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COMBINING INDEPENDENT NORMAL MEAN ESTIMATION
PROBLEMS WITH UNKNOWN VARIANCES

By JamEs O. BERGER' AND M. E. Bock?
Purdue University

Let X = (X1, ---, Xp)t be a p-variate normal random vector with
unknown mean ¢ = (6, - - -, 6p)* and unknown positive definite diagonal
covariance matrix 4. Assume that estimates V; of the variances A4; are

~ available, and that V;/4; is xZi. Assume also that all X; and ¥V; are inde-
pendent. It is desired to estimate 6 under the quadratic loss

[ZP_1qi(0: — 0:2)[ 0P 1q: 4],  where ¢; >0,i=1,---,p.
Defining Wi=Vi/(ni—2), W=(W1,- - -, Wp)t,and || X |lw?= 5% _, [ X;2/(a; W2,
it is shown that under certain conditions on r(X, W), the estimator given
componentwise by

0i(X, W) = (1 — r(X, W)/llIX|w2q: Wi]) X:

is a minimax estimator of §. (The conditions on r require p = 3.) A good
practical version of this estimator is also given.

1. Introduction. Let X = (X, ..., X)) be a p-variate normal random vector
with unknown mean ¢ = (4,, - --, ,)* and positive definite covariance matrix
¥. Consider the problem of estimating ¢, when the loss incurred in estimating
6 by 6 = (9,, -+, d,)" is the quadratic loss

L(3,6,%) = (8 — 6)'Q(d — 6)/tr (QF) .

Here Q is a p X p positive definite matrix and “tr” denotes the trace. Note that
tr (QX) is just a normalizing constant.

The above problem has been of considerable interest since Stein (1955) dem-
onstrated that if Q = ¥ =17 (the p X p identity matrix) and if p > 3, then
the usual estimator 9,(X) = X is inadmissible for estimating . Indeed he found
minimax estimators which significantly improved upon the risk of §,. The gen-
eralization of these results to arbitrary Q and ¥ was of obvious interest. For
the case of known X, wide classes of minimax estimators have now been
developed. (See Bhattacharya (1966), Hudson (1974), Berger (1976a), Bock
(1975), and Berger (1975).) For unknown X, however, the results that have
been obtained are very incomplete. For the special case Q = ¥£~!, James and
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Stein (1960) did obtain good minimax estimators better than g,. Bhattacharya
(1966) obtained results for the situation £ = ¢?B, where B is a known p X p
matrix and ¢? is unknown. The subsequent literature considering unknown X
has dealt with one or the other of the above two special situations. (See
Strawderman (1973), Lin and Tsai (1973), and Efron and Morris (1976) among
others.)

In this paper, a first step is made in dealing with arbitrary Q and unknown
X. Results are obtained under the assumptions that the X; are independent and
that Q is diagonal with diagonal elements ¢, > 0, i = 1, - .., p. Since the X;
are independent, it is clear that £ = A4, where A is an unknown p X p diagonal
matrix with diagonal elements 4, > 0. It will be assumed that estimates V; for
A; are available, where V;/A; has a chi-square distribution with n; degrees of
freedom. It will also be assumed that n, > 3, that all V, are independent of V;
for i + j, and that the V, are independent of the X;.

Throughout the paper, E[ ] will stand for the expectation of the argument.
Subscripts on E (usually ¢ or 4) will denote parameter values under which the
expectation is taken. Superscripts on E will be used to clarify the random
variable with respect to which the expectation is being taken. When obvious,
no subscripts or superscripts will be given.

For notational convenience, let W be the p X p diagonal matrix with diagonal
elements W, = V,/(n, — 2). Define

Xy = XWQTW™X = Zr, [X2/(q: W) -
Let |x| denote the usual Euclidean norm of x. Finally, let x;,i=1, ..., p,
denote independent chi-square random variables with n; degrees of freedom,
and define
T = min,g,, [Xii/”i]» and v =71(n, -+, n,) = E[T].
In Section 2, it is shown that under certain conditions, estimators of the form
(1.1) 3(X, W) = (I — r(X, W)||X||, QW)X

are minimax and have risks smaller than 1 (the risk of d,). Thus, in combining
p independent normal mean estimation problems with unknown variances it is
often possible to improve upon the risk of the usual estimator. A simple, practi-
cally significant version of the above estimator is then suggested for application.

2. A class of minimax estimators.

THEOREM 1. Assume 0 is of the form (1.1), where

(i) 0= r(X, W) <2(p — 20),
(ii) r(X, W) is nondecreasing in |X,| fori =1, ..., p,
(iii) r(X, W) is nonincreasing in W, fori =1, - .., p,
(iv) r(X, W)||X||,~* is nondecreasing in W, fori =1, ..., p.

Then 0 is a minimax estimator of 6.
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Proor. Throughout the proof it will be assumed that all first order partial
derivatives of r exist. The generalization to r merely nondecreasing or non-
increasing in the various coordinates can be done analagously by treating all
integrals as Riemann integrals.

The risk of 6, denoted R(d, 6, A), is given by

R(0,0, A) =E, ,L(0,0, A) = E, (0 — 0)!Q(0 — 0)/tr QA)].
Writing [0 — 0] as [(X — 6) — r||X]|],~2Q'W~'X], and expanding the above
quadratic expression, gives
R, 0, 4) = E, ,[(X — 0)Q(X — 6)]tr (QA)]
— Ep J[2r]| X ]|~ %(X — 6)'WT'X]tr (QA)]
+ E, [P X |l X WTIQTIQQ T W X tr (QA)]
=1 — E, 2| X ||y 21 Xao(X; — 6,)/Wi}/tr (QA)]
+ Ep [ X]|w?/tr (QA4)] .
To show that § is minimax, it is clearly only necessary to verify that
(2.1) Ey A[2r||X | 200 X(Xy — 0)[W )] — Eg [P X||w*] = 0.
A simple integration by parts with respect to X, gives

Ey J[{rl| X[l X H(X: — 0,)]A4}]
d 2
:Eﬂ,A[aX (r[1 X5 Xz)j|

2

2rX 2 X. 0
—E, [ r__ o+ g o X, W)H.
Lxr X' 1X ] Lax,

1

Using the above equality in the first term of (2.1), and noting that
[X.(9/oX)r(X, W)] = 0 by assumption (ii), it is clear that d will be proven
minimax if it can be shown that

2rA. 4r X2A. r?
0 B [(Er )~ (B K - ]
n VIX I Vawi X

1

v

0.

At this point, the following equality is needed:

rA, r 44.rX?
2.3) E, [___,} _E, [ _ LrX,
* [| X *W, ! ||X||W2 (n; — 2)||X||W4qi w2
_ 24, 2{ 9 p(x, W)H.
(n; — 2)|| X}y Lo,

ProoF oF (2.3). Let U be y,% g: R'— R' be an absolutely continuous
function, and ¢’ denote the derivative of g (where it exists). Efron and Morris
(1976) noted that an integration by parts will prove

(2.4) E[Ug(U)] = nE[g(U)] + 2E[Ug'(U)],

providing all integrals exist and are finite. In each of the integrals of (2.4)
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make the change of variables Z = cUj(n — 2) (¢ > 0), and define A(Z) =
9([n — 2]Z/c). Noting that g’(U) = ch'(Z)/(n — 2), (2.4) becomes

E[(n — 2)ZW(Z)/c] = nE[k(Z)] + 2E[ZK(Z)] .
Since W(n, — 2)/4, = V,/A, is Xn,» it follows that
(2:3)  Epulln = 2)WR(W)A] = E, ,[n,l(W)] + 2E, ,[W.K(W,)] .

Choose ,(W)) = r(X, W)/(||X [lw*W.,), which under the assumptions on r is abso-
lutely continuous unless X, = 0 (which of course has measure 0). Noting that

Pwy=—__T 4 X 1 (9 )
0=~z * iveewe i G W)

the expression (2.5) reduces to (2.3).
Inserting the expression given by (2.3) for Ey ,[r4,/(]|X]]*W,)] into (2.2), and
collecting terms, gives as a sufficient condition for minimaxity

(2.6) Ey, [zﬁ;{ﬁj - “;ﬁ { L‘[(niz%fiz) - Al] $}

e o o 2

Notice that {(3/aW,)r(X, W)} <0 by assumption (iii). Hence (2.6) will be
satisfied if

and hence if

r 4
R X[l

X (max,,. — "% Pt >0.
( == e, = 2w, Yqawi) 1=
Since Y17, X*/(¢; W% = [|X]|,? it can be concluded that § is minimax if

29 E,, [rHXHW-Z {2;; —r— 4<maxlsi§p ﬁw_)” >0.

v

0,

For notational convenience, define
g(w) = 4max1§i§p {n,A,[(n, — )W}

Note that g(W) is nonincreasing in W,, and by assumption (iii), r(X, W) is
nonincreasing in W,. Hence {2p — X, W) — g(W)} is nondecreasing in W,.
Assumption (iv) states that {r(X, W)X ||,~% is also nondecreasing in W,. Hence

EQUIX=2p — r — gW))] 2 (ELAIX ||, ) ER[2p — r — a(m)]) -

Since the W, are independent, it is again clear from assumptions (iii) and (iv)
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that E¥1[r||X||,~*] and E}:[2p — r — g(W)] are nondecreasing in WW,. Hence

EVAERr]| Xl IER[2p — r — 9(W)]}
= (Eyriorll Xl IER2p — r — g(W)]) -
Continuing in the obvious manner verifies that

Ef fES X w2 — r — 9(W))]}
(2.10) = Ej J(ESTIX N DEL[2p — r — 9(W)])}
= B {(ESTIX]w " D2p — EJ7[r] — 40)} .

(The last step follows since n, A,/[(n, — 2)W,] = [V;/(4;n)]" = [x3,/n]™", and
hence E,"[g(W)] = 4E[T'] = 4r.) Assumption (i) ensures that r[|X|[,~> = 0
and that (2p — E,"[r] — 4r) = 0. From (2.10), it is thus clear that (2.9) is
satisfied, and hence that ¢ is minimax. []

Obviously, unless (p — 2z) > 0, assumption (i) and hence Theorem 1 is vacu-
ous. To calculate 7, the following formula can be used if the n, are even:

=t [ | 220

where m; = n,;/2, m = }7_,m;, J(k) = },.,j(i), and the inner summation is over
all combinations {j(1), j(2), - - -, j(k — 1), j(k + 1), - - -, j(p)} where the j(/) are
integers between 1 and m, inclusive. The verification of this formula is a tedious
but straightforward calculation. The following theorem does show that if p >
3 and the n, are large enough, then indeed (p — 27) > 0.

THEOREM 2. Assume p = 3. There exists an N such that if n, > N,i =1, ...,
p» then (p — 27) > 0.

ProoF. Since p = 3, it clearly suffices to show that lim sup,_., (n, - - -, n,) <
1. From the definition of T, it is clear that T~ < 3?_, (x5 /)~ For ¢ > 1,
Jensen’s inequality thus gives

(2.11) o = (E[T7])" = E[T~"] = X1 E[(ta,/n) "] -
An easy calculation shows that

E[(: /n)™] = (/2T (% — q) /r (g) .

Together with (2.11) this gives

2.12) {Zz 1[(,11/2)01“ )/r )]

For fixed ¢ > 0, g can be chosen large enough so that (2p)'/ < 1 4 . For fixed
g, it is straightforward to verify by Stirling’s approximation that

(n/2)"l"<———q> I‘( ) as n,— oo .

Combining these two observations with (2.12) gives the desired result. []
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At this point it should be mentioned that condition (i) of Theorem 1 is un-
doubtedly stronger than necessary. An examination of the proof of Theorem 1,
specifically the passage from (2.7) to (2.8), leads one to think that = could be
replaced by something much closer to one. Indeed, one would guess that
could be replaced by

max,<;<, E(”z/bez) = max, e, [n/(n; — 2)] .
Unfortunately, we were unable to verify any such better condition. The proof
of Theorem 2 does indicate, in any case, that if the n, are large (relative to p),
then little is lost by the rougher bound.

When it comes to suggesting an estimator to use in practice, the choice
determined by r(X, W) =c¢, 0 < c < 2(p — 27), is attractive because of its
simplicity. In Berger and Bock (1975), it is shown that this simple choice can
be considerably improved upon by using the “positive part” version, given
componentwise by

05X, W) = [1 — ¢/([|X]lw"q: WI* X, -

(Here “+” stands for the usual positive part.) Choosing ¢ as close as possible
to (p — 1) (while still preserving minimaxity) has given very attractive results
in numerical studies, with the resulting estimator having a risk considerably
better than the risk of the usual estimator d(X) = X. Typically, the improvement
in risk is about 50 9, at § = 0 (depending, of course, on p, Q, 4, and the n,),
with the amount of improvement decreasing as |f| gets large. The estimator
should, of course, be centered at what is a priori considered to be the “most
likely” parameter value, so that the major improvement in risk is obtained at
this point.

Acknowledgments. The authors are grateful to the referee for greatly simpli-
fying the proof of Theorem 2.
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