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MEAN SQUARE ERROR PROPERTIES OF
DENSITY ESTIMATES!

By KATHRYN BULLOCK DAvis
University of Washington

The rate at which the mean square error decreases as sample size in-
creases is evaluated for general L! kernel estimates and for the Fourier
integral estimate for a probability density function. The estimates are then
compared on the basis of these rates.

1. Introduction. Estimates of probability density functions by kernel series
methods are now common in the literature. Both the theoretic and the Monte
Carlo results have led some to wonder whether indeed the choice of kernel makes
much difference. While the rate of decrease of the bias depends on the particular
kernel chosen, in this paper it will be shown that within certain classes of kernels,
the rates are the same. For L' kernels, if f™ exists, the rate is at most A-™,
where 4 is the scaling parameter. If the L' kernels are restricted to be nonnega-
tive, the rate is at most A%, regardless of the smoothness of f. For the Fourier
integral estimate, the rate of decrease of the bias depends on the smoothness of
/> so that for sufficiently smooth functions, the rate is much faster than the rate
for L' kernels.

2. Kernel estimates. A kernel estimate is an estimate f(x) of the probability
density f of the form

£ = L 5 Ky — X))

where X, ..., X, are independent identically distributed random variables with
probability density f. In this paper K, will be a kernel satisfying K,(x) = 1K(4x)
and § K(y)dy = 1, where A(n), the scaling parameter, is nonnegative increasing
function such that

lim,_,A(n) = 00 and  lim, _ A(n)jn = 0.

Integrals where no limits are written are to be taken over the entire real line.
important examples of kernels are given in the following table:

K(x) = 71 + x?)~* (Cauchy)
K(x) = =~'(sin x/x)? (Fejér-de la Vallée Poussin)
K(x) = n—te=** (Weierstrass)
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K(x) = Le-i® (Picard)
K(x) = 3z~'(sin x/x)* (Jackson-de la Vallée Poussin)
K=3% if =1
=0 if |x|>1 (the “moving average”)
K(x) = (zx)7'sin x (the Fourier integral estimate kernel)

Estimates formed using these kernels are asymptotically unbiased, consistent,
and asymptotically normal. At continuity points of f(x), the variance of the
estimate converges at the rate A(n)/n (Parzen (1962), Konakov (1973)).

The expected value of the estimate is given by

E(fY(x)) = § Ky(x — f(y) dy = (K*f)(x) -

The bias b then has the simple expression

b(fA(x) = (f — K*/)(x) -

3. Rate of convergence of the bias for L' kernels. Shapiro (1969) has many
results with direct bearing on density estimation (see also Butzer and Nessel
(1971)). Shapiro’s (1969) general theme is the relation between a given function
f and its “smoothed” version obtained by forming its convolution with K,. The
kernels considered are quite general kernels K € L' (— oo, o). (The kernel for
the Fourier integral estimate is not in this class.)

A first result, true for all densities, is: if K € L' (— oo, oo) then § |6(f*™(x))|dx—
0 as n — oo (Shapiro, page 11). If in addition f is uniformly continuous and
bounded on (— oo, oo) then b(f*™(x)) — O uniformly as n — oo (Shapiro, page
13). With additional restrictions on K, pointwise convergence of the bias for
general densities may be shown. Parzen (19625 gives criteria for “weighting
functions” which are an example of such restrictions; Shapiro (page 14) gives
slightly less restrictive conditions for the same results.

For “nice” densities, then, the estimate f* will be asymptotically unbiased for
any kernel K, € L'. In order to compare estimates using different kernels, the
rates of convergence of the bias may be compared. In general, the rate of
convergence improves with the smoothness of the density f being estimated;
however, for some kernels there may be a limit beyond which even if greater
smoothness of f is assumed, the rate of convergence does not increase. This
phenomenon is called “saturation.”

THEOREM 3.1. (Pointwise saturation theorem, [12], page 27). Let Ke L', x’K ¢
L', § xK(x)dx = 0, and A = § x*K(x)dx. If f is a bounded measurable function
and if ["'(x) exists, then

lim, ., 2(n)b(f*(x)) = —3Af"(x) .
Kernels which satisfy the theorem include all nonnegative even kernels with

x*K ¢ L', in particular, those of Weirstrass, Picard, Jackson-de la Vallée Poussin,
and the moving average. Note that for nonnegative kernels, A4 is always nonzero
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so that this is the best possible result, that is, the bias cannot decrease any faster
than 1/22. For the Cauchy and Fejér-de la Vallée Poussin kernels, the asymptotic
decrease is slower, of the order 1/1:

THEOREM 3.2. ([12], page 33). Let f be bounded and measurable on (— oo, o)
and suppose
A(f3 %) = 277 3 (f(x + 1) — 2f(x) + fx — 1) dt
exists as a Lebesgue integral for some particular value of x. If K is the Cauchy
kernel, then lim,_, A(n)b(f*(x)) = —A(f; x). If K is the Fejér—de le Vallée Poussin
kernel, then
lim, ., A(m)b(f1(x)) = —3A(S; %) -

All of Parzen’s (1962) examples of weighting functions are included in these
two theorems. Intuitively one might think nonnegative kernels might provide
the best estimates since they are themselves densities. The following theorem
shows the converse is true. If the kernels are not restricted to be nonnegative,
the degree of approximation may actually improve, although the resulting den-
sity estimate may be negative at some points. (A similar theorem with different
restrictions on K appears in Parzen (1958) in the context of estimation of spectral
density functions.)

THEOREM 3.3. ([12], page 31). Let K¢ L', x"K € L' where m is a positive inte-
ger 21, { x’K(x)dx =0forr=1,2, ...,m — 1,and §{ x"K(x)dx = A+ 0. If
[ is a bounded measurable function and if f™(x) exists, then

lim, . A)"b(f(x)) = —(Af ™ )m!
4. The Fourier integral estimate. Shapiro’s theorems do not apply to the
Fourier integral estimate since K ¢ L'. The bias for the Fourier integral estimate
is given by
(4.1) b(fH(x)) = —37 §52 @ (H)e~"" dt
(Parzen (1967), Davis (1974 b)). The rate of decrease of the bias depends on the
smoothness of f as reflected in the rate of decrease of the characteristic function
®,(t). This relationship may be seen in expression
f™(x) = § (it)y"D@ (t)e"= dx ,
which holds if both the derivative f™(x) and the integral exist. The rate of
convergence for certain classes of characteristic functions, those which decrease
exponentially and those which decrease algebraically, as defined by Watson and
Leadbetter (1963) and similarly by Parzen (1958), will be investigated below.
A characteristic function is said to decrease exponentially with degree r and
coefficient p if

(i) D1 < Ae-rtr for some constants 4 >0, p>0, 0<r<2
and
(4.2) (if) lim,_, §3(1 4 exp(2pt)|@ «(tx)|*)*dx = 0 .
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This class includes the normal probability density (4 = 1, p = 0% r = 2) and
the Cauchy density (4 =1, p = 1, r = 1). Using integration by parts, it is
easily shown that

lim, 27" (v e~"dt =0, r>0.

From the definition of exponential decrease,
b(f1())] = =7 F Ae=*"dt .
Using a change of variable u” = pt", an immediate result is:

THEOREM 4.1. Suppose @ ,(t) decreases exponentially with degree r and coefficient
p. Then the bias b(f*(x)) of the F.LE. satisfies
(4.3) lim, ., A(n)~ler*™"|b(f3™(x)] = 0.
The bias of the F.I.E. then decreases quite rapidly, at least as fast as le=*",
A characteristic function ®,(f) is said to decrease algebraically of degree
p>0if
(4.4) lim,_., [#?|®(f)] = K* > 0.
This class includes the gamma, chi-square (2p = degrees of freedom), exponen-

tial (p = 1), and double exponential (p = 1) probability densities. The F.LE.
f*™(x) has been shown to be asymptotically unbiased so

4.5) lim, ., [6(f*™(x))] =0 forall p.
Using (4.4), if p > 1, then
(4.6) lim, 2771 {5, |@4(1)| dt = 2K¥(p — 1)~*.

Using 4.1, 4.5, and 4.6, the theorem follows:

THEOREM 4.2. Suppose @ ,(t) decreases algebraically of degree p > 0. Then the
bias b(f*™(x)) of the F.LE. satisfies

lim,_, |6(f*™(x))] =0, p>0
and
lim, .. A(n)*~b(f*™(x))| < Kiz=H(p — 1)7*, p>1.
The bias of the F.I.LE. then decreases at the rate A(n)'-?.

5. Comparison of the mean square errors. For the F.I.LE. and for general L'
kernels, the variance tends to zero at the rate A(n)/n. The rate of decrease of
the bias depends on the kernel, the smoothness of the underlying density, and
the function . It is interesting to compare the estimates when the optimal (in
some sense) A’s are used in each estimate. For kernels satisfying Theorem 3.3
with m = 2, A(n) of the order cn*, where c is a constant depending on the density
f and the kernel K, has been shown to be asymptotically optimal under the cri-
teria of mean square error (Rosenblatt, 1956) and of mean integrated square
error (Epanechnikov, 1969). (This includes all of the examples cited by Parzen
(1962) except the Cauchy and Fejér-de la Vallée Poussin, for which m = 1).
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Davis (1974a) showed that the optimal A(r) for the F.L.E. in terms of MISE is
of the order (log n/2p)Y" for exponential decrease of degree r and coefficient p,
and nt? for algebraic decrease of degree p > 1. In the following let f*™(x) be
the F.LLE. and let g*(x) be an L' kernel estimate with v(n) = cnt.

For the exponential case, let (n) = (Inn/2p)"". Since v(n)*A(n)exp(—pA(n)") =
¢*((In n)/2p)""n=%, and this tends to zero as n — oo, using Theorems 3.1 and 4.1
it follows that

lim, ., 6(f*™(x))/b(g"™(x)) = 0.
Upon examining the ratio A(n)/u(n), it is also clear that
lim, _,., Var (f**(x))/Var (g*™(x)) = 0.

(These results hold in general if v(n) = cn® where 0 < @ < }.) Thus for the class
of functions whose characteristic functions decrease exponentially, the F.LE.
is better than general L' kernel estimates in terms of rate of decrease of the mean
square error.

For the algebraic case, let 2(n) = n*. Now y(n)A(n)'~? = c’n/*»~% and this
tends to zero for p > 5 as n — co. For p = 5, the ratio is ¢>. Thus from Theo-
rems 3.1 and 4.2,

lim, .. 6(f*™(x))/b(g"™(x)) = 0

if p > 5. Theorem 4.2 is not strong enough to provide results for p < 3, although
for p = 5 the limit is bounded. The result holds in general if u(n) = ¢n*, 0 <a <
3(1 — 1/p). From inspection of A(n)/v(n), the ratio of the variances satisfies

lim,_,., Var (f2™(x))/Var (g"™(x)) = 0 if p>3
= n7Y|cK]||;? if p=3

where K is the particular kernel used in the L' estimate. Once again, the F.L.E.
is the better estimate in terms of mean square error for smooth density functions,
that is, functions with p > 5.

ExXAMPLES.
(i) Let f be a normal (g, ¢%) density. Then
|©4(0)] = et

s0 @ () decreases exponentially. Thus the mean square error decreases faster for
the F.LE. than for an L' kernel estimate.

(if) Let f be the chi-square density with r degrees of freedom. The charac-
teristic function @, satisfies

I(I)f(t)l = (1 -+ 4;2)—1-/4

so that @ (¢) decreases algebraically of degree r/2. The F.LE. is then the better
estimate if the degrees of freedom exceed 10.
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(iii) Let f be the exponential density f(x) = ae=*%, @ > 0, x > 0. Then
@0 = (1 — #fa*)™H,

so @ () decreases algebraically of degree 1. In this case the F.I.E. is inferior to
even the Cauchy and Fejér-de la Vallée Poussin kernels. Note that f’(0) does
not exist, that is, f is not smooth.
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