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ON CHERNOFF-SAVAGE STATISTICS AND SEQUENTIAL
RANK TESTS!

By Tz LEUNG LAI

Columbia University

In this paper, we shall represent a generalized Chernoff-Savage statistic
as the sum of i.i.d. random variables plus a remainder term and analyze
the order of magnitude of the remainder term. While Chernoff and Savage
have proved that the remainder term, when suitably normalized, converges
to 0 in probability, we obtain a stronger form of convergence in this paper.
Our result gives an invariance principle and a law of the iterated logarithm
for generalized Chernoff-Savage statistics. We also use our result to obtain
asymptotic approximations for the stopping rules of certain sequential rank
tests.

1. Introduction. In [4], to prove the asymptotic normality of a class of linear
rank statistics, Chernoff and Savage have expressed this kind of statistics as the
sum of i.i.d. random variables plus a remainder term and have demonstrated
that the remainder term, when normalized by an appropriate factor, converges
to zero in probability. In certain applications involving linear rank statistics,
however, we need to have a stronger result concerning the order of magnitude
of the normalized remainder term than simply convergence to zero in probability.
In Section 4 below, we shall prove a stronger form of convergence which we
shall need in the study of sequential rank tests in Section 5. As an immediate
corollary of our result, we also obtain an invariance principle and a law of the
iterated logarithm for generalized Chernoff-Savage statistics. To prove our rep-
resentation theorem in Section 4, certain results concerning the large deviation
probability for the tails of the empirical distribution function will be needed.
Section 2 deals with this problem of large deviation probabilities.

In Section 5, we shall study the stopping times of certain sequential rank tests.
Suppose X, X, - -- are i.i.d. with a continuous distribution function F, and
are independent of Y, Y,, - - - which are i.i.d. with a continuous distribution
function G. In [13], Savage and Sethuraman have examined the rank-order
sequential probability ratio test of the null hypothesis H,: F = G versus the
Lehmann alternative H,: F = G4 where 0 < 4 = 1 is a known constant. Let
Fu(x) =0 DLy cary Gu(x¥) =07 Dl iy, and W (x) = F (x) + AG,(x).
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Define
(11) I, = log((2n)!/r) — X {log W,(X,) + log W,(Y,) — log 4}

= — X1 {log W,(X,) + log W,(Y;) — log44 + 2} + $logn 4 O(1) .
The rank-order SPRT stops at stage
(1.2) N=inf{n=1:1,¢(—a,d)} (a, b > 0)
(cf. [13]). In [13], Savage and Sethuraman have shown that given ¢ > 0, there
exists 0 < p < 1 such that
(1.3) P[|n~', — S(A, F, G)| = ¢] = O(o™)
where
(1.4) S(4, F, G) = log4A4 — 2 — § log (F(x) + AG(x))(dF(x) + dG(x)) .
From (1.3), it is easy to see that if S(4, F, G) # 0, then Ee'"” < oo for t < 0
(6 > 0) and as min (a, ) — oo,
(1.5) EN? ~ (b/S(A, F, G))* if S(4,F,G)>0;

EN? ~ (a/|S(4, F, G)|) if S(4,F,G)<0

for any 8 > 0(cf.[1] for the case 8 = 1). Thesituation in the case S(4, F, G) =0
is much harder. Sethuraman [15] has shown that the stopping time N still re-
mains exponentially bounded in this case. In Section 5, by making use of our
results in Section 4, we find the asymptotic distribution and the asymptotic

moments of N when S(4, F, G) = 0. We shall also examine a sequential two-
sample Wilcoxon test in Section 5.

2. Large deviation probabilities for the tails of the empirical distribution
function. Let X, X;, - - - be i.i.d. random variables with a common continuous
distribution function F. Let F,(x) = n~* ;7 I15 ., denote the empirical distribu-
tion function. Large deviation probabilities for the Kolmogorov-Smirnov sta-
tistic ||F, — F|| = max, |F,(x) — F(x)|are well known; in fact, Dvoretzky, Kiefer
and Wolfowitz [6] have proved that there exists a universal constant C such that

(2.1 P[}||F, — F|| = u] < Ce™, n=12,---,u=0.

The following theorem deals with certain large deviation probabilities for the
tails of the empirical distribution function, which will be useful in the analysis
of linear rank statistics.

THEOREM 1. (i) Givenanyc > 0,0 < a < 1, there exist positive constants ki, k,
such that forallu > 1,n=1,2, ...

(2.2) P[MaXy, (4 <on-a |Fo(X) — F(x)| = n=0+ary]

+ P[Maxy u2-en-a |[Fu(X) — F(x)| = n=+02] < kel
(2.3) P[Maxy ) cop—a [Fo(X) — F(x)| = n=+0/3y]

+ P[Maxp )z —on-a [Fu(x) — F(x)| Z n=0+0%] < kyefa*
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(ii) Givenanyc > 0,0 < « < 1 and 6 > 1, there exists a positive constant 2
such that

(2.4)  P[max;, g zen-a F(X)/Fu(x) > 9]
+ P[maxy 5o (1 — F(x))/(1 — Fy(x)) > 0]
= O(exp(—2An'~%));
(2.5) P[maxy s en-a F(X)[F,(x) > 0]
+ P[maxF(:c)él—cn‘“ (1 - F(x))/(l - Fn(x)) > 5]
= O(exp(—An*=272))

(ili) Givenc >0, 1 = a > 0 and B > 0, there exists 2 > 0 such that letting
y =min{28, 8 + (1 — a)}, we have
(2.6) P[|F,F-Y(cn=*) — cn=¢| = nf+td-o-1] = O(exp (—4n"))

2.7) P[|F,F(1 — cn=%) — (1 — cn=%)| = nf+id-=-1] = OQ(exp(—4n"))
where F=(t) can be taken to be any number x such that F(x) = t. (In our applica-
tions below, we sometimes take F-(¢) to be sup {x: F(x) = ¢}, and at other times
take F-I(¢) to be inf{x: F(x) = t}.)
(iv) Givenanyc >0,1=Za >0,8>0anddé > a — B,
(2.8)  P[max,g,g, n'F,F-}(cn=) = mi=a+]
+ P[max,g,g, n’{l — F,F7(1 — en™*)} =2 m?=e+?]

= o(exp(—m?)) if 6za

= o(exp(—m’=*+F)) if i<a.

Proor. To prove (2.2), since maxy ,»;-.u-a |Fa(X) — F(x)| has the same dis-
tribution as maxy ,<e.-« |[F,(x) — F(x)|, it suffices to consider only the lower
tail of the empirical distribution function. The same remark also applies to the
other parts of Theorem 1. Since F is continuous, we can write

mMaXp (z)gen—a |Fu(x) — F(x)| £ max,gp-a |U,™ — (k/n)| + n~?

where U™, ..., U,™ are the order statistics of the uniform distribution (cf. [2],
page 285). Let W, W,, ... be i.i.d. random variables having the negative ex-
ponential distribution with mean 1, and let S, = W, + ... + W,. Since U™,
k=1, ...,n, have the same joint distribution as $,/S,,,, k =1, ..., n, we
obtain that for # = 1 and n = n,,
P[Maxy, g gen-a |[Fa(x) — F(x)| Z n7*0u]
= P[(1/Su41) M2Xpgoni-a (S — k) — (k[n)(Spsy — n)| Z 1710+ 2u]
é P[S'n+1 < %n] + P[maxkécnl—a |Sk - k| g %n’k(l_a)u]
+ P[|S,4 — 1| = (8¢)"'nt™wu] = A, + B, + C,, say.
By a theorem of Chernoff [3], 4, < k, exp(—k,n) for some k,, k, > 0.
To give an upper bound for B,, let m = [cn*~*]. Then since {exp (0(S; — k)),
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k=1, ..., m}is a submartingale for 0 < ¢ < 1, it follows from the submar-
tingale inequality that for ¢ > 0,
(2.9) P[max,,, (S, — k) = ¢] < e~"E exp(6(S,, — m))
= exp{—0c — m(6 + log (1 — 0))} .
Now |6 + log (1 — 8)| £ ¢ for || <0, Hence setting § = m~* and ¢ =
$nt?-*y in (2.9), we obtain for n = n, = n, and » > 1 that for some k,, k, > 0,
P[max,,,1-« (S, — k) = ¢] < LkeFv.

Replacing S, — k by —(S, — k) in the above argument, we can easily see that
B, < k,exp(—k,u) for n > n,. In a similar way, we can show that C, <
k, exp(—k,u) for n = n,. Hence there exist k,, k, > 0 such that for n > n, and
n=zuz=l1,
A, + B, + C, < ket 2k e "% < 3k e Fav
If u = n, then it follows from (2.1) that
Pl||F, — F|| 2 n~tu] < P[||F, — F|| = n~eut]
< P[n}||F, — F|| = u?] £ Ce™.
Therefore we have proved (2.2) for n > n,. By (2.1), we can choose k,, k, such
that (2.2) also holds for 1 < n < n,.
To prove (2.4), we let 6 = 6,0, with , > 1, 6, > 1 and note that by Chernoff’s
theorem,
P[maxy zen-a F(X)[F,(x) > 0]
< P[U™ > d(k — 1)/n for some k = cn'~*]
= P[S,/S,1 > 0(k — 1)/n for some k = cn'~*]
< P[S,1 < n/o,] + P[S, > dy(k — 1) for some k = cn'-*]
S 0" + Zizem-a ) forsome 0<p< 1
= O(exp(—An'~%)) for some 21>0.
To prove (2.5), we use (2.2) and (2.4) to obtain that
P[maxy,sen—a F(X)[F,(x) > 0]
< P[maxy ) <yon—e |[Fu(x) — F(x)| = $en2]
+ P[maxy ) gjen—e |Fa(x) — F(x)| < Jen=e,
ma’xF(w)zcn""‘ F(X)/F”(X) > 6]
= O(exp(—Ant-)) 4 P[maxF”(z)zm_a F(x)/F(x) > 3]
= O(exp (— Ant1-2)) for some 2>0.

We now prove (2.8) by making use of Bernstein’s inequality (cf. [17], pages
204-205). We note that

ney P[|nF, F~(cn=*) — cn'=*| = m’=*+in'=?] < 2 3™ exp(—h,)

n=1
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where &, = m*®=e+Pp2a=0/2[cn'=*(1 — cn=*) + {m’~*+Pn'~? max (cn—%, 1 — cn=%)]}.
For § = a, m*?®-«+hp?l-3)[pl-« > m? and so the desired conclusion follows. For
0 < a, we have 1 — 9 > 1 — a = 0 and the desired conclusion is obvious.
Likewise using Bernstein’s inequality, we can prove (2.6) and (2.7).

It remains to prove (2.3). Without loss of generality, we can assume that F
is the distribution function of the uniform distribution on [0, 1]. Let X, X,, - - -
be i.i.d. uniform random variables and let X,(f) = Iiy,cn, t€[0,1). Then
{(Xi() — /(1 —1),0 <t <1} is a martingale (cf. [8], page 7) and so
{2 (X(r) — 0)/(1 —1),0 <t < 1} is also a martingale. Set ¢ = nt?*-*y, § =
$n~1@-»_ Then using the submartingale inequality, we obtain that for n > n,,

P[max,_,,—« |F,(t) — t| = n~t+oy]
= P[max,gu-« |51 (X(1) — /(1 = 1)] 2 €]
< e="E exp (0] 3 (X(en™) — en=)/(1 — cn~2)))
< e Eexp (20|27 (Xy(cn=*) — cn=®)|) .
We note that by Bernstein’s inequality,
E exp (26| £ (Xi{en~) — en=2)))
=14 (& e"P[20| 231 (X,(cn~®) — cn~%)| = x] dx
= 1 4 {7 &P[| T} (X(en=*) — en~)| Z xnd®=] dx
= 1425 e exp(—9g.(x)) dx
where
9.(x) = x*n*=¢/{2[cn*~*(1 — cn=*) + $xnt?~* max (cn=*, 1 — cn=%)]}
= 2x for x=x, and n=n, =n,.
Therefore (2.3) holds for n = n,. In view of (2.1), we can choose k, such that
(2.3) also holds for 1 < n < n,.

3. Some preliminary lemmas. Suppose X;, X,, .- - arei.i.d. random variables
with a common continuous distribution function F and are independent of Y,
Y,, -+ which are i.i.d. with a common distribution function G. Let F,(x) =
7 1l a1y Gu(x) = m™ T Iy <,y be the empirical distribution functions.
In this section, we shall prove some lemmas which we shall use in Section 4
below.

LeEMMA 1. Suppose u,: R — R satisfies max, |u,(x)| < K, < oo and
(3.1) Unw = §Ze (Gu(x) — G(x))un(x)d(Fy(x) — F(x)) .
Then for any p = 1, there exists an absolute constant A, > O depending only on p
such that
(3.2) E|\U, " < 4,K,*»(mn)"? .
Consequently, if K, = O(n’) for some 6 = 0 and (m,) is a sequence of positive
integers such that lim inf,_ n='m, > 0, then given any { > 6 — 1,
3.3) P|U,,, .| > n'] = o(n=?) forall p>0.
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Proor. Set g, .(x) = (Gn.(x) — G(x))u,(x) and 2, , = § 9, .(x)dF(x) =
E(Qp(X)| Yy -+, Yy). Then U, , = 17" 317 (9, u(Xi) — An..), and so the con-
ditional distribution of U,, , given (Y;, - - -, Y,,) is that of the average of i.i.d.
random variables with mean 0. Hence by the Marcinkiewicz-Zygmund ine-
quality (cf. [10]), there exists a universal constant C, > 0 such that

E(IUm,'nlapl Yl’ R Ym) é n—ﬁpCpE{Z{; (gm,n(A’i) - 'zm,n)zl Yl’ ] Ym}p
= n7Cy(4nl|g .l

where ||9,, .|| = max, |9, .(x)|. Therefore
ElUm,nlap é 4pcpn-pE”gm,n”2p ‘

Now ||9,../| < K,||G, — G||. By (2.1), there exists an absolute constant B, > 0
such that E(mt||G,, — G||)*® < B,. Hence we have proved (3.2), and (3.3) follows
easily from (3.2) and the Markov inequality.

LEMMA 2. Let H= }(F 4 G), andlet 0 < a < 1,7 > 0and» > 1. Let(m,)
be a sequence of positive integers satisfying lim inf, __ n='m, > 0.
(i) There exist positive constants ¢ and d such that

P[maxy ), -« H(X)/max (F,(x), G, (x)) > 7]
(3:4) + P[Maxy ) gi-n-e (1 — H(x))/max (1 — F(x), 1 — G, (x)) > 7]
= O(exp (—cnt-);

(3'5) P[ma’xH(a;)gn—a |F,n(x) i F(x)l ; n-é(l+a)+r]
+ P[maxy , s1—p-a |F(x) — F(x)| = n~t*+0+] = O(exp(—dnv)) .

(ii) Givenany 4> a — t,

P[max,,.,, n*F, H-(n=*) = m*-*+7]
(3.6) + P[max,_,., n*{l — F,H1 — n~%)} = mi-*+7]
= o(exp(—m")) if 2za
= o(exp(—mi-a+r)) if 2<a.

Proor. We note that H < max (F,G), 1 — H <max (1 — F,1 — G), and
so (3.4) follows easily from (2.5). Since F < 2Hand 1 — F < 2(1 — H), (2.3)
implies (3.5). From the relation FH-Y(f) + GH-'(t) = 2t, it follows that
FH(t) < 2tand 1 — FH7(¢) < 2(1 — t). Hence we can make use of Bernstein’s
inequality to prove (3.6) in the same way as our proof of (2.8).

LEMMA 3. Let Z,, Z,, - - - be any sequence of random variables. For any ¢ > 0
and any real number ¢, set ©({,e) =sup{n = 1:|Z,| = en’} (sup @ = 0). Let
a>0andp > 0.

(i) If X n*P[|Z,] = en*] < oo, then Er?({, ¢) < oo.
(i) If Xy n*~'P[max;_, |Z,| = }en*] < oo, then Et?(a, ¢) < oo.
(iii) If 3¢ n*~'P[max;, j*~%|Z;| = %en®] < oo, then Et?({, ¢) < oo.
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Proor. (i) follows easily from the fact that P[z({, m) = m] < X7, P[|Z,| =
ent]. (ii) is known (cf. Lemma 2 of [5]), and noting that ¢({,¢) = sup{n = 1:
n*=%Z,| = en®}. (iii) follows from (ii).

LEMMA 4, Let f: [0, 1] x [0, 1] — R be twice continuously differentiable except
possibly at the points (0, 0) and (1, 1). We shall write f© = |f|, f* = |0f/ox| +
|0fjdy|, f® = |0*f]ox? + |0%]dy*| + |0°f/ox dy|, and we shall let a Vv b denote
max (a, b). Suppose there exists 0 < d < § such that for i = 2,

3.7)  f9x,y) £ K(min{x V y, (1 — x) vV (1 — y)}p~i-t+
forsome K>O0 andall 0<x, y<I1.

Then (3.7) also holds for i = 0, 1 if & < %, while in the case 6 = %, (3.7) holds for
i =1 and as max (x, y) -0 oras max (1 — x,1 — y) -0,

(3-8) fO(x: y) = O(Jlog (x V y)| + [log (1 — x) v (1 — y))]) -

As to the case 3 < d < §, there exist functions g, h such that f = g + h, g is twice
continuously differentiable on [0, 1] x [0, 1] (hence g® is bounded) and h satisfies
(3.7) (with A replacing f®) for i =0, 1,2 if ¢ + §, while in the case 6 = 3,
(3.8) holds with h® replacing f, and

hO(x, y) = O((x V y)|log (x V y)|) as xVy—0;

(3.9 =0((1 =% Vv (I =y)log((1 —x) v 1=y
as 1 —x)v(1 —-y)—0.

Proor. We note that if ¢ is continuously differentiable on [a, 5] x [c, d], then
(3.10) o(b, d) — o(a, ¢) = gggi:(u, ¢) du + sg%(b, ) dv.

Hence if 0 < § < 4, then (3.7) also holds for i = 0, 1 when ¢  {, while (3.8)
holds when § = §. If } < 0 < $, using (3.10), we see that (3.7) also holds for
i =1, and so lim, , . f(X, y) = L, lim ,, 4 f(x, y) = L’ both exist and are

finite, and
(3.11) feen) =L =5 L@ 0yau+ 8. L (e, 0) v

for 0 < x, y < § such that (x, y) # (0, 0), with a similar expression for L' — f(x, y).
By choosing 4 equal to the right-hand side of (3.11) in a deleted neighborhood
of (0, 0), we can easily construct # and g. The case 6 = $ is similar, while
the case § < d < § can be treated by repeated use of an argument similar to

(3.11).

LEMMA 5. Let (m,) be a sequence of positive integers and let v, = n/(n + m,).
Suppose y,, =y + o(n=*) for some p >0 and 0 < y < 1. Let u:[0,1]— R be
continuously differentiable on the open interval (0, 1) and let J: [0, 1] x [0, 1] — R

be defined by J(x, y) = u(rx + (1 — 7)y).
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(i) Suppose there exist 0 < 2 < 2 and K > 0 such that

(3.12) |w'(0)] < K(x(1 — 1))~*, 0<r<l.
DefineJ,:{0,1/n, ...,1} x {0, 1/m,, - - -, 1} > R by J,(x,y) = u(r,x + (1 —71,)).
Then
(313) 17 Dy SUPyeuimy ety Malif 3) — J(ifm, )] = 0(n7¢) @5 n— 0.

(ii) Suppose in (i) we define J, by J,(x, y) = u((nx + m,y)/(n + m, 4+ 1)). If
p < min (1, 2 — 1), then (3.13) still holds.

(iii) Suppose u is twice continuously differentiable on the open interval (0, 1), and
there exist K > 0 and 0 < d < & such that
(3.14) ["’()] < K(t(1 — 1))7#+2, 0O<et<l.
Let u,(j/(n + m,)) = Eu(U, ,), where U, , is the jth order statistic of a sample of
size (n 4+ m,) from the uniform distribution on (0, 1). Define J,(0,0) = 0 and
Tl y) = w(rux+ (1 =1)») If (x, ) #(0,0), x=0,1/n, - - -, 1, y=0,1/m,, - - -, 1.
If p < L + 0, then (3.13) still holds.

Proor. Let M, denote the set {0, m,~?, 2m,~", - - -, 1}. To prove (i), we obtain
by (3.12) and the mean value theorem that for in < i< n — 1,
(.15 Wu(ifn, y) — J(ifn, y)| = elr — ra)in — L — Qw5 i, ),
where Q(n; i, y) lies between y,(i/n) + (1 — 7,)y and y(i/n) + (1 — 7)y. Since
lijn —yl =11 =ifn) = (1 —y)| =1 —i/nand Q(n; 1, y) < max {y,(i/n) + (1 — 1),
7(i/n) + (1 — )} for y e M,,, it follows from (3.15) that
(3.16) Y npsiza-1 SUPyeu, [Ju(i/n, y) — J(i[n, y)|
= oy = 7l Zwpsigaas (L= im{Ga" + 7791 — i)~}
Zonly — 14 since 1< 2.
An obvious modification of the above argument leads to
(3.17) Dirsi<na SUPyear, [u(ifn, ) — J(i[n, y)| < eanly — 714 -
Since J,(1, 1) = »(1) = J(1, 1), it follows from the mean value theorem that
(3.18)  sup,eu, [Vu(l, ) — J(1, )l
= C|7’ - Tnl Supye(O,m,n"l,m,l—m”—l) [(1 - }’){(1 - rn)_z
+ (1 =71 = »7
Zcnly — 14 since 1< 2.

From (3.16), (3.17) and (3.18), the desired conclusion (3.13) follows.
We now prove (ii). Let{,=|r—(n+1)/(n+m,+ 1)|and @, =1/(n+m, +1).
The mean value theorem in this case gives that for jn < i< n — 1,

(3-19)  Vaulifn, y) — I(i[n, y)| < e{Culifn — Y| + O,i[n}(1 — Qu(n; 4, 7))~
where Q,(n; i, y) lies between (i + m, y)/(n + m, + 1)and y(i/n) + (1 — r)y. We
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note that

0r 2inpsisn—1SUPyex, (1 — Qu(n; i, y))~*
< 00 Dopsisa- (174 + (0 + D/(n + m, + 1)7}(1 — ifn)~*
<c0,\rzt, (1 — t/n)~*dt
< ¢n0, = o(n**), since p<2—2.
As in Lemma 4, the condition (3.12) implies thatas ¢ 1 1, u(f) = O((1 — #)~*-")
if 2> 1, u(f) = O(log (1 — ¢)) if 2 =1 and u(r) = O(1) if 2 < 1. Therefore
SuPyeMn |Jn(1’ y) - J(l’ y)l
< Ju(V)] + [u((n + m)(n + m, 4 1))]
+ SUPye 0,my, v 1-myty (a5 )| + (L, 7))
= o(n*"*), since p < min (1,2 — 2).
The rest of the proof of (ii) proceeds in the same way as in (i).

To prove (iii), we note that as in Lemma 4, condition (3.14) implies that
(3.12) holds with 4 = § — d and |u(7)| < Ky(¢(1 — ¢))~#+? for 0 < ¢t < 1. Chernoff
and Savage ([4] pages 991-993) have shown that there exists a constant C such
that |u,(1)] £ Cn?-?, and in general for 1 < j < i(n + m,),

[ ((n + m,)7Y) — u((n + m,)~Y)|
+ (1 — (n + m,)7) — u(l — (n + m,)7Y)|
= Ot @(—4[C) + n7t + jH9),
where @ is the standard normal distribution function. Hence
(.20)  r D By, a(railn + (1= 7)) — u(raifn + (1 = 1))
S Cn -t =o(n"), since p<%t+40.
The desired conclusion (3.13) then follows easily from (i) and (3.20).

4. Arepresentation theorem, an invariance principle and a law of the iterated
logarithm for generalized Chernoff-Savage statistics. Let X, X,, ..., Y,7Y,, ...,
F,,G,, F, G be as in Section 3. Suppose J: [0, 1] x [0, 1] — R is twice contin-
uously differentiable except possibly at the points (0, 0) and (1, 1). With the

same notation as in Lemma 4, we shall assume that J satisfies Assumption (4,)
for some 0 < 6 < § described below:

ASSUMPTION (4,). There exists K such that J®(x,y) £ K, 0< x, y < 1.
ASSUMPTION (4;) (with 0 < § < §). There exists K such that
(@.1)  Jo(x,y) < K(max (x, y)} " + {max (1 — x, 1 — p)}++9),
0<x, y<1.

Let (m,) be a non-decreasing sequence of positive integers and let J,: {0, 1/n,
2/n, -, 1} x {0, 1/m,, 2/m,, ---, 1} > R be a sequence of functions such that
for some p > 0, the following Assumption (B,) is satisfied:



834 TZE LEUNG LAI

ASSUMPTION (B,). Asn — oo,

4.2) n=t 1 SUPyeo,/my, oy Wa(i/M y) — J(i[n, y)| = o(n7?) .
We shall call the statistic
4.3) T, = (2 Jo(Fyu(x), Gy (%)) dF (x)

a generalized Chernoff-Savage statistic. To give some examples, let y, = n/(n + m,)
and assume that 7, = 7 + o(n=*) for some 0 < y < 1 and 0 < p < 1. First
define u: [0, 1] — R by #(0) = u(1) = 0 and u(t) = ®-'(¢) if 0 < ¢ < 1, where
® is the distribution function of the standard normal distribution. If we set
Ju(%, y) = u((nx + my)(n + m, + 1)) and J(x,y) = u(rx + (1 — )y), then

2w Ju(Fuy Gy, ) dF, is the van der Waerden statistic. It is easy to see that J
satisfies Assumption (4,) with § = §. By Lemma 5(ii), Assumption (B,) is also
satisfied. For another example, take the normal scores statistic §=., #,(y,F, +
(1 — 7,)G,,) dF,, where u, is defined from u as in Lemma 5(iii), and again As-
sumptions (4,) and (B,) are satisfied. More generally, if u: [0, 1] — R is twice
continuously differentiable on (0, 1) and (3.14) is satisfied for some 0 < ¢ < 3,
then the statistic §=. (7, F, + (1 — 7,)G,, )dF,is a generalized Chernoff-Savage
statistic satisfying Assumptions (4,) and (B,) (see Lemma 5(i)).

In the following theorem, we shall represent n7,, as the partial sum of i.i.d.
random variables plus a remainder term, whose magnitude we shall describe in
terms of the finiteness of moments of the last time its absolute value exceeds a
square-root boundary, or more generally, a boundary of the form n'-* for some
0 < ¢ < 1. This stronger notion than almost everywhere convergence was in-
troduced by Strassen ([16], page 316) and is needed in our study of the stopping
times of sequential rank tests in Section 5.

THEOREM 2. Suppose the generalized Chernoff-Savage statistic T, of (4.3) is
written as

(4.4) T, = (25 J(F(x), G(x)) dF(x) + n~" X7 ((X;) — E(Xy))
+ m, 7t 1T (P (Yy) — EP*(Y) + R,

where we define

$w) = JFW), Gw) — §, 52 (F(1), 6(1) dF ()

oJ
) = — 3y (E(1), G(1)) dF(r) -
Assume that there exist positive constants A, < A, such that
4.5) n(1 4+ o0(1)) < m, < n2(1 4 o(1)).

For p > 0, define L(y, e) = sup{n = 1: |R,| = en~*} (sup @ = 0).

(i) If0<p < 1, then under Assumptions (A,) and (B,) with p = p, EL7(¢, ¢) < oo
forall y > 0and ¢ > 0.
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(ii) If0<0<4%and 0< p < %+ 0, then under Assumptions (A,) and (B,)
with p = p, ELT(p,¢) < oo foralle >0and 0 < y < (3 + 0) — p.

(iii) Suppose} < 0 < §. Let u(9) = (1 + 20)(9 — 20)/2(17 — 29). Then p(5)
is increasing in § for ¢ belonging to the range specified above, with lim,_, p(0) = %
and lim,_,, p(0) = 1. Let p = p > 0 and suppose that Assumptions (A,) and (B,)
both hold. If p < p(9), then EL"(y,¢) < oo forall y > 0and e > 0. If p(0) <
p <1, then ELT(p, ) < oo foralle >0and 0 < v <1 — p.

CoROLLARY. Let 0 < p < 1. Assume (B,), (4.5) and either (A,) or (A;) with
0+4>¢(0<0<35). Thenlim,_,n*R,=0a.e. Consequently, if lim,_,n/m,=2
(> 0) and Assumptions (A;) and (B,) hold for some 0 < § < §, then the following
conclusions (i) and (ii) both hold.

(i) Invariance principle for T,. Setting V, = n(T, — (%, J(F, G)dF), then
n~tVi,alo, 0 < t < 1, converges weakly to the standard Wiener process, where

(4.6) o = Var ¢(X)) + 2 Var ¢*(Y) .
(ii) Law of the iterated logarithm.
4.7) lim sup,,_,, n¥(T, — §=,, J(F, G) dF)/(2loglogn)! = ¢ a.e.

REMARK. We note that ¢ < co. In fact, under Assumption (4;) or Assump-
tion (4,) for § > 0 = 4, E|¢(X))|* < oo and E|¢*(Yy)|? < oo for all p > 0. If
0 < d < 4, then for ¢’ > Osuch that (2 4 0')(—% + 9) > —1, E|¢(X)]** < o0
and E|¢*(Y,)|***" < oo under Assumption (4,) (cf. [4], page 977). Related to
(i) and (ii), Sen and Ghosh [14] have given an invariance principle and a law
of the iterated logarithm for two-sample linear rank statistics when F = G.

Proor oF THEOREM 2. To show that EL7(u, ¢) < oo, as the same argument
works for any ¢ > 0, we shall for simplicity consider L(g, 1) and write L(z)
instead of L(g, 1). In view of the Assumption (B,) with p > y, we shall without
loss of generality assume that J, = J for all n.

Given any 0 < # < 1, we can choose } < d < § such that g < u(0) =
(1 4 20)(9 — 26)/2(17 — 26). Since Assumption (A4,) obviously implies (4,), the
conclusion in (i) follows immediately from that of (iii). However, in our proof
of (iii), we shall need the fact that the conclusion in (i) holds with the follow-
ing slightly stronger Assumption (A4,*) replacing (4,):

ASSUMPTION (4,*). J is twice continuously differentiable on the whole of
[0, 1] x [0, 1].
Under Assumption (4,*), we can apply Taylor’s expansion to J and write

{2 J(Fy» Gy ) dF, = {2, J(F, G) dF + \=., J(F, G) d(F, — F)
+ §. (Fy — F) ‘Z)_J (F, G)dF
X

+ §7u (Gn, — G) j—; (F, G)dF + %i, R,
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where

Ry, = {“w (Fy — F) g{c (F, G) d(F, — F)

1 %J
= — | \* (F, — FY* = (F,G)dF
s - T 6)

2 1. & ]
» (F, — F)?*- %Y _(F,G)dG — — =, % (F, G)dF, |,
55 (Fy = PP ST (F. ) d6 — L T (F.O)

Ry = §% (G, — G)Z_" (F, G) d(F, — F),
y

Ry = 4§ (F, — PP L8, 6y aF,,
ox?

- 0% A
R, =112 (Gn, — G)za_y2 (£, G)dF,,

Ry, = (= (F, — F)G, — G)-2Y_(F, C)dF,,
” 0x dy
and (F(x), G(x)) above denotes a point (given by Taylor’s expansion) lying on
the line segment joining (F(x), G(x)) and (F,(x), G, (x)). Now R, = 2i} R, and
noting that (=, d(F, — F) = 0, we have

{*.. J(F, G) d(F, — F) + {.. (F, — F) g_)lc (F, G) dF
¥ {% (Gn. — GV (F, G)aF
n ay

=17 BT (9(Xy) — EP(XY) + m,~ Zips (9*(Y3) — EPH(YY) -
Under Assumption (4,*), J, 6J/0x, 0*°J/0x?, etc., are all bounded, and so by (2.1)
and Lemma 1, EL"(¢) < oo forall0 < ¢ < 1 and y > 0.
We now prove (ii). Let 0<d<3, 0<u<$+4+0 and take 1> a >
2p/(1 + 20). Set H = 4(F + G). Define

(4.8) L =sup{n = 1: maxyz,-« H(x)/max (F,(x), G, (x)) > 2 or
MaxX, pza-e (1 — H(x))/max (1 — F,(x), 1 — G, (x)) > 2}.

By (3.4), EL" < oo forally > 0. Whenn > L, n~* < H(x) £ 1 — n~= implies
that (F,(x), G, (x)) € {(0, 0), (1, 1)}, and therefore writing

So—ow '](F'n’ Gm,,,) an = SH<n"“ + Sn"“SHsl—n-a + SH>1—n-a ’
‘we can use Taylor’s expansion for J(F,, G, ) in the middle integral and obtain:
§20 J(Fus Gn,) dF,,
4.9) = {*. J(F, G)dF + (=, J(F, G)d(F, — F)
+ {2 (F, — F)%{ (F, G)dF + §=., (G, — G)g‘.’_ (F, G) dF
x y

+ Zt=l Din + Z;=l Hin _I_ Zg=1 Qin )
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where

Dln = SH<1L‘“ ‘I(FM Gm,n) an H Dzn = SI—H<1L‘“ ‘I(Fn’ Gm”) an ’
D, = —{yen-e J(F, G)dF, , D,, = —S§i-p<n-eJ(F, G) dF,,

J
= — e (Fu = F) 2L (F, G) P,
X
_ oJ
H2n - _SI—H<n—“(Fn - F)é_x‘(Fa G)dF,
oJ
Hyp = =S ncams (Gu, — O) 3L (F, G) dF,
y
oJ
HML = _SI—H<1»‘“ (Gm” - G) - (Fa G) dF,
9y
oJ
O1n = Vp-agnsia—a (Fr — F)é} (F, G)d(F, — F),
oJ
Q2n = Sn‘“gl{gl—n‘a (Gm” - G) 'a_}“) (F9 G) d(Fn - F) ’

2
Qs = ’% §n-esmgion—a (Fn — F)z% (F’ é) dF, ,

2 A
Qun = § Su-esrzrone (G, — G)*—Z—yé (£, G)dF,,

2 A
Qo = Vs-esnigione (Fs — F)Gp, — G) =20 (£, G) dF,.
" ox dy

We shall let L(D;; #) = sup{n = 1: |D,,| = n~*} and define L(H,; p), L(Q;; 1),
L(Q,; ) similarly. Forj = 3,4,5,let L(Q;; ) = sup{n > L: |Q,,| = n~*}. We
note thatsupf{n = 1: |R,| =2 13n*} S L+ 1+ X4, L(Dy;s p) + X4, L(H; ) +

=1 L(Qss p)-

By Lemma 4, we can assume that for i = 0, 1, 2,
(4.10) [J(F, G)| < K{min (H, 1 — H)}~*-i+? if O<H<I.
In our argument below, we shall frequently use the following fact:
4.11) F <2H, G < 2H, dF < 2dH , dG < 2dH .
We note that

4.12) [Dyl £ K §yrcn-a (Fo(l — F,))~4-2dF,
< K(F,H Y (n%))}+*(1 — F,H(n"%))~4-%,

Since @ > 2p/(1 + 20), it is easy to see from (3.6) (where weset = aand r =
a — 2p(1 + 20)71) that EL7(D,; p) < oo for all y > 0. Likewise we can show
that EL7(D,; p) < oo for all y > 0.

We now consider L(D,; ). Noting that n § fdF, is increasing in n for any
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nonnegative function f, we have
P[max,c,gm 1 §yen-a |J(F, G)| dF, = jm'~#]
< P[maXiguem M S m-egpcn-e [J(F, G)| dF, = §m'~*]
(4.13) + P[1 §sam-a [J(Fs G)| dF,, Z =]
< P[max,.,c,, K'm*¢-9nF H™Y(n~*) = {m'-*]
+ 8m*E ;.o |J(F, G)| dF,, .
The first term above can be handled using (3.6), noting that (1 — ) — a(} —0) >
1 — a, while for the second term, we have by (4.10) and (4.11),
E S yam—a |[J(F, G)| dF,, = \gem—a |J(F, G)| dF = O(m=*3+9)

Hence by Lemma 3(iii), EL7(D,; ¢) < oo for 0 < y < a(4 + 0) — p#. The same
conclusion obviously also holds for L(D,; r).
We now analyze L(H,; ¢) in a similar way:

7 §sen-s (G — G) Z—; (F, G) dF‘ > %,,1_#]

m, § s (Gm, — G) g—; (F, G) dF‘ > slul“ﬂ]

oJ (F, G)‘ dF = ezvl—#]
dy

P |:maxlsn$v

=P [maxlénév

(4.14) + P[maxls,,gv 7 §y-agmzna G,
oJ -
+ Pl max,,g, 1 §,-agngn-« G 7 (F, G)|dF = gu'*
Y

= Eu(l) + Su(z) + Ey(s) ’ SaY’

Using the martingale inequality, we obtain that
(4.15) 6,9 < (V) Sueye E|Gn, — G ‘%{ (F, )| ar
y

= O(pr-t+an)

The last relation above follows from (4.10), (4.11), together with the fact that
E|G,, — G| < E}G,, — G|’ = {G(1 — G)/m }}. Since $ — 6 < 1 — g, we can
choose d; > 3 — dsuchthatd,« < 1 — p. Lettingd, + d, = 3 — d,thend, < 1
and using (4.10), (4.11) and (3.6), we have

§,? < P[max,,., K'v1*nG, H(n™%) {ycp-e H-22 dH = e'~#]
(4.16) = P[max,, , n'~*=2G, H-Y(n=") = ep'~#"1]
= o(exp(—?)) forsome p>0.
By (4.10) and (4.11), we obtain

Su—agygn—a G 'g{ (F, G)‘ dF < K'n-at+0
y

Since a(} + 0) > p, it follows that £, = 0 for all v large. Hence from (4.14),
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(4.15) and (4.16), we obtain using Lemma 3(iii) that EL7(H; p) < oo for 0 <
7y < %+ ad — p. Similarly we can show that the same conclusion also holds
for L(H,; yt), L(H,; p) and L(Hy; p).

To analyze L(Q,; #), as in [4], we can write

1 J
Qu = I:Sn‘“SHSI—'n"“Q_ (F, G)d(F, — F)* + —l— $n-agnsi-nc gl (F, G) dF”:| ’
2 ox n ox
Hence using integration by parts, we need only show that for 1 < i < 5,
(4.17) EL'(V; 1) < oo for 0<r<1l—p—ai}—>9),
where
Vs = $woespistonee (Fa — F)? __(F G)IdF
Vs = Sucrsnsios (Fa = FY| 5000 (F,6)| G

(4.18) Vi = K'n*3=9{F, H-{(n%) — FH-(n"*)}2,
Viw = K'n®3-9{F, H-(1 — n~%) — FH-Y(1 — n~)},

o (F, G)l dF, .

-1
Vin = 17! S p-agpgion-a | =
ox

Since {n*V,,, | < n < m} is a submartingale, we obtain using (4.10) and (4.11)
that
P[max,_,., n'Vy, = tm**¥]
=< 4mI‘EV1,,,
= 4§ p-agermee F(1 — F) l% (F, G)I dF = O(mw+ati=»-1
Hence by Lemma 3(iii), (4.17) holds for i = 1, and we can similarly show that

(4.17) holds for i = 2. From (3.5), it is easy to see that (4.17) also holds for
i = 3, 4. Since n*V,, is increasing in n, we obtain by (4.10) and (4.11) that

P[max, ., 1*Vy, = $m**]
< 4m*EV,

— —1
= 4m* Sm-“ng—m—a

?_‘_’_ (F’ G)’ dF — O(m#+“(i—5)—l) s
ox
and so (4.17) also holds for i = 5.
Now consider L(Q,; #). We note that
P[max, gz, 1%|Qy,| = 1]

< P[maxlé,é,nm,, -szirzrves (G, G) o (F G) d(F, — F)l > ¢ z—p]

¥ P[maxléng, 7§ -agmgn-s (Gm, + G)|g_J_ (F, G)’ d(F, + F) > ezvz"/‘jl
y

4+ P [maxls,,é, n*§,-egi_pgn-a (Gm, +G) lg_; (F, G)’ d(F,+F) = eauz—/‘:l

=a,+ b, 4+ c¢,, say.
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By the martingale inequality,

a, < O(¥)E

2
§,-esrriov-s (Gn, — G) g_; (F, G)d(F, — F)‘

= O(-?) {gy_,,g,,,sl_,_., G(1 — G) (;’_; (F, G)>2 dF
— 2 ectumasm, mnsi-—a GE)(1 — G(1)) g—;- (F(s), G(s))

w 9 (F(1), 6(¢)) dF(s) dF(t)}
oy
= O(#-2e1-w) | by (4.10) and (4.11).

Noting that
7§, -azzns (G + G) ’g_; (F, G)’ d(F, + F)
< Kv9{n(G,, + G)H(n=*)n(F, + F)(H(n"))},

and that a(3 — 9) + 2(1 — @) < 2 — g, we can handle b, using (3.6). Likewise
we can treat c¢,. Therefore EL7(Q,; 1) < oo for 0 < y < 2{1 — ¢ — a(} — 9)}.

To consider L(Q,; ¢), we note that if n > L (where L is defined in (4.8)), then
n=* < H(x) < 1 — n~=implies that (F,(x) V G, (x)) = $H(x)and (1 — F,(x)) V
(1 -G, (x)) = $(1 — H(x)). Since (F(x), G(x)) lies on the line segment joining
(F(x), G(x)) and (F,(x), G, (x)), it then follows from (4.1) that

P (B, 6w)| s K{HO — E)YH.

Hence L(Q;; p) < L(Qs*; 1) = sup{n = 1:|03| = n~*}, where
(4.19) Q¥ = K, \ p-aspgi—n-« (F, — F){H(1 — H)}™+°dF, .
By the submartingale inequality,

PIMAX, i Kot® S asigscaes (Fu — FY(H(L — )40 dF, 2 =]
S 4K M*E \ pp-asy<ym-o (Fp — F){H(1 — H)} 2 dF,
= 4K, m** \ a1 -m-a {F(1 — F) — m~'F(1 — 2F){H(1 — H)}*#** dF
= O(mr-1+at-9) | by (4.11).

Therefore by Lemma 3(iii), EL7(Q,*, 1) < oo and so EL7(Qy; ) < oo for 0 <
7 <1 —p— a(} — ). Inasimilar way, we can show that the same conclusion
also holds for L(Q,; ¢) and L(Q;: p).

From the above analysis, we see that in the case § < 4, if 0 < p < % + 0,
then under the Assumptions (4,) and (B,) with p = p, EL7(¢) < oo for 0 <
r < a(} + 0) — p. Since 2p/(1 + 20) < @ < 1 is arbitrary, EL7(z) < oo for
0<7<%+ 09— p The same conclusion obviously still holds when d = %
since in this case, Assumption (4,,) holds for any ¢’ < %.
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We now prove (iii). Since £ < ¢ < §, Assumption (4,) implies Assumption
(4,) and therefore for 0 < < 1, under Assumptions (4,) and (B,) with p = p,
we have EL7(¢) < oo for 0 < y < 1 — p. Let us now consider the case 0 <
@ < () = (14 26)(9 —26)/2(17 — 25). First we note that since 0 < p < (o),
(3 — )2u/(1 4+ 20)) < (1 — p){l +2(3 —0)'}, and inthecase § < 0 < §, we
also have (3 — 9)(2¢/(1 + 20)) < 1 — p. Hence we can choose a, § > 0 such
that

(4.20) 2u/(1 4+ 20) < a <1 andinthecase 0<%, a3 —0)<1—p;

(4.21) aG—)<l—p+28, BE—<l—p.

Since (A4y) implies (4,,) for any ¢’ < $, we shall assume below that 6 + §. By
Lemma 4, we can write J = g + & where g satisfies Assumption (4,*) and 4
satisfies (3.7) (with 2® replacing ) for i = 0, 1,2. Hence without loss of
generality, we can assume that J satisfies (4.10) for i = 0, 1, 2. As in our proof
of (ii), we express (=, J(F,, G, ) dF, by (4.9) and obtain that EL7(D;; ¢) < oo
forall y > 0, =1,2. We note that

lDanl é K SH<n‘a HJ_Q an é Kln—a(a—é)FnH_l(n—a) *

Hence by (3.6), EL"(D,; ¢) < oo for all y > 0. Likewise the same conclusion
also holds for L(D,; ¢). To see that the same conclusion also holds for H,, say,
we note that 3 — 6 < 1 and

IH3%I é Kl{ma'xH(a:)<'a‘a le,a(x) - G(X)[} SH<,,,—a H-4-»dF N

and so by (3.5) and (4.11), we obtain the desired conclusion.

To analyze L(Q,; ¢), we make use of Lemma 1. Setting u,(x) = (3J/dy)(F(x),
G(x)) if n~* < H(x) £ 1 — n~* and u,(x) = 0 if otherwise, we have by (4.10)
that max, |u,(x)] < K;n*#-9*. Since a(3 — d)* < 1 — p by (4.20), it follows
from Lemma 1 that EL7(Q,; #) < oo for all y > 0.

Now consider L(Ql, /,z) As before we shall show that EL7(V,; 1) < oo for all
y>0andi=1, , where V,, is defined by (4.18). The case for V,, and
V,, can be handled usmg (3.5) as before We note that |V,,| < K ped-0%-1 =
o(n~*) by our choice of a. To analyze V,, (and in a similar way V,, as well),
we note that

@22 Suesusat (Fa = F)| 2% (F, 6)|aF

é Iflnmg_’”_‘9 MaXy sy<n-f (Fn(x) - F(x))z;

(4.23)  Sa-scncr-u-8 (F, — F)? dF < K,n*@=2||F, — F|*,

o
- (F,G
7 (5 0)

(4'24) Suagi—mga—bp (Fn — F)?

__(F G)]dF

é Iflnm(g“")n}9 max,_g(z<a—>F (Fn(x) - F(x))2 .
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Using (2.1), (3.5) and (4.21), it is easy to see that EL7(V; p) < oo for all

7> 0.

As shown before, we can consider L(Q,*; p) instead of L(Q,; #), where QF,
is defined by (4.19). A similar analysis as in (4.22), (4.23) and (4.24) together
with an application of (3.6) to deal with F,H-*(n~*) and 1 — F,H=(1 — n~¥)
shows that EL7(Q,*; ¢) < oo for all y > 0. The same method can also be used
to analyze L(Q,; 1) and L(Q,; #).

5. Moments of the stopping rule of certain sequential rank tests. Let us first
consider the rank-order SPRT of the null hypothesis H,: F = G against the
Lehmann alternative H,: F = G* described in Section 1. Sethuraman [15] has
proved the asymptotic normality of the log likelihood ratio /, defined by (1.1).
Letting J(x, y) = log (x 4+ 4y), 0 < x, y < 1, then J satisfies Assumption (4,) for
0 = 4. Defining S(4, F, G) as in (1.4), we note that

l, — nS(A, F, G) = —n{(§ J(F,, G,) dF, — \ J(F, G) dF)
+ (§ J(F,. G,) dG, — | J(F, G) dG)}
(5.1) + 3logn + O(1)
= — Zia (5(X) — Edy(Xy)
— 2 (P(Y)) — E¢y(Y))) + 1R,

where choosing u, such that F(u)) + AG(u,) = 1, we define
i) = JE@), 6W) — i, 2L (F0), G()@F() + d6(r)
= (4 — 1) §2,dGO)/(F(1) + AG(1) ;
$iw) = JF@), G@) — {2, g;- (F (&), GO)EF(t) + d6(1))

= —(4 — 1) {s dE(t)[(F(t) + AG(?)) .

By Theorem 2, EL"(¢,¢) < oo foralle >0, i <p<land0< 7y <1 —p,
where L(p, ¢) = sup{n = 1: |R,| = en~#}. This implies that lim,_, n“R, = O a.e.
for any 4 < 1 and consequently we have the asymptotic normality, and what
is more, the invariance principle and the law of the iterated logarithm for /,.
Another implication of this result is an asymptotic approximation for the stop-
ping rule N defined by (1.2) in the case S(4, F, G) = 0. In Section 1, we have
mentioned an asymptotic expression for EN” when S(4, F, G) #= 0. The follow-
ing theorem considers the case S(4, F, G) = 0.

THEOREM 3. Let N be defined by (1.2) and let S(A, F,G) = 0. Let ® denote
the distribution function of the standard normal distribution and let
(5:2) =24 = IY{{.e, [G)1 — G(y))/ W(x)W(y)] dF(x) dE(y)
+ oy [FON(1 — F(y))/W(x)W(y)] dG(x) dG(y)}
where W = F 4 AG. Let 0 <v < 1. Then as a— oo and b — oo such that
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al(a + b) —> v,
Yt >0, P[N>o%a+ b)%]
(5.3) o N {O(H2k + 1 — b)) — (H2k — v))
— O(+-4(2k + 1 + v)) + O ¥(2k + v))}
= U(t;v), say,

(5.4) EN' ~ 1(a + b)ro=% {5 v) dt, 0< 71 <%.

Proor. We note that E|¢,(X,)|? < oo and E|¢y(Y;)|? < oo for all p > 0 (see
the remark to the corollary in Section 4) and that ¢* = Var ¢,(X,) 4+ Var ¢,(Y))
(cf. [15], page 1332). Since S(4, F, G) = 0, Theorem 3 follows easily from the
representation (5.1) and Lemma 6 below. The proof of Lemma 6 is presented
in [9]. It is well known (cf. [7], page 329) that U(t; v) = P[T > t] where T is
defined in Lemma 6.

LEMMA 6. Suppose Z,, Z,, - - - are i.i.d. random variables such that EZ, = 0,
EZ?=0¢*>0. Let S,=Z, + --- + Z,, and let V, be a sequence of random
variables. Define N =inf{n>1:S,+ V,¢(—a,b)} (inf @ = o) and let
O<v <l

(i) Iflim,_ . n"V, = Oa.e., then as a— oo and b — oo such that a/(a + b) — v,
o%(a + b)~°N convergesin distribution to T = inf{t = 0: B(t) ¢ (—v, 1 — v)}, where
B(t), t = 0, stands for the standard Wiener process.

(ii) Suppose E|Z,|**7 < oo for some y > 0 and EL7({) < oo for some y > 0 and
< 4, where L) =sup{n = 1:|V,| = n°}(sup @ = 0). Then{(c*(a + b)~*N)":
a, b = 1} is uniformly integrable and so as a— co and b — oo such that a/(a + b)—v,

E(o%a + b)"*N)r — ET7 .

In [11], Miller has introduced a sequential Wilcoxon test in the one-sample
case. Let X}, X,, - .. be i.i.d. with a common continuous distribution function
F. To test the null hypothesis H that X, is symmetric, Miller ([11], page 99)
proposes the following truncated sequential Wilcoxon test. Let SR, be the
Wilcoxon signed rank statistic based on the first n observations. Continue sam-
pling ifand only if [SR,| < cnandn < k. If |SR,| > cn for some n < k, then reject
H; otherwise accept H. The constants ¢ and k are so chosen that P,(reject H) < a,
where « is a preassigned constant. In computing Py(reject H) and the expected
sample size, Miller [11] has shown that the Wiener process approximation agrees
well with the Monte Carlo estimates in certain numerical studies. In [12], Miller
and Sen have established an invariance principle for U-statistics and this gives
an asymptotic justification of the Wiener process approximation for P, (reject H).
An asymptotic justification of the approximation for the moments of the stopping
rule, however, needs more than the invariance principle. Here using our results
in Section 4, we shall consider the asymptotic approximation for the correspond-
ing two-sample problem.
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Suppose X;, X, - -+, Y3, ¥,, - - - are independent with continuous distribution
functions F and G respectively. To test the null hypothesis H,: F = G, consider
the following test. At the nth stage, observe (X,, Y,) and compute the Wilcoxon
statistic W, = sum of ranks of X, - - -, X, in the ordered sample of 2n observa-
tions. Under H,, EW, = 4n(2n + 1). Therefore in analogy with Miller’s one-
sample case, we continue sampling as long as |W,, — in(2n + 1) < cnand n < k.
If |W, — 4n(2n + 1)] > cn for some n < k, then reject H,; otherwise accept H,.
The constants ¢ and k are so chosen that Py (reject H)) < a.

THEOREM 4. With the same notation as in the preceding paragraph, let M =
inf{n: 1 <n<k, |W, — n2n + 1)] > cn} (inf @ = k). Suppose F = G. Then
as ¢ — oo and k — oo such that kjc2 — { > 0,

(i) P[M > k0] — U(L0/24; %) for all 6 € (0, 1) where U(t; v) is defined by (5.3);
(ii) EM7T ~ y(24c%)7 (5™ ¢7-1U(¢; §) dt for all ¥ > 0.

Proor. We can write W, = n*{=_ J(F,, G,)dF, where J(x,y) = x + y. Then
since F = G, (=, J(F, G)dF = 1. Obviously J satisfies Assumption (4,), and so
by Theorem 2, if we write

n (2, J(F,, G,)dF, = n + 31 (F(X)) — §) — Nt (F(Y)) — §) + nR,

=432n+ 1)+ TP (F(X) — 3) — ZT(FY) — ) + V.,
then EL7(y,¢) < oo for all y >0, e >0 and } < ¢ <1, where L(y,¢) =
sup{n = 1: |V,| = en'~#}. Letting S, = 317, (F(X,) — %) — 21 (F(Y)) — §), we
note that M = min (N, k) where N =inf{n > 1:|S, 4+ V,| > c¢}. Hence by
Lemma 6, as ¢ — oo and k — oo such that k/c? — { > 0, ¢%(2¢c)~*M converges
in distribution to min (T, {¢?/4) and E(¢*(2¢)~*M)" — E(min (T, {c?/4))" for all
r > 0, where T is as defined in Lemma 6 and ¢* = E(F(X)) — $)* + E(F(Y,) —
1) = 1. Hence the desired conclusion follows immediately.
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