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LARGE DEVIATIONS OF EMPIRICAL PROBABILITY MEASURES

By M. STONE
University College London

Sanov’s statement of first-order asymptotic behaviour of probabilities
of large deviations of an empirical distribution function is here established
for empirical probability measures, with attendant simplification of condi-
tions. For the case of distribution functions, our theorem is strictly more
general than a specialisation of results of Hoadley.

1. Introduction and summary. Sanov (1957) stated the following theorem:
Let F, be the empirical distribution function for n independent observations with dis-
tribution function F. If Q is an F-distinguishable class of distribution functions ® then

P(F, e Q) = exp{—nl(Q) + o(n)}
where 1(Q) =, inf, .o § dP log (dD/dF).

The condition of “F-distinguishability” is too technical to describe here; Sanov
suggests that it is not too difficult to see in applications whether it is satisfied or
not. '

For the present generalisation, we have n independent observations x,, - - -, x,
of a general random variable x distributed with probability distribution P on a
space X. The empirical probability measure P, results from the allocation of meas-
ure 1/n to each of the points x,, - - -, x,. We will be interested in the first-order
asymptotic behaviour, as n — oo, of P(P, € Q) where Q is a fixed subset of the
set .'= {Q} of all probability measures Q on X. Our main result will be of
interest only in the case when Pis outside Q in the sense that /(Q) =, inf, o /(Q),
where I(Q) =, § d0 log (dQ/dP) is such that I(Q) > 0, but P is not so far outside
that /(Q) = co. This is the case in which the event P, € Q with n large represents
a “large deviation” of P,.

We will assume, without statement of sufficient conditions, that Q isreasonable
enough for P(P, € Q) to be defined for all n. If it were not, we would not be
interested in it.

Additional notation. D, will denote a k-class partition X;* U ... U X,* of X
such that
PXHYy >0, i=1,. ... k;
1(Q, D) = 20 Q(X*) log {Q(XF)| P(X F)}
1(Q, D,) =, inf, o [(Q, D,);
I(Q’ k) = ger Sup,,, {[(Q’ D, k} )
I(Q, sup) =, sup, I(Q, k).
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Our condition, to replace Sanov’s “F-distinguishability”, is (C) = (Cl) u
(C2) u (C3) given by:
(Cl) I(Q) < .

For arbitrary ¢ > 0, there is a probability distribution R in Q, an integer 4, a
partition D, and ¢ > 0 such that

(C2) I(Q, D,) < IR, D,) < I(Q, D,) + ¢,

(C3) {Q]max,|Q(X") — R(XM)| < d} < Q.

In Section 2 we prove:

THEOREM 1. Under (C), P(P, € Q) = exp{—nl(Q) + o(n)}.

The proofs invoke Hoeffding’s (1965) “slight elaboration” of one of Sanov’s
results for multinomial distributions. ‘

For the case of distribution functions, the following sufficient condition for
(C) is established in Section 3:

THEOREM 2. [If (i) X = R', P ~ F,, a continuous distribution function, and
I(Q) < oo (ii) there is a real-valued function T(F), defined on ../} that is uniformly
continuous with respect to the metric s(F, G) = sup, |F(x) — G(x)|, with Q =
[F|T(F) = 0}, (iii) I, =, 1(Q,), where Q =, {F|T(F) = r}, is continuous at
r = 0 then (C) obtains.

(The obvious R” version of Theorem 2 is obtainable by minor changes in the
proof.)

2. Proof of Theorem 1. We note the following properties of the / functions:

(P1) Q. D,) < Q. D,) = K(Q) and I(Q, D,) = K(Q. D,)) < I(Q) if D, is a
refinement of D,;

(P2) I(Q, k) is a non-decreasing function of k;

(P3) KQ, sup) < I(Q).

LEMMA 2.1. Without condition
@1 P(P, e Q) < exp{—nl(Q, k) - O(log n)}
where O depends only on k.

Proofr. Fix k. Then, for every D,,
(2.2) P,eQ=IP,D,)=1QD,).

The right-hand side of (2.2) is a condition on (P,(X.*); i = 1, .- ., k), the empiri-
cal multinomial proportion vector defined by D,. Use of Hoeffding’s (1965)
Theorem 2.1 then gives P(P, € Q) < exp{—nl(Q, D,) -+ O(log n)} where O de-
pends only on k, whence the result.

COROLLARY 2.1. P(P,e Q) < exp{—nl(Q, sup) + o(n)}.
LeMMA 2.2, Under (C), P(P, € Q) = exp{—nl(Q, sup) + o(n)}.
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Proor. Fix ¢ > 0 and obtain R, &, D, and ¢ from (C). There clearly exists
an integer m such that, for each n = m, an n-point empirical probability measure
S, can be found with

(2.3) max, [S,(X}) — ROXH)| < 3.
Take n = m. Let.>,, = {n-point empirical probability measures Q, such that
Q.(XM =S8,(X",i=1, ..., k). Note that, by (C3), ., c Q. For Q,e./,,
we have 1(Q,, D,) = I(S,, D,) and we find

(S, D) = I(R, D)| < 8 X, [log P(X) |

+ h max {|d log |, |(1 — d)log (1 — d)|}.

We may take d so small that
(2.4) (S, D,) — I(R, D,)| < <.
Now .&, corresponds to a singleton 4 in Hoeffding’s equation (2.9) with our n
replacing Hoeffding’s N, 4 replacing Hoeffding’s k and (P(X*);i=1, -+, k)
replacing p. Whence P(P,eQ) = P(P,c.>,) = exp{—nl(S,, D,) + O(logn)}
where O depends only on 4. (The uniformity of the O in Hoeffding’s (2.9) with
respect to A allows dependence of &, on n.) Therefore, by (C2) and (2.4),

P(P, € Q) = exp[—n{(Q, D,) + 2¢} + O(log n)]
= exp[—n{I(Q, sup) + 2¢} + O(log n)]

where O depends only on /# which is determined by choice of e. For fixed ¢, we

take n so large that |O(log n)| < en and the result follows.

LeMMA 2.3. Under (C), I(Q, sup) = I(Q).

Proor. If not, then, by (P3), I(Q, sup) < I(Q). Let e = L[/(Q) — I(Q, sup)].
With this ¢, obtain R, #, D, from (C). Define Re.>” by R(X;*) = R(X;*) and
R(B,) = R(X;")P(B))|P(X") for B, C X}, i=1, ..., h. Then, by (C3), ReQ.
Moreover, I(R) = I(R, D,) = I(R, D,) < I(Q, D,) 4+ ¢ by (C2). So I(R) <
1(Q, sup) + ¢ = I(Q) — ¢, a contradiction establishing the result.

Lemmas 2.1, 2.2 and 2.3 together prove Theorem 1.

3. Proof of Theorem 2. Let D, = X* U ... U X,* have the special form
(xp = —o0,x,] U (x, X,] U -+« U (x,_, X, = 00), Where P(X,*) = 1/h,i =1,...,
h. Givene > 0, there exists a distribution function G, and associated probability
distribution in Q, which we also denote G,, with I(G,, D,) — I(Q, D,) < e. Let
G, be defined from G, just as R was from R. Then we find:

(3.1) 5(G,, G,) < max, G (X"
(3.2) I(G,) = %, Gy(X;") log [AG,(X}M)]
(3.3) oo > I(Q) = I(Q, D) > I(G,, D,) — ¢ = [(Gh) —e.

From (3.2) and (3.3), max, G,(X;*) — 0 as # — oo, whence, by (3.1),
(3.4) 5(G,, G,) -0 as h— oo .
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If G, eQ, I(G,) = I(Q) and then
(3.5) 1Q, D) > [(Q) — ¢

by (3.3). If G, ¢ Q then T(G,) < 0 while T(G,) = 0, whence |T(G,) — T(G,)| =
|T(G,)|. So, by the uniform continuity of 7, (3.4) implies |7(G,)| — 0 as & — oo.
The continuity of /, at r = 0, the inequality /(G,) = I 3,, and (3.3) then imply
that (3.5) holds with ¢ replaced by 2¢ and for 4 large enough. But ¢ is arbitrary
so, with (P1), we have

(3.6) lim,_, K(Q, D,) = I(Q) .

(Note, for comparison with Lemma 2.3, that (3.6) implies /(Q, sup) = /(Q).)

The proof of Theorem 2 is completed by the observation that, for arbitrary
o >0, theset ., = {F|0 < T(F) < p} (which is in Q and {F|/(Q) < I(F) <
1,}) is non-empty and open with respect to s and is included, for small p and
large &, intheset {F|I(Q, D,) < I(Fy < I(Q, D,) + ¢}. We may therefore choose
Re .o, c Qsatisfying (C2). That (C3) holds for small enough 4 follows from
the inequality

s(Q, R) < (h 4 1)max, |Q(X;*) — R(X")| + max; R(X}"),

the fact that sup, R(X*) — 0 as # — oo (just as for G, above) and the openness
of 7.

4. Discussion. That condition (C) has limitations is illustrated by the case:
X ~ R!, P ~ F,(non-degenerate) with §{ xdF(x) =0and Q = {F|{ xdF = a > 0}.
For this case it can be shown that (C) holds if and only if either x is bounded
above or /(Q) = 0. The interesting case of x unbounded and /(Q) > 0 is, how-
ever, easily dealt with by a truncation method with Theorem I and the result
P(F, e Q) = exp[—nl(Q) + o(n)] is derivable without explicit dependence on
the “Cramér condition” (see Bahadur and Rao (1960)).

Theorem 2 is inapplicable when x is unbounded because the required 7(F) is
§ x dF(x) which is not uniformly continuous. Hoadley (1967) introduced his
elaborated condition to deal with such a breakdown of uniform continuity.

It is easily seen that the following otherwise general example cannot satisfy
condition (C):

(4.1) P has non-finite support and Q = {Q|/(Q) = a > 0}.

(For every D,, we see that /(Q, D,) = 0, which, with the choices ¢ < a« and
Q = R, contradicts (C3).) Sanov [4] uses an indirect method to show that the
distribution function version of (4.1) cannot be F-distinguishable.

The condition of Theorem 2 is the specialisation to the one-sample case of the
condition of Hoadley’s Theorem 1, which establishes essentially the same as our
Theorem 1.

It would be of interest to know the relationship of Sanov’s F-distinguishability
condition, the present condition (C) and the one-sample specialisation of the
elaborate version of Hoadley’s condition developed for his Theorem 2.
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