by Lemma 2.1 (relation (2.8)) one has
(DV({g,,(Z) € (aB “}) = S(gne(aB)d") Ea,‘n(z) dz + o(n—(s—z)/z)
(2.19) = Sapae $a(v) dv + o(n™77)
= O(¢) + o(n="27)

if p, = E|Z,|" is finite. Taking s = 3 and using (1.6), (2.18) and (2.19) the right
side of (2.15) is estimated as O(n~*) uniformly over <%. Again use Lemma 2.1,
this time for B itself, to complete the proof of Theorem 1.

PrOOF OF THEOREM 2. We first prove part (b) of Theorem 2. From a general

result on asymptotic expansion under Cramér’s condition (1.16) (see [4], Corol-
lary 20.2, page 214) and the estimates (2.18), (2.19) it follows that

(2.20) SUPge o5 |Qu(A) — §4 &0 u(2) d2| = o(n=0=27%)

where <7 satisfies (1.6) and A is defined by (2.16). Now use Lemma 2.1 to esti-
mate the integral. It remains to identify F, and ¥, , (see (1.14)). First assume
that Z, is bounded. Since W,' = h,_(n¥(Z — p)) is a polynomial in n¥(Z — p) it
follows from the asymptotic expansions of moments of Q,, i.e., of the derivatives
of its characteristic function at zero (see [4], Theorem 9.9, page 77), that

(2.21) EW,)7 = (i hi_((2), .(2) dz + o(n~~27?) j=0.
By Lemma 2.1 (second relation in (2.10)) one then has
(2.22) EW,i = \>, u! dF,(u) + o(n~~?7) j=0.

On the other hand, the expression (1.12) differs from ¢, , by o(n~*~2/%) uniformly
on a compact neighborhood of zero, say {|f| < 1}. Also, according to a result
due to James (1955), (1958), and James and Mayne (1962), the cumulants of
W, satisfy

(2.23) £;, = O(n~=27) j=3,
so that, the “approximate cumulants” &; , (see (1.11)) satisfy
(2.24) Bjn=K;,+ 0(n 727 jz1,

taking £, , = 0 for j > 5. Hence (1.12) differs from the characteristic function
of W,’ by o(n==?7) uniformly on {|¢{| < 1}. Therefore,
(2.25) SUpy, <, |4, .(f) — E(exp{itW,'})| = o(n=*=27) .

By the familiar inequality of Cauchy for derivatives of analytic functions, de-
rivatives of , , at zero differ from those of E(exp {irW,’}) by o(n~“~?/), proving

(2.26) EW,)) = (> u d¥, (u) + o(n~"27?) j=0.
Together (2.22) and (2.26) imply
(2.27) (Cw u? dF (1) — (=, uw d¥, (4) = o(n~"27) j=0.

Since neither F, nor ¥, , involve terms of order o(n=-%/),

(2.28) §=. ui dF (u) = §=., ui ¥, (u) j=o0.
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Now the Fourier-Stieltjes transforms of F, and ¥, , are (extendable to) entire
functions on the complex plane whose values and derivatives of all orders coin-
cide at the origin. Hence F, = ¥, , completing the proof of Theorem 2(b) in
case Z, is bounded. We now proceed with the general case. Recall the poly-
nomials 7, defined by (1.13) and write

(2.29) 7.0) = 7, (=2) $utv) || 60)

= coeff. of n=* in ¢,,.

Both ¢, and g, are polynomials in the cumulants of Z, of orders s and less. De-
noting the vector of all these cumulants by y, write ¢,(7,), 7,(7,) to denote this
functional dependence. For ¢ > 0 define the truncated random vector Z,, to
be equal to Z, if |[Z,| < ¢ and zero if |Z,| > c. We can choose ¢ so large that
the characteristic function of Z,, satisfies Cramér’s condition (1.16). Let 7,
denote the vector of all cumulants of Z,, of orders s and less. Since Z,, is a
bounded random vector, 9,(7,.) = §.(7,.)- Sincey,,—r,asc— oo (and q,, 7,
are continuous in 7,), one gets ¢,(7,) = ¢,(7,). Proof of Theorem 2(b) is complete.

In order to prove Theorem 2(a) it is now enough to show that, under the given

hypothesis,

(2.30) Prob (t(Z — ) € A) = {, £,(2) dz + o(n=")

uniformly over all Borel subsets 4 of R*. By a result of Bikjalis (1968) this will
follow if we can show that there exists an integer p such that Z, + ... 4 Z,

has a nonzero absolutely continuous component with respect to Lebesgue meas-
ure on R¥. The following result shows that this is true with p = k.

LEMMA 2.2. Assume that G has a nonzero absolutely continuous component (with
respect to Lebesgue measure on R™) whose density is positive on some open ball B in
which the functions f; (1 < i < k) are continuously differentiable and in which 1,
fis -+ > [ are linearly independent as elements of the vector space of continuous
functions on B. Then Q.,** has a nonzero absolutely continuous component.

Proofr. To show that the distribution of Z, + ... 4+ Z, = (¥ f(Y)), - -,
2% f.(Y,)) has a nonzero absolutely continuous component under the given hy-
pothesis define the map (on R™ into R¥)

F(ys o p) = (Z2A3)s 5 ZESd3))
yj = (_yj(l)y ...,yj(m))eRm’ l §j§ k.

The Jacobian matrix of this map will be denoted by J, ,,. This matrix may be
displayed as J,, = [4, 4, --- A,], where A4, is a k X m matrix whose ith row
is (grad f;)(y,). Clearly, it is enough to show that J, , has rank k at some
(J1> -+ > yi) With y, in the open ball B for all j. We shall prove this by induction
on k (keeping m fixed). Suppose then, as induction hypothesis, that J, _, ,.(a;, - -,
a,-;) has rank k, — 1 for some k, — 1 = 1 and for some (a,, - - -, 4, _,) with a;
in B for all j. Note that the submatrix formed by the first (k, — 1) rows and
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(ko — 1)m columns of Ji (@, «+» @yy1s ) I8 Sy 1 (@15 - - > a,,-,), while its last
m columns are given by A4, (y), and the first (k, — 1)m elements of its last row
are formed by grad f, (), - - -, grad f (@, _,)-

Let E, .-, E, _, be (k, — 1) linearly independent columns among the first
(ky — 1)m columns of J, ,, (which exist by the induction hypothesis). Let C,,
C, - -+, C, bethe (k, X k,) submatricesof J, , formed by augmenting E,, E,, - - -,
E, _, by the first, second, - - -, mth columns of 4, (y), respectively. If rank of
Jign(@1s + - -5 @1, y) is less than k, for all y in B, then the determinants of
C,, -+, C, must vanish for all y in B, i.e.,

dl%)—+-n+dkoaj;‘;((i):)=0 for i=1,...,m, and yeB.

Here d; is (—1)7 times the determinant of the submatrix of J, , comprising the
columns E,, - - -, E, _, minus the jthrow. Since d,, # 0, by induction hypothe-
sis, the above relations are equivalent to saying that the gradient of (the nonzero
linear combination) Y %d,f,(y) vanishes identically in B. This means that
2. d;f; is constant on every line segment contained in B; since B is connected,
this means that there exists a number d, such that > %o d; f,(y) = 4, for all y in B
contradicting the hypothesis of linear independence of 1, f;, - - -, fi in B. Hence
there must exist a, in Bsuch that J, ,.(a, -+, @1 a,,) has rank k,. The proof
is now completed by noting that the hypothesis of linear independence of 1, f
in B implies that grad f; does not vanish identically in B, so that the induction
hypothesis is true for k, — 1 = 1. []

The above lemma improves Lemma 1.4 in [2]. The main idea behind the
proof is contained in Dynkin (1951), Theorem 2.

PrROOF OF THEOREM 3. We shall need an estimate of tail probabilities due to
von Bahr (1967). Let {Z,},., be a sequence of i.i.d. random vectors each with
mean # and dispersion matrix V. Let A denote the largest eigenvalue of V.
Then, if E|Z,|* < co for some integer s > 3,

(2.31)  Prob ([nH(Z — p)| > (s — 1)A log n)¥) < dn=t-2/(log n)=*"*

where Z = n"¥(Z, + --- + Z,), and d is bounded on any bounded set of values
of A.

Fix 6, € ©. In view of (2.31), the assumptions (A,)—(A,) and inequality (1.28)
imply that there are constants d,, d,, d; such that

1
Py, (

n
2.32) P, <\% D*D, L,(6,) — E», D*D, Ly(6,)

D,Ly(8,)| > d,n¥(log n)*) < dy(log n)~*n-+=57

IA
IA
~

> d,n-(log n)%>
< dy(log n)=*/n=te=272 I<pss—1,
Py (IR, (6)] > |0 — O]'{d; + dyn~¥(log n)t}) < dy(log n)=n=072,
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Therefore, on a set having P,- probability at least 1 — d,(log n)~*n=¢"*” one
may rewrite (1.27) as

(2.33) (0 — b)) = (1(6o) + 7.)7* ':Bn + Daspisa ;1" (0 — 00)"E30D”D,L1(00)

+ il — b=, |,

where 7, is a random matrix and J, is a random vector each having norm less
than d,n~*(log n)t and ¢, is a random vector of norm less than one. Note that
there exists a sufficiently large positive constant d; and a (nonrandom) integer n,
such that if n > n, and |0 — 6| < dyn~#(log n)}, the right side of (2.33) is less
than dyn~#(log n)t. It then follows from the Brouwer fixed point theorem (see
Milnor (1965), page 14) applied to the expression on the right side of (2.33)
(regarded as a function of § — 6,) that there exists a statistic 4, such that

(2.34) P,,o(|9n — 6, < dyn¥(log n)t, 4, solves (1.27))
= 1 — d(log n)=*n=te=/2
To obtain an asymptotic expansion of the distribution of 8, first define
(2.35) [) =D logf(y;6),  ZY =f(Y)  1sp ss.
Consider the random vectors Z, = (Z,*),,,,<, Whose coordinates are indexed
by v’s. The dimension of Z, is k = Y:_, (**;~"). From the definition of 4, one
has, outside a set of probability at most o(n=(=272),

(2.36) oz.qu=2w+m@%2wwfwy+&ﬁg

:!v—‘

1<r<p,

where the rth coordinate of e, is one and other coordinates zero. Now consider
the p equations

2.37 0=z 4+ st Lgermg _ gy = PO, 27) 1<r<p,
vl ol P

.

in the p + k variables 6, z. These equations have a solution at § = 6,, z = p,
where ¢ = EZ, i.e.,

(2.38) pler =0 1<r=p,
¢ = E, D> log f(Y1; 0,) 25y s,
Also, since I(6,) is nonsingular, the p vectors (D, P(6,, p; 1)), - - -, (D, P(6,, u; 1)),

1 < r < p, are linearly independent. Therefore, by the implicit function theo-
rem, there is a neighborhood N of ¢ and p uniquely defined real-valued infinitely
differentiable functions H; (1 < i < p) on N such that § = H(z) = (H(z), -- -,
H,(z)) satisfies (2.37) for ze N, and 6, = H(z). By (2.32), |Z“” + R, ,(0.,)] <
d,n~%(log n)* with P, probability 1 — o(n~~»7). Therefore, by (2.36) and the
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uniqueness part of the implicit function theorem, with P,- probability 1 —
o(n=*=%/%) one has

6,=H(Z') with Z'© = Z® for 2 < <,
(2.39) =2 4+ R, (0, for v=e,
I<r<p.
Therefore, by (2.32) and (2.34), there are constants d,, d, such that
P, (|n{[H(Z) — H(p)] — n¥(@, — 6,)| < dy(log n)*n=+-17%)
(2.40) = P,(|H(Z') — H(Z)| = |R, ,(0.)| < dy(log n)"*n=*?)
= 1 — dy(log n)=*/*p=e=272 |

In view of (A,) (and Remark 1.2) Lemma 2.2 applies, so that Theorem 2 yields,
for vector H (see Remark 1.1),

(2.41) Pﬂo(ni[H(Z) — H(p)l € B) = (5 ¢, (x)dx 4+ o(n~*-272)

uniformly over all Borel sets B. Here ¢,, is given by (1.18) with M =
I7%(0,)D(0,)I-*(8,), where I(6,) and D(6,) are defined by (1.25). This evaluation
of M follows from (2.33), (2.36), or, alternatively, from a computation of
grad H,(¢), 1 < r < p, obtained from inverting the Jacobian matrix (at (6,, ))
of the transformation whose first p coordinate functions are given by the right
side of (2.37) and the remaining coordinate functions by z*, 1 < |v| < s.
Finally, if &% satisfies (1.31), then it is simple to check that

(2.42) SUPge , Some |Pon(X)] dx < dyye + o(n= 727 0eg 1.

Relations (2.40)—(2.42), with ¢ = dy(log n)**n~~%, now complete the proof
excepting for the uniformity over compacts. By assumptions (A)—(A,), the
constants d,, d,, d,, are bounded on compact K (since so are d,—d,). The term
o(n~~7)in (2.41) is uniform on compact K for B e =% due to the uniformity of
the error of approximation of the distribution Q, of n¥(Z — y) by its Edgeworth
expansion, assuming, without loss of generality (see Remark 1.2), that the dis-
persion matrix of Z, is nonsingular. Note that we have only made use of (2.41)
uniformly over <. For this it is sufficient (see Theorem 2(b)) that Z, satisfies
Cramér’s condition (1.16). Assumptions (A,) and (A;) now imply that this con-
dition holds uniformly on compacts K in an appropriate sense (see the first ob-
servation in [2] following (1.50), page 11). []

There appears to have grown in recent times a considerable amount of applied
work, especially in econometrics, on the formal Edgeworth expansion. See, for
example, Chambers (1967), Phillips (1977), Sargan (1976), and references con-
tained in these articles. It may be noted that the conditions imposed by Chambers
(1967) (Section 2.2) on the characteristic function of the statistic are not sufficient
to insure the existence of a valid asymptotic expansion. Besides, such conditions
imposed directly on the- statistic are extremely hard to verify, at least in the
context of the present article.
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