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CLASSIFICATION AND ESTIMATION OF SEVERAL
MULTIPLE REGRESSIONS

By Ivor FrRaNCIS AND SAMPRIT CHATTERJEE

Cornell University and New York University

Two problems, classifying an individual into one of several popu-
lations and estimating the regression in that population, are simultaneously
treated as one problem. This can be viewed as a problem of a missing
observation on a categorical variable. When all variables are jointly dis-
tributed multivariate normal, the maximum likelihood solution is the
intuitively appealing one: classify the individual using the usual likelihood
ratio procedure, then estimate the regression using the observations from
the selected population.

1. Introduction. The classification problem is usually treated as two separate
problems: the estimation of the parameters of the several populations followed
by the classification of a new object into one of these populations. The two
problems are often solved separately, each solution invoking different optimality
criteria, so that the properties of the combined procedure are unclear.

In this paper we consider the following problem. Each of & populations has
a different regression of a dependent variable on several independent variables,
all of which are jointly distributed multivariate normal. We have measurements
on all variables for a random sample of individuals from each population. For
a new individual we have measurements on the independent variables, and we
require an estimate of the dependent variable, but we do not know to which
population this individual belongs. Alternatively, this problem could be viewed
as a missing observation problem in which the dependent variable and all but
one of the independent variables are multivariate normal, but where the last
independent variable is of the categorical type, specifying group membership,
and where one of those categorical observations is missing. In a review of the
literature on missing values, Afifi and Elashoff (1966) remark that all writers
on missing value problems who use the method of maximum likelihood consider
only the case in which all variables are multinormal.

We approach this problem here as one single estimation problem, the simul-
taneous estimation of the regressions and of a membership parameter #,, which
has the value 1 if the new individual belongs to the ith population, and the value
0 otherwise, a device used by Hartley and Rao (1968). The maximum likelihood
solution is found to be the natural and intuitively appealing one.

2. Likelihood. Let Y denote the dependent variable and X the (p x 1) vector
of independent variables. Suppose, in the ith population, i = 1,2, .., k, the
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distribution of Y conditional on X = x is normal, Y ~ N(x'B,, 0*), and the
distribution of X is multivariate normal, X ~ N(g;, L), where B, and g, are the
(p x 1) vectors of regression coefficients and means respectively, and Z is the
(p X p) covariance matrix of full rank common to all populations. Let the un-
known value of the dependent variable for the new individual be denoted by y,
and the known values for the independent variables by x,. Suppose there are n,
observations from the ith population, and let y, denote the (n; x 1) vector of ob-
servationson Y, and x, = (X,,X,, - - - X;,,) the (p X n;) matrix of observations on
X in the ith population. Then the likelihood function L = L(y,, d* 2,0, B, pt,)=
constant X L, X L, X L, X L,, where

Ly =o0"exp[—(20")" X (y, — X/B.)(y: — x/B)]»
Ly = o7 exp [—(26")7(y, — T 0:%,/8,)] ,
L3 = 'El—”ﬂ exp [_2_1 Z 2?1:1 (xij - lli),z_l(xlj - #l)] ’
L= |2 exp[—27" 3] 04X — )27 (X, — )] »
where all summations are from i = 1 to &, unless otherwise indicated.

3. Conditional maximum likelihood estimates. Let Jos 07 2‘“, ,éi, B i =
1,2, ..., k, denote the conditional maximum likelihood estimates of the re-
spective parameters given 6, = 1. In succession we set equal to zero the partial
derivatives of log L with respect to (i) y,, (i) B;, i # s, (iii) B,, (iv) ¢%, and solve,
giving

(i) )90 = Xolﬁs >
(ii) X, X,/B, = x,y,, i+,
(”1) (szs, + XOXO,)ﬂs = xsys + X0.};0 .

Substituting from (i) into (iii) gives X,,X,,’,és = X,y,. Hence

B = (x;x/)7'(x,y,) , forall i=1,2,...,k.

(iv) @ =@+ DT (v — x/BYE: — x'B) + Go — x/B.)] -

Substituting from (i) into (iv) gives

&=+ )7 T - xBYO— x/B).

In the expression for the likelihood function only the terms L, and L, contain
#, and Z. Hence we can find the conditional estimates of g, and = given 0, = 1
by maximizing L, x L,, after putting 6, = 1. But if §, = 1, all other 4, = 0,
i #+ s, and we simply have a situation where there are n, observations from
N(p;, Z), i # 5, and n, + 1 from N(g,, Z). Thus the conditional estimates 2,
and X can be obtained from standard multivariate theory (Anderson (1958),
page 248):

20 = (n + 1)71A®
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where
A(\') = f:l:z#s Al + As+ ’
AL - ;Ll:l (ij - i1)(x1_7‘ - Xz)’ ’
A = 2050 (X — X)X, — X3) 4+ (X — X)) (X — X,,)
Xz = ntil Z?lzl le s and
Xi+ - (”1, + 1)_1[2?1:1 x‘(,j + XO] M
Finally

2 =X, i#s and 2 =X,, .
It can be shown (Anderson (1958), page 141) that
A, — A =n(n + 1)7'(x, — X)X, — X,) .
Hence, if we let

C=>"* A,

1=1 i

then
A =C + A, — A,

=C + n(n, 4+ 1)"(x, — X,)(x, — X,)" .

4. Maximum likelihood estimate of s. When all these conditional estimates
are substituted into the expression for the likelihood function, L, and L, become
independent of s, and so the conditional maximum of the likelihood, (Anderson
(1958), page 248) is

constant x |Z@|-m+hr

Thus the maximum likelihood estimate of s is the value that maximizes this
conditional maximum, or the value that minimizes |Z¢| or equivalently |A“|.
But, provided C is of full rank,

|A®™] = [C][T + n,(n, + 1)7'(%, — X,)’C7'(X, — X,)| ,

and so we want the value of s that minimizes the distance n,(n, 4 1)~}(x, — X, X
C-'(x, — X,), which is the usual likelihood ratio criterion for classification, and
which becomes the commonly used linear discriminant function when all n, are
equal.

5. Summary. As far as the missing observation problem is concerned, the
estimates of all the 8, do not depend on the observation with the missing value,
and the estimates of ¢*, X, and the g, depend on this observation by an amount
that decreases as all the n, increase. (This can be compared with results cited
by Afifi and Elashoff (1966), page 601.)

The estimation of y for this new observation consists of first classifying the
individual by the usual likelihood ratio criterion, then predicting y by the usual
multiple regression estimated using the sample from the selected population.
This is the commonly used, and therefore intuitively appealing, solution (con-
sider medical diagnosis and treatment), but its properties other than its maximum
likelihood optimality, for example its mean squared error, should be evaluated
relative to those of alternative procedures.
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