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MINIMAX ESTIMATION OF POWERS OF THE VARIANCE
OF A NORMAL POPULATION UNDER
SQUARED ERROR LOSS!

By WILLIAM E. STRAWDERMAN
Rutgers University

The problem of estimating powers of the variance of a normal distribu-
tion is considered when loss is essentially squared error. A class of mini-
max estimators is found by extending the techniques of Stein. It is shown,
at least for estimating the variance, that a subclass of the above consists
of generalized Bayes estimators.

1. Introduction. This paper deals with the problem of estimating positive
powers of the variance of a normal distribution when the loss is given by

a1y L(y, o*) = (0’7 — 1)2.

2a

More specifically, we assume we are given a sample X, - - -, X, of independent
identically distributed normal random variables with unknown mean g and
unknown variance ¢°. Stein [4] showed that the usual best fully invariant
estimator of ¢* is inadmissible with respect to the loss (1.1). Brown [3] showed
in a more general setting the best fully invariant estimator of the ath power of a
scale parameter in the presence of an unknown location parameter is inadmis-
sible for a large class of loss functions. In this paper we give a class of mini-
max estimators for any positive power of the variance for the model given above
and show, at least for estimating the variance itself, that a subclass is generalized
Bayes. Brewster and Zidek [2] have results that are similar in conclusion but
different in technique to those presented here. They also have results on scale
admissibility as well as on estimation of quantiles of normal distributions, which
are not considered in this paper.

Section 2 presents a class of minimax estimators for powers of the variance
using an extension of the methods of Stein. Section 3 presents a class of
generalized Bayes estimators of powers of the variance. In Section 3 it is shown
also that for the estimating the variance this class has non-empty intersection
with the class of minimax estimators of Section 2. Section 4 presents some
remarks primarily on extending the results of Sections 2 and 3 to the case of
several unknown means. Some remarks are also given concerning the extending
of Brown’s [3] results to give smooth minimax estimators.

2. A class of minimax estimators of ¢ In this section we produce a class of
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minimax estimators for any power of the variance when the loss in given by
(1.1). Let X=Y7,X, and S = 37, (X, — X). We consider estimators of
the form

(2.1) D(X, S) = $(S/(S + nEH)(S + nX)e,

i.e. estimators based on the sufficient statistics which are orthogonally invariant
and scale invariant. These are obvious extensions of the class of estimators
considered by Stein [4] for the case of estimating the variance.

The risk of an estimator of the form (2.1) may be calculated as in Stein [4]
by introducing an auxiliary variable L distributed as a Poisson variable with
parameter 2 = p*/20? such that L is independent of S and that nX?given S and
L is central y* with 1 4 2L degrees of freedom. A straightforward calculation
leads to the following expression for the risk of (2.1):

2.2) E > <%L+ 2“)
n
r(*-5=)
T < n+ 2L n a) 2
| E[| ¢(s/8 + nX?) — 2 L) +cw!,
1‘(” +22L + 2a>2"

where C(L) is a function depending only on L, and whose value will play no
role in the ensuing arguinent.
We now consider estimators of the form (2.1) with

(2.3) G(U) = CU(1 — &(U)U?), o<sU<1,

—1 n—1
c=r(ty +a)f(r (g +2)7)
2 + a > + Za
(i.e. the multiplier for the best fully invariant estimator) and ¢(U) is non-
decreasing. We will prove the following result.

where

THEOREM 1. Estimators of the form (2.1) with $(U) given by (2.3) are minimax
for the loss function given by (1.1) provided 6 =z 0 and 0 < ¢(U) < D(0) where

D(6) = min {Za/(a +a), (2 [ﬁ (" = L 4 2a 5.4)

e (gt enn) (g e ad)o(3 4 ee))

(e wmea(g s 2w}

We prove this result by showing that the risk of such an estimator is no larger
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than the risk of the best fully invariant estimator—i.e. that given by ¢(+) = 0,
which is minimax. This will be accomplished if we show for each L =0, 1,
that the “conditional risk given L” of the best fully invariant estimator is at
least as great as that for the estimator given in the theorem. We will use the
fact that conditional on L, U = S/(S + nX?) has a Beta distribution with para-
meters 4(n — 1) and (1 + 2L). Letting 4 = T'(3(n + 2L) 4+ a)/T(3(n + 2L) +
2a)2¢, it suffices to show for each L that

(2.5) 0 < E(CU* — Ay — E(CU%(1 — Us(U)) — Ay
— E{Ce(U)[2CU+s — 24U+ — Ce(U)U+%]}

Since C and ¢(U) are all nonnegative, and 0 < ¢(U) < D(6) = D, the last ex-
pression in (2.5) is bounded below by

26 E{Ce(U)[2CU™+s — 24U+ — CDU +%]}

Also we note that the expression in brackets in (2.6) changes sign at most once
from negative on the interval [0, 1] provided that

(2.7) D < 2af(a + 9) .
Hence if

U, = sup {U: 2CU***+? — 24U+ — CDU***» < 0},
we have that the expression in (2.6) is bounded below by

Ce(U,)E[2CU+s — 24U+ — CDU*+%)

Tt
— 248 (" 1+ 2L>
_ cn,s( 1 +2 2L )]
This will be nonnegative whenever
o o [T A1) (5 e 12
— D@5, L. [Cﬁ ( N )]

We show that D(d, L) is nonnegative and non-decreasing in L for > 0.
This, together with (2.7) and the fact that D(d, 0) is equal to last expression in
(2.4), will complete the proof.
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We show first that D(3, 0) = 0. This will be so provided

) pees)

g reran) w(3eeras)

which is equivalent to
L
E(Y?) — E(X?)

(2.10)

where Y is a Beta random variable with parameters §(n — 1) + @ and a and X
is Beta with parameters $n + a and a. But (2.10) follows from the fact that
the distribution of X has a monotone increasing likelihood ratio with respect to
that of Y and X therefore is stochastically larger than Y.

We now turn to proving D(d, L) is monotone non-decreasing in L for fixed
6 > 0. Rewriting (2.8) we have that

mmjm0—1+a+aa+®

PO, B =\ —— - |
ﬂ< = +cna>ﬁ( = +2a4—&5>
st twe) (P )
ﬁ(n;l-l-a—!—ﬁ,a) ,B<—n+2—2L+a+5,a>

= [M(D)][Q — MD)],

where it is easily seen that M(L) is non-decreasing in L and N(L) is non-increas-
ing in L. This implies that D(d, L) is non-decreasing which completes the proof.

3. A class of generalized Bayes minimax estimators of the variance. In this
section we find a class of generalized Bayes estimators of ¢>. We then show
for the case @ = 1 a subclass of the above class consists of minimax estimators.
The same type of result holds for integral a by the same type of proof but we
have been unable to show the result for non-integral values of a. The class of
generalized prior distributions is related to the priors used by Strawderman [5]
in proving the existence for dimension greater than or equal to five of proper
Bayes minimax estimators of the multivariate normal mean vector when the
covariance matrix is given by ¢2/, when ¢? is unknown. The prior distributions
used in this paper, however, are not integrable.

We consider the following class of generalized prior distributions: Repara-
metrize 50 that 7’ = (¢*)~!. Conditional on 1 and » the distribution of 4 is
normal with mean 0 and variance n=p~22~}(1 — 2). The generalized density of
(4, ) is given by g2, 7) = 277, 0 < A< 1, 7 > 0.
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The generalized Bayes estimator of ¢** with respect to the loss (1.1) is then
given by
G.1) (X, S) = E(7*| X, S)/(7**| X, S) ,

where, if we neglect factors which disappear by cancellation in (3.1), for
r = 2a, 4a:

E(y7| X, S) oc §1dA NG dy §=., dOR=+(1 — A)~tyr+etr

—ny? _ _ v\ Vi Y2
X exp [m @ — (1= Xy — TS + miX )].

By a straightforward calculation
E(p" |,\7’ S) oc S-#T (" + ; + T) L dw(l — w)t-ewh(ntettatio=s)
Thus

2-a§<T" (M) [§% dw(l — w)t-aph(ntettata=s)
(X, S) = 2 ,

T <n + sz—l- 40() [}, dw(l — w)i-ephntetiatia=s)]

which is of the form (2.1) with

U*2-<T <n + 52+ 20() [s%} dw(l — w)g—awg(n+s+2a+2u—5)]

$(U) =
T <n + €2+ 4a> (5, dw(l _ w)g—uw§(n+e+4a+2a—5)]
= (U2 ("2 (54t e+ 20+ 20— 3), 3 + a)
(3.2) — By((n + ¢+ 2a+2a —3), % + a)])

= (T (PRI (g + ¢ + 4o+ 20— 3,3 — a)

— Bu(hn + ¢ + da + 20— 3), 3 — a)])

where 8,(-, ) denotes the incomplete Beta function.
We now specialize to the case « = 1. In this case (3.2) becomes

o) — _VIBGO +e+2a—1).§ —a) = By(h(n + ¢ +2a — 1), § — ]
n e+ 2B e+ 2a+1),3—a) — fy(bnt e+ 2a+ 1), §—a]
_ U BE(n+ ¢+ 2a—1),% —a)
(n+e+2)BfE(n+e+2a—1)+1,3 —a)
) o hlrt et 2a= .5 —a) |
[ —In+e+2a— D)+ 1,5 — a)]
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where 1,(a, b) = B,(a, b)/B(a, b). We now use the fact that (see [1] page 944,
equation 26.5.16) I,(a, b) = (aB(a, b))7'U¥(1 — U)* + I,(a + 1, b) to obtain
U

33 U) =
G390 =

+([3n+e+2a—DiGn+e+2a—1),3—a)

X (= 1IyEn +e+2a+1), 3 —a))}.
If ¢ and a are chosen so that ¢ + 2a — 1 = 1 (of course § — a > 0, also) (3.3)
is of the form (2.3) with 1 — D ¢(U)U® equal to the expression in braces.

We now demonstrate that a subclass of these estimators is minimax. We do
so by showing that certain of them satisfy the conditions of Theorem 1 for
0 = 4(n — 1). For this choice of §

(3.4 e(U) = [U1 — V)i
+ {3 + DBGE + 1), § — Al — L(G(n + 3),§ — a)l}-
(3-5) [2(n + DBG(n + 1), 3 — a)/B(E(n + 3), § — @)]e(V)
= [U(l — U)}-2)/§} dv vi (1 — v)i=e.,

{(1 _ (UQ(n+e+za—1)(1 _ U)g—a))

We first show ¢(U) is non-decreasing.
Letting w = (1 — v)/(1 — U), the integral in (3.5) becomes

a1 - U)%—a §idwwio[l — (1 — Uyw]m+or,
Hence if X = 1 — U, ¢(U) will be non-decreasing if and only if ¢(X) is non-
decreasing where
SédW wé—a[l — Xw]<n+1)/2
(=) '

(3.6) §(X) =

But the numerator of derivative of é(X) is equal to
sdw wi=e [l — Xw]™+021 — w]

which is negative. This completes the proof that ¢(U) is non-decreasing.
Our generalized Bayes estimator is therefore minimax provided

(1) = (3 — 2a)(n + 4 — 2a)' < D(" = 1),

or equivalently, if

(3.7) max{%,%[3 —(n +4)D(" = 1)][1 — D<” = 1)]} <a<3.

The following table gives values of D(4(n — 1)) and the lower bound a, for
a given by (3.7) for n = 2(1) 15.
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(M) a

2 .144 1.30
3 .145 1.15
4 .144 1.09
5 .133 1.04
6 122 1.02
7 112 .99
8 .104 .98
9 .096 .97
10 .090 .96
11 .084 .96
12 .079 .95
13 .074 .94
14 .070 .94
15 .066 .93

Hence we have the following result:

THEOREM 2. For the case « = 1, estimators of the form (2.1) with ¢(U) given
by (3.5) are generalized Bayes and minimax provided thate + 2a — 1 =1 and a
satisfies (3.7).

We remark that a similar result can be obtained for integral a« by the same
method. The result is almost certainly true for non-integral value of a but the
author has had difficulty in proving that ¢(U) can be made monotone.

4. Remarks. In Sections 2 and 3 we have produced minimax and generalized
Bayes minimax estimators for the case of n independent identically distributed
N(¢, 6*) random variables. Stein [4] treats the problem in a more general
canonical form; namely X}, -.., X, Y, --., Y, are independent normal random
variables with variances ¢* and EX, = 0, EY,; = 6,. The methods of Sections 2
and 3 apply to this more general setting as well. In particular, if § = 7 X2,
T=5iYr U=S[S/T), then (S, T) = §(S/(S + TS + T)* = CU(1 —
U%¢(U)) is minimax for the loss function (1.1) provided 0 < ¢(U) < D(k, 4) and
¢(U) is non-decreasing where

D*(k, 8) = min J 2a)(a + 3),

2[5 (o) (s t) = (grers )4 ree)]

(Grni(g v o)
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Furthermore, consider the following prior distribution: Conditional on (4, ),
the distribution of @ = (¢,, ---, 8,) is N, (O, »~227(1 — A)I,). The (uncondi-
tional) generalized density of (4, %) is then given by g(4, ) = 2~%p7'*,
0 <4< 1,7 >0. The generalized Bayes estimator of ¢** with respect to the
above prior is given by

Us2-aT <n + k +e+ 2a>
) §L dw(l — w)tk—aydntetatia=s
F(” Fk+e+ 4a> s}] dw(l _ w)gk—awg(n+e+4a+2a—4) .
2

If we specialize to the case @ = 1, and require ¢ + 2a = 2, we find that the
above generalized Bayes estimator is minimax provided that [(k + 2) —
(n + k 4 4)D(k, $n)][1 — D(k, $n)]™' < a < }(k + 2). The proofs of all of the
above statements are identical modulo change of notation, to the corresponding
results of Section 2 and 3.

The results of Sections 2 and 3 constitute an extension of the results of Stein
[4] in the sense that his estimator (6), i.e.

min (@ T (X, — X, —
n+41 n+4 2
is of the form given by Theorem 1 with 6 = n + 1.
Brown [3] also has results on the inadmissiblity of estimators of powers of a
scale parameter in the presence of an unknown location parameter which can
be extended in the normal case. We briefly indicate one such extension. Brown
gives the following class of estimators which beat the usual estimator for g%<.

0u(X, S) = CKy=  if |X/S| <K
= C,8= if |X/S| > K

zx?)

where C, is the multiplier for the usual best invariant estimator and C,(K) is
given by

@.1) C,(k) = L8 S“IDKS) — O(—nKS)]f(S) dS]
[§ S“[®(nKS) — D(wKS)]/(S) dS]

where @(-) is the cdf of a standard normal distribution and f{(-) is the density
of a y* variable with n — 1 df. In fact it is clear from Brown that we may take
C,(K) to be any value between C,(K) = C, — 2(C, — C,(K)) and C, since the
expression leading to (4.1) ((6.2) of Brown) is a quadratic with minimum at
Ci(K) < C,. It is also clear then that any estimator of the form 4,(X, S) =
§7 0x(X, S) dF(K) is minimax provided that F(.) is the cdf of a probability
measure concentrated on [0, co]. For such an estimator we have

35(X, S) = 057 [CuK) o, (X[S) + Col e E/S)] dF(K)
= §[{3,s C\(K) dF(K) + aF(X/S)] = S*H(X/S) .
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It is easy to see that H(.) is monotone non-decreasing and bounded above by
C,. In addition, if we require H(.) to be continuously differentiable, (which is
a reasonable requirement if we are searching for generalized Bayes minimax
estimators) it is easy to show that we must have

(4.2) §¢ dKH'(K)/[C, — CY/(K)] = 1.

It is interesting to note that if we take H(K) = C,(K) where C\(K) is given by
(4.1) that the resulting estimator is identical to the estimator (3.3) with a = 1.
(It is straightforward but tedious to show this.) However, the method of this
section will not suffice to show minimaxity of this estimator, since for this
choice of H(+) we have divergence of the integral in (4.2).

Brewster and Zidek [2] have extended the result of Brown [3] in a way that
includes the above remarks, by partitioning the real line into K sets and apply-
ing Brown’s technique inductively. Their procedure suffices to show minimaxity
of the estimator in the previous paragraph.
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