The Annals of Statistics
1974, Vol. 2, No. 1, 39-48

PROBABILITY INEQUALITIES FOR THE SUM
IN SAMPLING WITHOUT REPLACEMENT!

By R. J. SERFLING
The Florida State University

Upper bounds are established for the probability that, in sampling
without replacement from a finite population, the sample sum exceeds its
expected value by a specified amount. These are obtained as corollaries of
two main results. Firstly, a useful upper bound is derived for the moment
generating function of the sum, leading to an exponential probability in-
equality and related moment inequalities. Secondly, maximal inequalities
are obtained, extending Kolmogorov’s inequality and the Héajek-Rényi
inequality.

Compared to sampling with replacement, the results incorporate sharp-
eningsreflecting the influence of the sampling fraction, n/N, where ndenotes
the sample size and N the population size. We go somewhat beyond pre-
vious work by Hoeffding (1963) and Sen (1970). As in the latter reference,
martingale techniques are exploited.

Applications to simple linear rank statistics are noted, dealing with the
two-sample Wilcoxon statistic as an example. Finally, the question of
sharpness of the exponential bounds is considered.

1. Introduction and key results. Consider sampling without replacement from
a finite list of values x,, - - -, x, (not necessarily distinct), for example the weights
of the individuals in some population, or the scores associated with some rank
statistic. Denote by X, - .-, X, the values of a sample of size n “drawn without
replacement,” i.e., (X, ---, X,) = (X,l, ce, X,n), where
(L1 Pl o+ L) = (i -+, i)] = [N — 1) - (N = n + 1)]
for each n-tuple (i), ---,i,) of distinct values from the set {1, ..., N}. Of

fundamental interest in applications are the properties of the sum S, = 17 X;.
It is desirable to specify its behavior as a function of the population parameters

(1.2) a = min,g; y X, , b = max, g,y X,
p=NTEFx, o= NN (x, — py
as well as of the sample size n and the “sampling fraction” f, = (n — 1)/(N — 1).

In some instances the notation f,* = (n — 1)/N will be useful.
Of direct interest in various contexts are the probabilities

Pn(t)= P[Sn—"#Z"t],
Q.(f) = P[max, g, |S, — kp| = ni],
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and

for values of # > 0. The roles of P,(f) are manifold and widely known. The
quantity Q,(f) is basic, for example, in showing weak convergence of certain
stochastic processes associated with rank statistics of Kolmogorov-Smirnov type,
as in Héjek and Sidak (1967), pages 184-186. The quantities R,(¢) and R, *(r) are
clearly relevant to the study of the strong law of large numbers for the sample
mean, S,/n. Further discussion of applications appears in Sections 3 and 4.

The chief aim of this paper is to give useful exact upper bounds for P,(1), Q,(?),
R,(7) and R, *(f). From somewhat more general results developed in Section 2,
we have the following consequences.

CoROLLARY 1.1. Fort > 0,

(1.3) P, (1) = exp[—2n/(1 — f,*)(b — a)’].

The bound (1.3) for P,(¢) is simple, converges exponentially to zero with increase
in ar?, and requires only the parameter (b — a) to be given. If f,* is replaced by
0, (1.3) reduces to a probability inequality derived by Hoeffding (1963) for
independent X;’s and shown by him to hold also in the context of sampling with-
out replacement. We thus achieve in (1.3) a sharpening with increase in f, *.
(The anticipation of such an improvement, analogous to the effect of f, upon
the variance of S,, motivated this investigation.) In Section 3 the bound (1.3)
is utilized to derive simple but effective moment inequalities of all orders for
(Sn — np).

We now turn to bounds emphasizing the parameter ¢ and we bring Q,(7),
R, (1) and R, *(¢) into consideration. Of course, for P,(f) useful bounds are due
to Chebychev (see [8] for discussion). Namely,

(1.4) P(1) < ! <d=f)7
1+ nt? nt?
AT
Because (1.3) is sufficiently sensitive to the sampling fraction f,*, it enjoys a
favorable comparison with the Chebychev result. In the same vein as (1.4), we
have

COROLLARY 1.2. Fort > 0,

]VO'2 n N _ k
(1.5a) Q.(0) = m[2k=1m]’

N0'2 n—1 k n(N — n)
(1.5b) Q) é(N——l)n’f?[ et TN ]

(1.6) R,(1) < ‘—:;
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and

(1.7) R*(f) < ¢ —fn)”
nt*
The relations (1.5a, b) are complementary extensions of Kolmogorov’s inequality
to the context of sampling without replacement. Inequality (1.5b) has been
derived by Sen (1970). Note that (1.7) implies the right-most inequality in (1.4).
The bound (1.5b) for _Q,(f) was noted by Sen (1970) to be inadequate for the
purposes of Hajek and Sidak (1967), who achieved their goal by proving

(1.8) Q.() = [(1 — f)nr]E(S, — nyy*

and utilizing the exact expression for E(S, — nyu)* given by Isserlis (1931). In
the spirit of (1.8), we state

CoRroOLLARY 1.3. For any positive integer r, and t > 0,

(1.9) ’ Q.(1) = [(1 — font] 7 E(S, — np)'r,
(1.10) R,(1) < ™7 E(X, — gy,

and

(1.11) R,*(1) < [nf] " E(S, — nppy .

For r =1, (1.10) and (1.11) reduce to (1.6) and (1.7), respectively, in view of

(1.12) E(S, — np)* = (1 — f,)no*,
but (1.9) reduces to

0.2
(1.13) Qn(t)gm,
which differs substantially from (1.5a, b), but likewise is inadequate for the
purposes of [4].

The general results presented in Section 2 are obtained by exploiting the for-
ward martingale structure of the sequence (S, — kp)/(N — k), 1 < k < N, and
the reverse martingale structure of the sequence (S, — kyu)/k, | < k < N. Upper
bounds are established for the probabilities

Un(t) = P|:maxl§k5n <S]];,__I;(,U> g N'i n] s

S, — kp >ti|’
N

Viitiey, ooy c5) = Pl:maxiskéj C

wherel <i<j< Nandc¢,=>¢,,, > --- >¢, >0, and

S
W, it dy -+, dj) = P[maxigkéj &

where 1 <i<j<Nand 0<d,<d,,,<--.- < d;. From these results we
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obtain Corollaries 1.1, 1.2 and 1.3 via the elementary relations

(1.14) P = UL ),
(1.15) Q.0 =V, ,(nt; N—1,N—2, ..., N—n) =W, (nt; 1,2,...,n),
1.16 H<V, ( nt ;1,...,1>,
( ) Qn()_ 1,n N-—-l
17 R =V, (s YL A2 NS ),
' 1 2 n ’
and
N—n N—n-—1 1
1.18 R*t) =V, _(t; , S, )
(1.18) ()= Vaos (5 20 A5 o
- Wn,N(t; 1’ cee, 1)

The specific results of Section 2 are characterized as follows. Theorem 2.1
provides a class of probability inequalities for U, (7). Theorem 2.2 gives a bound
on the moment generating function of (S, — ny). The two results together yield
exponential probability inequalities for U,(f) and hence, by (1.14), for P,(f).
Finally, Theorem 2.2 gives a generalized version of the Hajek-Rényi inequality
in the context of sampling without replacement.

As mentioned already, Sections 3 and 4 deal with applications. Concluding this
paper, sharpness considerations and open questions are discussed in Section 5.

2. General results. We first present four lemmas, each of which places an
upper bound on a quantity of interest.

LEMMA 2.1. For integers 1 < k < m,
2.1) Zian ) S (m — k)[k(m + 1)

Proor. It is easily seen that the left hand side of (2.1) is less than (k 4 §)™* —
(m + 3)7!, which in turn is < (m — k)/k(m + 1). [

The next two lemmas involve the function

X, y) = * e v | y e, x>0,y>0.
f(x, ) P P y
LEMMA 2.2.
(2.2) f(x, y) < exp[§(x + y)] -

Proor. In the proof of Theorem 2 of Hoeffding (1963), it is shown that
qe™*? 4 pe** < exp[§7]
for0<p<1,g=1—pandz>0. Putting p = y/(x + y) and z = (x + y),

we get (2.2). [

The next lemma is due to Bennett (1962), page 42.

LemMA 2.3. Let Z be a random variable satisfying P[Z < B] = 1 for a finite
constant B and having mean m and variance v. Then, for h > 0,

(2.3) E[et#=™] < f(h(B — m), hv|(B — m)).
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The preceding two lemmas will be utilized through

LEMMA 2.4. Let Z be a random variable satisfying P[A < Z < B] = 1 for finite
constants A < B and having mean m. Then, for h > 0,

(2.4) E[ehZ—™] < exp[§H(B — A)].
ProoF. Let Z have variance v. By (2.2) and (2.3), for 2 > 0,
(2.5) E[e""™™] < exp{§H[(B — m) + v/(B — m)['}.

Now, as pointed out by Hoeffding (1963), v = E(Z — m)* = E(Z — m)(Z — A) <
(B — m)E(Z — A) = (B — m)(m — A). Thus the right hand side of (2.4) exceeds
that of (2.5).

Our final preliminary is to take note of the martingale structures inherent in
the scheme of sampling without replacement. Define

T, = Se = ki - ke s = S____]t,:’]‘:‘

for 1 < k < N. Tt is easily checked that

(2.6) E[Tk| Tepr, -3 Tyal = Toyys l<sk=N-2,
and

2.7 E[T*|Tr, ---, T*] =Tg,, 2<k<N-1,
i.e., the sequence T, T,, ---, Ty_, is a reverse martingale and the sequence
T*, T,*, ..., T%_, a forward martingale.

THEOREM 2.1. Let u(x) be convex and nonnegative on —oco < x < oo and non-
decreasing and positive on 0 < x < oo. Then, for t > 0,

wG=r)
N—n
55)
u
N—n
PRroor. Since u(x) is non-decreasing on 0 < x < oo,

2.9) Plmax {T.*, ..., T ,*} = x] < P[max {u(T,*), - - -, w(T,*)} = u(x)]

(2.8) UL <

for x > 0. Since u is convex and {T,*} is a (forward) martingale, the sequence
{u(T,*)} is a submartingale (cf. Feller (1966), page 215). Since {u(T,*)} is thus
a nonnegative submartingale and u(nt/(N — n)) > 0, we obtain (2.8) from (2.9)
and Kolmogorov’s inequality ([3], page 235). []

REMARK. By a similar argument follows
S, — ny

e[ (5=5
u(ern>

i

IA

(2.10) P [maxls,,é,,

S, —kp| o nt ]
N—k|~ N—n
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Such a result is of some utility, but Theorem 2.3 appears to yield more fruit, so
we have not emphasized (2.10).

In order to make use of (2.8) in conjunction with the function u(x) = exp(kx),
where £ > 0, we prove

THEOREM 2.2. For h > 0,

(2.11) Efexp[A(S, — n)]} < exp[§#(1 — f,*)n(b — a)'] .
Proor. Let & > 0 and write
(2.12) hy=N="p, 1<k<n.
N—k =
Denote by g, the conditional expectation of (X, — p), given X, .-+, X, ;. As
per (2.7),
Se1— (k= 1)p
2.13 = — k! , 2<k<gn.
( ) K N_ k1l Sksn

We thus have
2.14)  hy(S, — k) = b (=K
(2.14) (S — kp) = h, <_N——_k:_l> [Semr — (K — Dpl + B(Xe — 1 — 1)

= o[Seoy — (K — Dl + h(X, — p — ) -
Sincea — ¢ < X, — ¢ < b — p, we have by Lemma 2.4 that
(2.15)  E{explh(X, —  — p)]| Ko -+ Xua) < exp[ghi(b — a)],

2<k<n.
Therefore, using (2.14) and (2.15), for 2 < k < n,

(2.16)  E{exp[h(S, — kp)]} < exp[$h,*(b — a)']E{exp[Ay_,[Se-y — (k = Dp]]} -

Also, again by Lemma 2.4, we have

(2.17) Efexp[h(X, — )]} < exp[§hi(b — a)] -
It follows from (2.16), taken for 2 < k < n, and (2.17) that
(2.18) E{exp[(S, — np)]} < exp[H*A (b — a)'],
where

_ 2
@19 A= ia(gop) =1 W = A Dk

Applying Lemma 2.1, we see that
By S 1 (N nf(n— DINN —m) = n (1 =" D) = n(1 = £9).

Thus (2.11) follows. ]
Together, Theorems 2.1 and 2.2 yield Corollary 1.1, as will now be shown.
ProOF-0F COROLLARY 1.1. Let 2> 0. By (2.8) with u(x) = exp(hx) and
(2.11), we have
hnt 1 < h

(2.20) Uy n) < expl:— it (s

) n(t = e = ar ]



INEQUALITIES IN SAMPLING WITHOUT REPLACEMENT 45

The right hand side of (2.20) is minimized when & = 4{(N — n)/(1 — f,*)(b — a)".
With the use of relation (1.14), this gives (1.3). []

We might also consider applications of Theorem 1.1, or likewise (2.10), in
connection with the function u(x) = x* for a positive integer r. However,
superior results flow from the following theorem, our final main result.

THEOREM 2.3. For any positive integer r, and t > 0,
(2.21) Viits e oo ¢5)
—2r j — r r S — kp\*r r S, —je\”
< o mi e — e (SR 4o B (=LY
1= - =2¢; 20, and

for1 <i<j< Nandc,=c
(2.22) Wit ey -vyc))

—_ 7 2r . _ ar
g |:di2'E (le_l_lﬁ> + Yioin (d — d¥7)E <Sk B ky) :\
forl<i<j<Nand0<d <d,, <d,

ProoF. As noted earlier, the sequence {T,*} is a martingale and thus {(T,*)*}
isa submartingale ([3], page 215). A direct application of Theorem 1 of Chow
(1960) yields (2.21). By a similar argument applied to the reverse martingale
{T,}, we obtain (2.22). ]

In the case r = 1, formula (2.22) was given by Sen (1970) as an extension of
the Hajek-Rényi (1955) inequality to the situation of sampling without replace-
ment. We note that (2.21) offers an alternative extension.

The implications of (2.21) and (2.22) for the case r = 1 assume relatively
simple forms in terms of ¢*>. With the use of (1.12) we find, under the restric-
tions of the theorem,

(2.23a) Vii(ticy +--y¢))

g

2 . k P
S ol E e i e
: No? i ; ¢,
2.23b = 2 i k
( ) (N — 1):2[6’ N(N —i) + e (N=k)YN — k + 1)]
and

(2.24a) W.itsco --os¢))

o’ N—i . , N_k
= Vo B IR Ry
Ng? . d.? N—j]
2.24b = i d, oy .
- (N—l)t’[ T T j

PROOF.OF COROLLARIES 1.2 AND 1.3. Using (1.15) with (2.23b) and (2.24b),
we obtain (1.5a) and (1.5b). Using (1.17) and (1.18) with (2.24a), we obtain
(1.6) and (1.7). Using (1.16) with (2.21) we obtain (1.9). Using (1.17) and
(1.18) with (2.22), we obtain (1.10) and (1.11). [J
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3. Moment inequalities for the sum. The exponential probability inequality
of Corollary 1.1 yields simple but powerful moment inequalities of all orders:
THEOREM 3.1. Forv > 0,

(3.1) £js, — mp) < 2E LD 11 - fome — ap.

Proor. By a well-known formula ([3], page 148),

(3.2) E[|S, — np'] = §5 P{S, — npl > f]dr.
From Corollary 1.1 it follows easily that
(3.3) P[|S, — np|* > 1] < 2 exp[—28In(1 — f,*)(b — a)’] .

Inserting (3.3) in (3.2) and integrating, we obtain (3.1). []

4. Other applications. Briefly we augment the applications mentioned in
Sections 1 and 3.

(i) Confidence intervals for . A bound on P,(f) may be utilized in the usual
way to attach a (conservative) confidence coefficient to an interval of the form
X, — L, X, + L,), where X, = S,/n, and L, and L, are positive constants. Or,
utilizing a bound on R,(¢), a somewhat more sophisticated confidence interval
procedure can be developed.

(ii) Optional stopping in sequential sampling. A bound on R, *(¢) is relevant in
establishing confidence coefficients in the case of sequential sampling terminated
in a completely optional way.

(iif) Large deviations of simple linear rank statistics. As an example, let us
consider the two-sample Wilcoxon statistic, which may be represented as the
sum of ranks of the first sample among the combined observations, i.e., W =
2.t X;, where the first sample is of size n and the second of size N — n, and
X,, .-+, X, are a sample without replacement from {1, 2, ..., N}. The large
deviation index of this statistic, i.e., the value I = I(7, 4) for which

_InP[W—EW) =N _,

N
as n — oo, N — oo such that n/N — 4, 0 < 4 < 1, has been determined inde-
pendently by Hoadley (1967) and Stone (1967). It is a complicated function of
7 and 2. On the other hand, using (1.3) with @ = 1 and b = N, we derive the
simple inequality
_InP[W — EW) = N] o 2y

N = Al — 24 1N)’

4.1)

4.2)

where 2 = n/N. Whereas (4.1) gives an approximation valid for large n and N,
(4.2) asserts a relation holding exactly for all n, N, though not an approximation.
As a numerical example, let 2 = .5 and y = .05 and assume 1/N negligible. Then
the right hand side of (4.2) is .02, whereas the limiting value of (4.1) is .064.
The latter value is obtained from Figure 1 of Stone (1967). (His p corresponds
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to y + 42 in my notation.) Considering the crudeness of (1.3), this appears
quite satisfactory. Given a sharper version of Corollary 1.1 involving the pa-
rameter ¢ instead of & — a, as discussed in the next section, perhaps very good
agreement between the approximation and the lower bound would occur in some
examples.

5. Sharpness considerations and open questions. Let C; = Cy(d?, b — u, u — a)
be a constant depending only on ¢*, (b — ), (2 — a) and such that

.1 P (t) < exp[—Con??/(1 — £,¥)], all +>0, all n.

Let C, = Cy(b — p, ¢ — a) denote the inf of C, as ¢? varies while 6 — p and
¢ — a remain fixed, and let C, = Cy(b — a) denote the inf of C, as b — u and
¢ — a vary while b — a remains fixed.

LEmMA 5.1.
(5.2) : C, < 1)26%;
(5.3) CL<12(b — p)(z —a);
(5.4 C,Z2/(b—a)r.

PRrooF. (5.3) and (5.4) follow from (5.2) with the use of
(5.5) < (b— (e —a) < (b—a)yfd,

wherein the first inequality was seen in the proof of Lemma 2.4 and the second
is well known. It remains to prove (5.2). Here a technique of Kemperman
(1972) shall be used. For fixed ¢*, (b — p), (¢ — a), consider a sequence of
populations and samples with N = N, — oo, n = n, — oo, n, /[N, - 7(0 < y < 1)
and g, > ¢* > 0, as k — oo. Fix tand put 1, = tg,[1 — (n, — 1)/N,]!n,~%. Then
(5.1) implies that P, (f) < exp(—C,d’t?), i.e.,

(5.6) 21 P, (1,) < —Cypo,2 — — Cyo?, k— oo .

On the other hand, Hajek (1960) has proved a central limit theorem for sampling
without replacement, which gives P, (t,) — 1 — @(f) = (27)~* §7 exp(—34*) du,
k — co. Now let ¢ > 0 be given. Sinceln[l — ®()] ~ (—4#*), t — oo, choose
and fix ¢ large enough that = In[1 — ®(r)] > —4 — ¢. Then, for this value of
t and for k sufficiently large,

(5.7) I P, (6) > —% — .

Combining (5.6) and (5.7) we have (5.2). [

It follows from (5.4) that the constant in the bound of Corollary 1.1 is the
best that can be asserted with knowledge only of the parameter &6 — a. It would
be desirable to obtain a sharpening of this result involving the quantity ¢* in
place of the quantity (b — a)*/4. Such a result would be sharper than Chebychev’s
inequality as well as more useful in applications like 4(iii). It also is of interest
to obtain Corollary 1.1 with the usual sampling fraction f, instead of f,*.
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