CORRECTION

DISTRIBUTION FUNCTIONS OF MEANS OF A DIRICHLET PROCESS

By Donato Michele Cifarelli and Eugenio Regazzini

The Annals of Statistics (1990) 18 429-442

There is an error in Theorem 1 of our paper. The problem is that the condition $A(\tau) \in [0,1)$ does not imply the expression of ${\mathcal M}$ stated in part (ii) of Theorem 1, page 436. In fact, such an expression holds under the further hypothesis that A has no jump with size greater than or equal to 1. On the other hand the expression stated in part (i) of the same theorem is true even if $A(\tau) \in [0,1)$, provided that $\alpha^* > 1$. The one and only case previously not considered [i.e., $\alpha^* > 1$ and $S(\alpha) = -\infty$] is covered by part (iii) of the following proposition, which represents a correct complete reformulation of the aforementioned Theorem 1.

THEOREM 1. Let χ be a random probability measure chosen by a Dirichlet process on $(\mathbb{R}, \mathfrak{B})$ with parameter α , and satisfying

$$P\bigg(\int_{\mathbb{R}}|x|\chi(dx)<+\infty\bigg)=1.$$

Write M for the probability distribution function of $Y = \int_{\mathbb{R}} x\chi(dx)$, $S(\alpha)$ for the support of α , $A(\cdot)$ for the corresponding distribution function and α^* for $\alpha(\mathbb{R})$. Then if α is degenerate at ξ , M is also degenerate at the same point. On the other hand, if α is not degenerate, we obtain the following:

(i) For inf
$$S(\alpha) = \tau > -\infty$$
 and $\alpha^* > 1$,

$$\mathcal{M}(x) = \begin{cases} 0, & \text{if } x < r, \\ \int_{\tau}^{x} \frac{2^{\alpha^{*} - 3}(\alpha^{*} - 1)}{\pi(u - \tau)} du \\ \times \int_{-\pi}^{\pi} \left\{ \cos\left(\frac{y}{2}\right) \right\}^{\alpha^{*} - 2} \cos\left\{ \int_{\tau}^{\infty} q(v; u, y)(u - \tau) \sin y \, dv - \frac{\alpha^{*} y}{2} \right\} \\ \times \exp\left\{ - \int_{\tau}^{\infty} q(v; u, y) \left[(u - \tau) \cos y + v - \tau \right] dv \right\} dy, & \text{if } x \ge \tau, \end{cases}$$

where

$$q(v; u, y) = \frac{\alpha^* - A(v)}{(u - \tau)^2 + (v - \tau)^2 + 2(v - \tau)(u - \tau)\cos y}.$$

Received July 1993; revised January 1994.

(ii) For $\inf S(\alpha) = \tau \ge -\infty$ and A without jumps with size greater than or equal to 1,

$$\mathcal{M}(x) = \begin{cases} 0, & \text{if } x \leq \tau, \\ \frac{1}{\pi} \int_{\tau}^{x} (x - u)^{\alpha^* - 1} \sin\{\pi A(u)\} h(u; -\infty) du, & \text{if } x > \tau, \end{cases}$$

where h is any function from \mathbb{R} to $[0,\infty]$ such that

$$h(y; -\infty) = \exp\left\{-\int_{[\tau, \infty)} \ln|v - y| \, dA(v)\right\} \quad a.e.-\lambda.$$

(iii) For $\alpha^* > 1$ and $\inf S(\alpha) = -\infty$,

$$\mathcal{M}(x) = 1 - \int_0^1 \left\{ \int_{\mathbb{R}} \underline{M}(\tau,t;u-x+\tau-0) \, d_u \overline{M}(\tau,t;u) \right\} d_t \mathcal{D} \big(t;A(\tau),\alpha^*-A(\tau) \big),$$

where τ is a continuity point of A such that $0 < A(\tau) < \min\{1, \alpha^* - 1\}; \underline{M}(\tau, t; x)$ coincides with the value at $(x - \tau t)$ of the distribution function assessed in part (ii) with $(-\tau t)$ in the place of τ , $A(\tau)$ in the place of α^* and $\{A(\tau) - A(-\nu/t)\}I_{[-\tau t, \infty)}(\nu)$ in the place of $A(\nu)$; $\overline{M}(\tau, t; x)$ coincides with the value at $(x + \tau(1 - t))$ of the distribution function stated in part (i) with $\tau(1 - t)$ in the place of τ , $(\alpha^* - A(\tau))$ in the place of α^* and $\{A(\nu/(1 - t)) - A(\tau)\}I_{[\tau(1 - t), \infty)}(\nu)$ in the place of $A(\nu)$; D is defined on page 430 in our paper.

A detailed proof of this theorem is given in Cifarelli and Regazzini (1993). In Corollary 1 on page 439, \mathcal{M}_{ψ} coincides with the revised expression for \mathcal{M} upon replacement of A by the distribution function corresponding to α_{ψ} .

REFERENCES

CIFARELLI, D. M. and REGAZZINI, E. (1993). Some remarks on the distribution function of means of a Dirichlet process. Quaderno Istituto per le Applicazioni della Matematica e dell'Informatica del Consiglio Nazionale delle Ricerche 93 4.

ISTITUTO DI METODI QUANTITATIVI UNIVERSITÀ "L. BOCCONI" V. SARFATTI, 25 20136 MILANO ITALY