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ASYMPTOTIC BEHAVIOR OF MINQUE-TYPE ESTIMATORS
OF VARIANCE COMPONENTS

By K. G. BRowN
University of Maine, Orono

The limiting distributions are obtained for two estimators of variance
components: C. R. Rao’s MINQUE, and an estimator produced by an
iterative procedure, referred to as I-MINQUE. Limits are taken as the
number of independent and identically distributed vector observations on
the model assumed gets large. This approach provides the asymptotics of
interest when an experiment with a large number of observations can be
thought of as independent replications of a smaller experiment, a condition
applying to some common experimental designs. The main result, from
which the limiting distributions are obtained, is essentially an extension
of a theorem due to T. W. Anderson (1973), who provides an application
in time series.

Both estimators considered here are consistent, and require only

modest assumptions on the sampled distribution. The I-MINQUE has a
limiting distribution which is functionally independent of the choice of
norm; when it is further assumed that the sampled distribution is normal,
the estimator is asymptotically equivalent to the m.l.e. and asymptotically
efficient. The MINQUE itself is less robust in the sense that these two
properties do not always apply, the conditions being dependent on the
choice of design.

1. Introduction and summary. To be considered is the estimation of variance
components in a general analysis of variance model of the form

(1.1) Y=XB+¢

where Y is a random n-vector, X is a given n X m matrix, 8 is an unknown m-
vector of parameters. Further, the error term may have the linear structure

6:U1€1+ cr 'l‘Ukék

where U, is a given n X k, matrix, &, is a k;-vector of uncorrelated variables,
each with mean 0, variance ¢,% and finite fourth moment; the components of &,
and §; are uncorrelated, / = j. Then V(¢) = X = Yk V,0,% where V, = U,U,".
It is assumed that X is positive definite (p.d.) and that the ¥,’s.are linearly inde-
pendent matrices.

For Y normally distributed, T. W. Anderson (1969, 1970) has given the maxi-
mum likelihood estimator (m.l.e.) of ¢,* in a closely related model,' and obtained
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the limiting distribution as N, the number of independent and identically distri-
buted vector observations on Y, approaches infinity; the estimator is consistent
and asymptotically efficient. The asymptotic results also apply to the m.l.e. in the
model given here; however, computation of the m.l.e. is further complicated in
this model by the restricted parameter space, ¢,> > 0. In a later paper, Anderson
(1973) has proposed a simpler estimator which has the property of being equiva-
lent (as N — oo) to the m.l.e. of the variance components.

In this paper is determined the limiting distribution (as N — oo) of the
MINQUE (MInimum Norm Quadratic Unbiased Estimator?) of components due
to C. R. Rao (1970, 1971a, 1972). This approach provides the asymptotics of
interest for experimental designs in which a large number of observations is
conceptually equivalent to observing several independent observations from a
reduced design. Applications include some common linear models, as illustrated
in Section 6.

The MINQUE requires no distributional assumptions (beyond the existence
of the first four moments) and the computations are tractable. Somewhat on
the negative side, however, ‘the estimates of the variance components may be
negative and can depend on the choice of norm being minimized. One question
to be considered is whether these two negative characteristics may vanish in
the limit.

In the notation to follow, H is a matrix specified by the user which determines
the specific Euclidean norm to be minimized. As will be apparent from its lim-
iting distribution, the MINQUE is consistent for any choice of H, from which
it follows that the probability of a negative estimate approaches zero under any
norm. However, the limiting distribution of the estimator is not always func-
tionally independent of the choice of norm; its limiting covariance matrix may
depend on H.

The asymptotic dependence on the choice of norm motivates a related estimator
with stronger asymtotic properties. To be referred to as the Iterated-MINQUE,
it is obtained by repeating the estimation procedure using the MINQUE of the
unknown covariance matrix as a weight matrix. This estimator, also consistent,
has a limiting distribution which is functionally independent of the choice of H
in all cases; it is identical to the MINQUE in those particular cases where the
latter is invariant of the norm chosen; when the variables of the model are
assumed to be normally distributed, it is asymptotically equivalent to the maxi-
mum likelihood estimator and asymptotically efficient.

In the next section, the MINQUE equations are derived and simplified for
N > 1. A general theorem is then stated and proved, from which the limiting
distributions of the MINQUE and I-MINQUE are obtained

2. The fundamental equations of MINQUE. The matrix determining the
norm to be minimized in the MINQUE is H = >*., V, or H= Y*_ V,a?,

2 The E may also stand for Estimate or Estimation depending on the context.
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chosen to be p.d., where a/?, ---, @, are a priori ratios of the unknown com-
ponents. Let P = X(X’H'X)-X'H', R = H'(I — P) and ¢ = (0%, - - -, 6,%),
the vector of unknown variance components. The fundamental equations for
the estimation of ¢ (Rao, 1972) are

2.1) Sé, =u,

where s;; = tr RV,RV; (tr means trace), #, = tr RV, Ree’, and e = (I — P)Y,
i,j=1,.--,k. (The form of u, is equivalent to that of the reference.) The
variance components are simultaneously estimable by MINQUE if and only if
the equations have a unique solution.

To consider the asymptotic behavior of the estimate of o, it will be necessary
to develop the equations when there is more than one observation on the random
vector Y. Let Y;, ..., Y, be independent and identically distributed (i.i.d.) as
Y of model (1.1). The model, based on N vectors, becomes

2.2) Y=2Xp+¢

where ¥ = (Y/, -+, Yy')s X = (X': -+ (XY, 6 = (¢, -+, &), and g, = ¥, —
XB. Then V(¥) = £, which is block diagonal with N blocks of Z. Similarly,
let A be a block diagonal matrix with N blocks of H, and R = H-Y(I — P),
where P = X(X'H-X)-X"H-. Further, let ¥, be block diagonal with N blocks
of V;,,i =1, ..., k. The equations for estimating ¢ based on Y,, - -, Y, are

(2.3) 86, =a,

where 3,; = tr RV,RV,;, 4, = tr RV,Re¢’, and é = (I — P)¥,i,j =1, .-+, k.

The terms of (2.3) involve matrices with dimensions dependent on N; this can
be remedied. For convenience, multiply both sides of (2.3) by N-!, redefining
5;; and @,. A simple (but lengthy) reduction of terms gives

(2.4) §,; = tr H'V,H-V; + N-' tr (RV,RV; — H'V,H-'V)

and 4, = tr H'V, H'N-* )% e,e; + tr (RV,R — H™'V,H™")é¢’, wher: ¢, is the
ith n-subvector of & (i.e., ¢ = (e, - -+, ey/))and & = N~' 311, e,.

In the next two sections the main result of the paper is stated and proved. We
then return to use (2.3) in applying the result to the MINQUE and I-MINQUE
of g.

3. Main result. A class of equations somewhat more general than those of
(2.3) will be considered. Of interest is the asymptotic behavior of the solution
of an arbitrary member of the class. First, however, some notational prelimi-
naries will be dismissed.

If A is a finite dimensional matrix dependent on Y;, - - -, Y, then 4 = 0,(N~*)
will mean N*a;; —, 0 as N — oo forall i, j; 4 = O,(N-*) will indicate that N*a,;
is bounded in probability as N — co. Throughout, limits will be taken as N —
co. The notation 4 —, B, where B is a matrix (which will always be fixed),

will mean a;; —, b;;, all i, j. All matrices are finite dimensional.
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DEFINITION OF TERMS.

(i) W, is any fixed linear combination of ¥, ---, ¥, which is p.d. (e.g.,
W, = Hor W, = X).

(i) W is any linear combination of V,, - .-, ¥}, with coefficients possibly
dependent on Y;, - - -, Y, which is p.d. and a consistent estimator of W¥,.

(iliy C = N7} e/ and Disann X nsymmetric matrix, possibly depend-
enton Y, ---, Yy, such that C — D = o,(N%).

(iv) R(W), P(W), e(W), and (W) are defined as R, P, e, and &, respectively,
except with H replaced by W.

To be considered is an arbitrary equation of the form
3.1 [G(W) + K(W)]é¢ = a(W, D) + (W),
where g,; = tr W'V, WV, k;; = 0,(N7}), a, = tr WV, W'D, and b, = 0,(N~#),
i,j=1, .-, k. As will be seen, asymptotic covariance matrix of the solution
to (3.1) (suitably normalized) depends on the covariance matrix of the squares
and cross-products of the elements of ¢'in (1.1); the form of the matrix will be
briefly explained.

Let C = (c;;) and define ¢ to be the n(n + 1)/2 vector of C’s components,
€ = (C1» Cags ** *5 Cpys €195 Ci35 ** *» €y ,) - We’ll say that c is the vector form of
the matrix C. Denote the covariance of ¢ for the case N = 1 by ¥ = (¢,; 1),
where ¢;; ., = Cov (¢;;, ¢,), i < J, k = 1. To find the value of ¢;; ,,, let U =
Ui---iU) = (u;) and &€ = (§/, -+, &) = (). The component s of ¢ in
(L.1)ise,, = X7, u,&, (Where p= 3%, k), which can be substituted into ¢,; ,, =
E(eye8meny) — E(euye))E(ew €qy)- Imposing the condition® E(e%, et ¢, ¢4)) =
Eey,) Eelj Ee,) Eet,), where a, b, ¢, d are any nonnegative integers which sum to
four, and simplifying gives ¢;; ., = @i; 1 + Ai5,0, Where ¢,; = 0,0, + 0,05
(&5 = (0;5)) and Ay = J10 Uty Uy Uy (faeey — 3ptin)> With gy, and g1, being
the second and fourth moments of &,,. In matrix notation, defining ®(Z) =
(:5,m) a0d A = (4;;,,) gives ¥ = O(Z) + A. The term g, — 342, is the nu-
merator of the kurtosis of &, (kur &,,). Note that if kur £, = 0 for all ¢, as
when & ,,’s are normally distributed, then ¥ = ®(Z).

THEOREM. Let Yy, ..., Yy be random vectors i.i.d. as Y of model (1.1). Let é
be a solution to (3.1) when such exists, and an arbitrary k-vector otherwise. Then
N¥G — o) has a limiting normal distribution with mean vector 0 and covariance
matrix M(W)UYM(W,)’, where M(W,) = [L'®~(W,)L]'L'O~ W), and L is the
matrix with jth column equal to the vector form of V,, j =1, -+, k.

In some cases M(W,) can be expressed more simply. As is well known, when

all the V; commute in pairs, (V,V; = V;V,), which includes most experimental
design models with equal numbers in the subclasses (Graybill and Hultquist,

# The asymptotic results to follow only require the left-hand side of the equality to be finite.
The condition is used here because it provides a very substantial simplification to the covariance
matrix.
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1961), there exists an orthogonal matrix P such that PV, P’ is diagonal, i=1,- - -,
k. Even when the ¥, do not commute, sometimes there exists a nonsingular
matrix R for which each RV, R’ is diagonal (Hultquist and Atzinger, 1972). The
MINQUE, to which the theorem is to be applied, is invariant under nonsingular
transformations (Rao, 1971 a).

Premultiplying model (1.1) by a diagonalizing matrix makes the resultant V,
and W, matrices diagonal, simplifying M(W,). The new matrix L has all zero
elements beyond the nth row, and the new ®(W,) is diagonal, making inversion
easy. The diagonal elements of @(W ) are 2w;2, 2w,%, - - -, 2w, 2%, Wy Wy, - -, W, W,,
where W, = diag (w;, - -+, w,). Letting L, be the matrix consisting of the first
n rows of L, its ith column is the vector of elements on the diagonal of V,. The
matrix L'®-Y(W,)L has ijth element { >;»_, v,,w,~*;,, Where v,, is element s on
the diagonal of V,, and L'®-*(W,) has ijth element }v,;w,~%, j=1, ..., nand
0,j>n.

4. Proof of theorem. A lemma will be established first, regarding the esti-
mation of 8 in model (2.2) (assume for now that X of (1.1) is of full column
rank). An estimate using W as a weight matrix is the solution to

4.1) X' W-XB(W) = X' WY,

where Y = N 33, Y,. If £ were known, using it as the weight matrix would

give the Gauss-Markov estimate of 8.

LEMMA 1. LetY,, ..., Yy bei.i.d. as Y of model (1.1). Then N}B(W) — B) —,
N, J(W)ZI(W,)), where J(W,) = (X' W, X))~ X' W,

The proof is given in T. W. Anderson (1973) for the case W, = X; the exten-
sion follows in the same manner.

When Y of (1.1) is normally distributed (or, more weakly, when kur &, = 0,
all ¢), then Cov (¢) = N-'®(Z), and it can be shown (T. W. Anderson (1969)),
that

(4.2) L'O(Z)e = $a(Z, C) .

Replacing X by W gives

(4.3) L'O-Y(W)c = sa(W, C).
From EC = X = ¢V, + .-+ + 6,2V, it follows that

4.4 Ec = Lo.

A weighted estimate of o, using ®(W) as the weight matrix with model (4.4),
is given by the solution to

(4.5) L'OYW)LG, = L'DYW)c .

Equation (4.5) is like (4.1) with X, W, and Y replaced by L, ®(W), and ¢. Since
(W) —, ©(W,), Lemma 1 applies giving

(4.6) N¥(8, — 0) —4 N(O, M(W)WM(W,)) .
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The jth column of L is the vector form of V;, so the jth column of L'®-(W)L
is, applying identity (4.3), just 4a(W, V;). Observing that the jth column of
G(W)is a(W, V,) and applying identity (4.3) to the r.h.s. of (4.5), equation (4.5)
can be written G(W)é, = a(W, C). This proves the theorem for the case K(W) =
0, D = C, and 5(W) = 0 (all a.s.). These restrictions will be lifted in turn.

Dropping the restriction that K(W) = 0 gives [G(W) + K(W)]é, = a(W, C).
Since G(W) = L'O-Y(W)L is p.d. (a.s.) for all N, and K(W) = o,(N~?), the prob-
ability that the matrix of coefficients is p.d. approaches 1 as N — co. The differ-
ence N¥(G, — o) — N¥(6, — o) is N¥([G(W) + K(W)|'G(W) — I)é, = —[G(W) +
K(W)]7'NiK(W)d, —, 0, since [G(W) + K(W)]' —, G (W), K(W) = 0,(N7}),
and, by implication of (4.6), 4, —, ¢. Hence, N¥(d, — ¢) has the same limiting
distribution as N#(¢, — o) given in (4.6).

The next step of generality gives [G(W) + K(W)]é, = a(W, D). The difference
N8, — 0) — N¥(@, — o) is [G(W) + K(W)]"Ni[a(W, D) — a(W, C)]. [G(W) +
KW)]* -, G*(W,). For the ith term of the remaining expression,
tr W='V,W-'N}D — C]—,0, since C — D = 0,(N7%) and W'V, W~ = O,(1).
N¥(; — o) has the same limiting distribution as N*(é, — ¢) given in (4.6).

Adding the term b(W) gives the full equation of (3.1). Letting ¢, be a solu-
tion, N¥(d, — o) — N¥(G; — 0) = [G(W) + K(W)]'Ntb(W) —, 0, since [G(W) +
KW)™* —,GY(W,) and b(W) = o,(N~*). Thus, N¥(4, — o) has the same limit-
ing distribution as N¥(é, — o), which completes the proof. []

5. Application to the method of MINQUE. To show that the theorem applies
to MINQUE, the following result is established.

LEmMMA 2. (i) e(W)e(W) = o,(N-})

(ii) N7 D2, e(W)e (W) — C = o0,(N).

Proor. The term e,(W) reduces to
5.1 e (W) =¢ — P(W),
where & = N7 YIlL,¢;. Then Ni&(W) = (I — P(W))Nic. Niz has a limiting
distribution by the C.L.T., so Nt —,0. Observing that / — P(W) = O,(1)

gives &(W) = o,(N~*), which proves (i). Multiplying the expression in part (ii)
by Nt and applying (5.1) gives

—P(W)N#eNte' — NENW'P(WY + P(W)NENEP(WY —, 0,
since Nt — 0 and P(W) = O,(1). [

The lemma shows that equation (2.3), with terms as given in (2.4), is of the
form (3.1) with W = H (a.s.), which leads to a corollary to the theorem.

CorOLLARY 1. Let 6, be the MINQUE of variance components for model (2.2).
Then NG, — o) has a limiting normal distribution with mean vector O and covari-
ance matrix M(H)¥M(HY'.

Observe that the estimator is consistent, independent of the choice of H, but
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the limiting distribution may depend on H through the covariance matrix. For
those cases where the MINQUE is invariant of H, it follows that the limiting
covariance also must be invariant. Unfortunately, the condition for invariance
of H (Rao, 1971Db, Section 6) is very difficult to check, and does not hold in all
cases. This difficulty is resolved by using the MINQUE of ¢ in an interative
procedure, a notion which is heuristically appealing from another viewpoint as
well.

Since the matrix H is essentially being used as an initial, or a priori, weight
matrix in place of the unknown Z, it seems reasonable to replace H by the esti-
mated X (obtained by substituting for the unknown parameters their MINQUE),
and re-estimate. In terms of the previous notation, if 6,; = (32 -, 6,2 isthe
MINQUE basedon Y}, - - -, Yy, thenset W = Xk, V,6? (if ther.h.s. isnot p.d.,
then set W = H, which is equivalent to not iterating in that case). Since
2k, V.6, —, X which is p.d., the probability };¥_, ¥, is not p.d. approaches
zero; the theorem can be applied with W, = Z. The resultant estimator is the
Iterated-MINQUE referred to previously.

CoROLLARY 2. Let ¢, be the -MINQUE of variance components for model (2.2).
Then N¥(G, — o) has a limiting normal distribution with mean vector 0 and covari-
ance matrix [L'O~Y(Z)L]™ + M(Z)AM(Z).

Observe that the initial starting matrix H is always immaterial to the limiting
distribution. If Y is normally distributed, A = 0 and the covariance matrix
reduces to [L’®~*(Z)L]™"; using (4.2) it may be written [{ tr 2V, Z-*V,;]~*. This
matrix is the asymptotic covariance of the m.l.e. of ¢, which is asymptotically
efficient (T. W. Anderson (1973)). Hence, when Y of model (1.1) is normally
distributed, without further restrictions, the I-MINQUE is asymptotically efficient.

While the case of normality is of particular interest, the reader is reminded
that the method of MINQUE is “distribution-free,” beyond requiring finite first
four moments.

In practice it may be helpful to iterate an estimate of ¢ more than once, pos-
sibly until either the components change only slightly or a fixed number of itera-
tions is reached; the asymptotic-distribution will remain as given in Corollary 2.

It is usually of interest to estimate 8 of (1.1), or a parametric function of S.
If W is set equal to either the MINQUE or I-MINQUE of X (or another consistent
estimator of Z), then the probability the matrix of coefficients in expression (4.1)
is p.d. approaches 1 as N — oo, when f is estimable. The limiting distribution
is'given by Lemma 1; the estimator is seen to be asymptotically equivalent to the
Gauss-Markov estimator of  formed when X is known.

6. Applications. In the notation of this paper, the estimator of T. W.
Anderson (1973) is found by initially letting the matrix W be an arbitrary p.d.
matrix (e.g., W = H) and D = N7' 3} e (W)e(W)'. The initial estimator, say
é,, is the solution to (3.1) with K(W) = O and 5(W) = 0. Applying the theorem,
d,—, 0. Resetting W to the estimator of X based on d,, it follows that W —, Z.
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Solving (3.1) with the new value of W gives the estimator sought, with limiting
distribution given by the theorem. Anderson’s approach was to work with the
maximum likelihood equations for a normal distribution, making A = 0in the
limiting covariance matrix. The results are applicable to estimation in the
moving average stationary stochastic process of finite order.

A frequently occurring variance components model of interest is the nested
classification. The two-fold nested design can be written y,;, = ¢+ a,+ b;; 4 ¢
fori=1,.---,r,j=1,--,5,k=1,.--,1, where g is fixed and the remaining
terms on the right are independent variables with zero means and variances
6. 0% o2 For example, imagine a survey of a given type of deciduous tree
where the observation of interest, y,;,, is a measure of the nitrogen content of
the kth leaf from the jth branch of the ith tree being sampled. The sample size
could reasonably be made large by holding s and ¢ fixed while increasing r. To
apply the results of this paper, the model is put into the form of (1.1) with
r = 1. Then for r an arbitrary positive integer, the model is conceptually equiv-
alent to N = r replications of model (1.1).

It can be verified directly that the ANOVA estimator, obtained by partitioning
the sum of squares and equating to their expectation, is the MINQUE in the
two-fold design with » = 2 (the smallest value for which the components are
estimable) and H = /. The large sample approximations given here do not
depend on the usual assumptions of normality.

To illustrate the computations, consider the simplest one-way classification
yi=p¢+a+byi=1,---,r, j=1,2, with assumptions as above and vari-
ance components ¢,” and ¢,>. The asymptotics will be as r — co. The terms of
model (1.1), constructed for r = 1, are X = (1, 1), U, = (1 1), U, = I,. Then
V,is a 2 x 2 matrix of 1’s, ¥, = [, and X = V,0,2 + V,0,2. Denoting the ith
column of L by [, [, = (1,1,1) and [, = (1, 1,0). Choosing H=V,-0 4
V,-1 =1, ®(H) = diag(2,2,1). The limiting distribution of r#(é, — o) as
r — oo is normal with mean vector 0 and covariance matrix

MYOZ)M(IY + MI)AM(IY

_ <20a4 + g, + 20,%,? —ab*) 1 (220 0>

—a,t 20, T2\ A

where 1, = Ea! — 30¢,%, 2, = Eb}; — 3¢,*. The limiting distribution of the I-
MINQUE is identical in this case.

An example of a mixed effects model is the balanced two-way classification
with interaction given by y,;, = ¢ + v, + B; + (28)i + rijw fori =1, .-, r,
j=1,.---,5, k=1, ...,¢, where 7, is fixed and the remaining terms on the
right are variables with zero means and variances ¢, d%;, ¢ %, respectively. If
the r, represent fixed treatment differences and the 8; are random block differ-
ences, the asymptotics of interest could be as the number of blocks (s) increases.
(If a block consists of a single observation (¢ = 1), then the term y,;, cannot be
distinguished from (z),; and is dropped from the model.) Model (1.1) is formed
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with s = 1, rand ¢ arbitrary. The preceding results apply in which N = s — co.

The method of MINQUE, with or without iteration, does not require that
subclasses have equal numbers of observations. To apply the asymptotic results,
however, it is necessary to be able to view a large experiment as replications of
a smaller one. For unbalanced data, this is not apt to be the case if the imbal-
ance is due to sporadic missing observations, but possibly applies in some situ-
ations of stratified sampling. \

7. Concluding remarks. The limiting distribution of both the iterated and
uniterated estimators depend on the numerator of kur (§.,,), t =1, .-+, p. For
a random variable Z with E(Z) = 0, kur (Z) + 2 = Var (Z?%)/(Var (Z))*, indi-
cating the kurtosis measures the ratio of the variance of the squared variable to
the square of the variance of the variable. Recently Ali (1974) concluded that
for a symmetrical density, kurtosis can be interpreted as the degree of “tailed-
ness” relative to the normal distribution, but warns that it can be misleading as
a measure of departure from normality.
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