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ROBUSTNESS OF STANDARD CONFIDENCE INTERVALS
FOR LOCATION PARAMETERS UNDER DEPARTURE
FROM NORMALITY"

By SanuiB Basu? AND ANIRBAN DAsGUPTA

University of Arkansas and Purdue University

Let X; = 60+ oZ, where Z; are iid. from a distribution F, and
~o < @< and o> 0 are unknown parameters. If F is N(0,1), a
standard confidence interval for the unknown mean 6 is the ¢-interval
X+t, ,28/ Vn'. The question of conservatism of this interval under non-
normality is considered by evaluating the infimum of its coverage proba-
bility when F belongs to a suitably chosen class of distributions #. Some
rather surprising phenomena show up. For & = {all symmetric unimodal
distributions} it is found that, for high nominal coverage intervals, the
minimum coverage is attained at U[ — 1, 1] distribution, and the ¢-interval
is quite conservative. However, for intervals with low or moderate nomi-
nal coverages (¢, ,, < 1), it is proved that the infimum coverage is zero,
thus indicating drastic sensitivity to nonnormality. This phenomenon
carries over to more general families of distributions. Our results also
relate to robustness of the P-value corresponding to the t-statistic when
the underlying distribution is nonnormal.

1. Introduction. Consider a standard location-scale setup: X; = 6 +
0Z;,,i=1,...,n;here (Z,,...,Z,) is a random sample from a distribution F.
If F is N(0,1) and o? is known, a standard frequentist confidence interval
for unknown 6 is given by the z-interval: X + z, 120/ Vn, where X =
(1/n)I} X, and 2, ,, is the (1 — a/2) percentile of the N(0, 1) distribution.
For unknown o, the relevant interval is the ¢-interval: X + ¢, 558/ Vn , where

- Lo xy

n i=1

and t,,, is the (1 — a/2) percentile of the Student’s ¢ distribution with
(n — 1) degrees of freedom. For later reference, T,(X) = Vn X/s will denote
the t-statistic.

Suppose now that the assumption “F' is normal” is not justified. A natural
question would be to seek how much we would lose in terms of coverage
probability if we still use the abovementioned confidence intervals (as practi-
tioners often do). Let p,(F) and p,(F') denote, respectively, the coverage of the
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z-interval and the ¢-interval when the underlying distribution is F. If F has
finite second moment, an easy application of the central limit theorem shows
that both p,(F) and p,(F) - 1— a as n — «. This is often described by
saying that these intervals are asymptotically robust against nonnormality.
However, the central limit theorem per se does not give any indications about
the sample size required for the normal approximations to be approximately
valid for any specified F. Further, if F' does not have a finite second moment,
Logan, Mallows, Rice and Shepp (1973) showed that the limiting behavior of
p,(F) can be quite strange.

Our main focus will be directed towards the small sample behavior of the ¢
interval under nonnormality. Departure from normality will be modeled by
requiring F' to belong to a suitably chosen class of distributions &, and we
will judge the sensitivity of the intervals by considering the natural quantity
p = infy . & p(F). In Section 2, we conSIderU = {F: F is symmetric and
‘unimodal (about 0)} and examine the perfu‘mance of the ¢-interval. We first
show that, for n (sample size) equal to 2, the minimum coverage infy . 5 P(F)
is attained at symmetric uniform distributions if the critical value ¢ = ta -
1, whereas for critical values less than 1, the minimum coverage is, in fact,
zero. Next, we prove the surprising result that if £ < 1, the infimum coverage
over &, is zero for all n. For intervals with higher nominal coverages (and
general n > 2), we prove that if the cutoff ¢+ > n — 1, the infimum coverage
over the class %, is attained at symmetric uniform distributions. By a
combination of moment theory techniques and numerical methods, we next
demonstrate that the threshold beyond which the infimum is attained at a
symmetric uniform is, in fact, much lower than n — 1 (though dependent on
n). Generally, for the intervals with nominal coverage greater than or equal
to 0.95, the minimal coverage is quite close to the nominal coverage, thus
implying conservatism. Some discussions follow on the nature of the infimum
coverage for ¢ between 1 and the threshold. The section ends with exploration
of the class of symmetric contaminations of N(0,1). We again find that the
t-interval is conservative for high critical values, whereas for intervals with
nominal coverage less than or equal to 60%, the infimum coverage over this
class gets significantly worse.

Section 3 explores the class of arbitrary contaminations of N(0,1). We
show that in small samples the t-interval behaves well, but its coverage can
be significantly worse than the nominal coverage for moderate sample sizes.
Section 4 looks at the robustness of the P-value of the ¢-test. Due to the
obvious duality, our findings on the ¢-interval apply directly to considerations
of the P-value. For arbitrary contaminations of N(0, 1), we show that surpris-
ingly the maximum P-value differs more drastically from the nominal value
as the sample size increases.

The principal achievements of this article are that we establish the sur-
prising result that even if only symmetric unimodal populations are allowed,
the minimum coverage of the ¢-interval is zero for all sample sizes whenever
the cutoff ¢ is less than 1, but for intervals with high nominal coverages the
nominal and minimal coverages are close. The case of known o2, in which
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case the standard interval is the z-interval, is briefly commented on in the
concluding section, Section 5.

2. Symmetric unimodal distributions.

2.1. Preliminaries. Let X; =60+ o0Z;,,i=1,...,n, where Z,,...,Z, are
iid. from a distribution F € & = {F: F is symmetric and unimodal about
zero). The class % contains heavy-tailed (Cauchy, double exponential, ¢) as
well as short-tailed (symmetric uniforms and triangular) distributions. Be-
cause of the location structure, 6 can be ignored, and we will consider
infp . 5 Pp(IT,(Z)| < t) as our criterion, where ¢ > 0 is arbitrary but fixed.
Sometimes we will switch to the equivalent statistic S,(Z) =
(T, Z}/AXr ,Z3/2; T, and S, are one-one, increasing functions of one
another.

We need the following definition and the subsequent result from Benjamini
(1983).

DEFINITION 1. Let F and G be two symmetric distributions on R. The
distribution F is stretched with respect to G(F >, G) if {F~'(p) —
F~10.5)}/{G"1(p) — G"1(0.5)} is increasing in p for 0.5 <p <1, where
F~Y(p) = inflx: F(x) > p}.

In particular, a symmetric distribution G, obtained as a scale mixture of
another fixed symmetric distribution H [G(z) = [§ H(z/0) dv(o) for some
v], is stretched with respect to H. Also, note that stretching allows a
comparison between F and G even when G is discrete. This was explicitly
used by Benjamini.

THEOREM 1 (Benjamini). Let F and G be two distributions on R, symmet-
ric around 0. If F >, G and t > n — 1, then Py(T,(Z) > t) < P(T,(Z) > t).

For a proof, see Benjamini (1983); also see Basu (1991). Using this result
and some numerical evidence, Benjamini showed that for & equal the normal
scale mixture family, infy ., Pp(IT,(Z)| < t) is attained at N(0,1) for all
n>2ift>18.

THEOREM 2. For any n > 2, infp g Pp(T,(2) < ¢) = Py (T, (D < ¢)
fort >n — 1.

PROOF. Any F €4, can be written as F(z) = [§ U(z) dG(s), where U/(z)
is the c.d.f. of the U[ —s, s] distribution and G is a distribution on [0, )
(Khintchine representation). Thus, F >, U[—s, s]. The conclusion follows
from Theorem 1 and scale invariance of T,(Z). O

2.2. Sample of size 2. The following corollary follows immediately from
Theorem 2.
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COROLLARY 1. For n =2, infp s Pp(ITy(Z)| <¢t) =t/(¢+ 1) fort > 1.

The “¢ = 1” corresponds to a nominal coverage of 50% for n = 2. We next
examine the sensitivity of the ¢-interval when ¢ < 1.

THEOREM 3. For n =2, infp ., Pp(ITy(Z) <t) =0Vt <1

PROOF. An anonymous referee has graciously provided us with the follow-
ing constructive proof. Let U; and U, be iid.~ U[—1,1]. For a > 0, define
X, = sign(U)IU;|*, i = 1,2. Clearly, X, and X, are i.i.d. from a distribution
F which is symmetric and unimodal about zero. Notice that T,(X,, X,) =
(X, + X,)/I1X; — X,l. For 0 <t <1, simple calculations show that
{(xy, x5): ITy(x,, x,)l < t} is simply the region within the square [—1,1] ®
[—1,1] bounded by the two straight lines (1 —¢)x; + (1 + t)x, = 0 and
1+ 8)x, + (A —t)x, = 0. Integration yields

1 1-¢\°
P(ITy( Xy, Xp)l < t) = '2—[1 - (m) ]’

which goes to 0 as @ — 0. This completes the proof. O

Thus, there is a surprising discontinuity at the point ¢ = 1, below which
the infimum coverage is zero, whereas for ¢ = 1 the minimum equals 0.5, and
then it continuously increases.

2.3. General n. We first prove that the assertion of Theorem 3 holds for
all n > 2. In fact, it holds for a very general class of distributions 7.

THEOREM 4. Let & be any nonempty family of distributions on R satisfy-
ing the following:

(i) F € ¥ = F is continuous at 0 and symmetric;
Gi) F € 5= forany o> 0, the distribution G defined by G(y) = F(y /o)
also belongs to &,
Gii)) F, F,eF=aF, + (1 - a)F,eF forany 0 <a <1

Then infp ., Po(IT,| <t) =0Vn > 2 ift < 1.

The idea behind Theorem 4 is simple. Suppose, for fixed ¢ < 1, the above
infimum = y (say) is strictly positive and is attained at F € .%. Consider
G(x) =1 — &)F(x/0) + £F(x), where, £ and o are both positive and small.
Then

Py(IT,l < t) < (1 —a)"P(ITnI <tlX,iid. F(—))
g
+ne(l —a)”"lP(ITnI <tIX,~F(-), Xy,..., X, 1 i.i.d.F(é))

ag

)

i=2

(?)Si(l - e)n_i.
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The first term in the above expansion equals y by scale invariance of T,
whereas the third term is small for small . For the second term, since X, is
much larger than the other X;’s with high probability, ¥7_; X; = X, and

" X?~X? making |T,| = 1. Hence, the second term is approximately
equal to 0 since ¢ < 1. Thus, P;(|T,| < ¢) < (1 — &)"y + (a small term) < vy,
leading to a contradiction. The formal proof is available in Basu and Das-
Gupta (1992).

The subclass of continuous distributions in the symmetric unimodal family
&, satisfies conditions (i)-(iii); so does the normal scale mixture family.
Hence, Theorem 4 holds for both of these families; “¢ = 1” corresponds to
nominal coverages of 50, 62 and 68%, for n = 2, 5 and «, respectively. Thus,
for n > 5 and for an interval with nominal coverage less than 62%, the
infimum coverage is zero. This is striking, and it shows that the t-interval
becomes very sensitive to nonnormality for critical values ¢ < 1.

We next proceed to examine the case when ¢ > 1. Notice that by Theorem
2, for general n, 1aney P.(IT(Z)| < t) is attained at U[-1,1]if t = n — 1.
This result, however, is not of much practical use. For example, if n = 6, it
does not cover even the 99% nominal interval. We propose a different line of
attack in the following:

1. We can write infp g Pp(T, (@) <t) =infg [A(sy, ..., s,) dG(sy) -
dG(s,), where h(s,,...,s,) = P(T,(U)| < ¢) with U = (Uy,...,U,), the U;’s
are mutually independent Ul-s;, s;] r.v’s and G is any distribution on
[0, ) (Khintchine representation).

2. Suppose, we assume that Z’s are independent and Z;, ~F;, €5, i =
1,...,n (instead of Z,,...,Z, iid. from F € %), thus embedding the
“infimum problem” into a larger class (from now on, we will refer to it as
independent embedding). In this setup, the infimum problem reduces to
infg g, [h(sy,...,s,) dGy(sy) -+ dG,(s,).

Clearly, point 2 is not the same as point 1. However, they are the same if
the infimum in point 2 is attained at G, = - = G,.

3. It follows that point 2 is equivalent to inf, ., P(IT,(U)| < ¢), Us indepen-
dent ~ Ul-s;, s;l.

The problem is thus reduced to evaluating P(|T,(U)| <¢) (as in 3) and a
finite-dimensional minimization. These are obtained numerically and a nu-
merical minimization is the only feasible method of attack, as far as we can
see. The numerical results indicate that for each n < 10 there exists a
threshold t, (dependent on n) such that for critical values ¢ > ¢, the infimum
is attained when s; = - =s, = 1. Thus, for ¢ > ¢,, our numerical results
indicate that infp., Pr(IT, | < t) equals Py, 1T, < ¢). This was not
attempted for n > 10 because of the intensive nature of the computations.
The threshold ¢,’s are shown in Table 1.

A comparison of nominal and numerically obtained minimal coverages for
critical values above ¢, is given in Table 2. Examining these values, we infer
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TABLE 1
Threshold t,
Sample size (n) 2 3 4 5 7 10
t*=n-1 1.0 2.0 3.0 4.0 6.0 9.0
t, 1.00 1.73 191 1.92 2.00 2.25

that, for moderate sample sizes and high nominal coverages, the ¢-interval is
conservative for symmetric unimodal distributions.

REMARK. For the family #°7 = {F: F is symmetric and strongly unimodal
about zero}, we have infy _ gsr Pp(IT(2)| < t) > infp 5 Pp(IT,(2) < t). How-
ever, since U[—1,1] € 757, our numerical results indicate that infp. FST
Po(T,| <t) = Py, (T, <t)for t = ¢, and 2 < n < 10.

The results described so far settle our problem whenever ¢ < 1 or ¢ > ¢,.
For 1 <t <t,, our answers are not complete; but we do give useful bounds.
Suppose we broaden our consideration to all “orthant symmetric” random
vectors Z. The random vector Z = (Z,, ..., Z,) is said to be orthant symmetric
(0.s.) if it has the same distribution as Z; = (8,Z,, ..., §,Z,) for every choice
of ;= +1,i=1,...,n. If Z has an o.s. distribution, then P(|S,(Z)| < s) =
Jor PUW,| < 8)dM(§), where QF={¢=(£,...,6) 620, T, & =1},
W, =X}, &A,, where A; = +1 with probability §, A;’s are independent and
A 1s a (suitable) measure on Q' [see Efron (1969)]. It follows that

inf P(|S, (Z)| <s) = inf P(|W.| <s).
(0.s)Z (l n( )l ) §1‘Q+ (I fl )

Numerical minimization of the latter over ¢ € Q" leads us to the following
conjecture.

CONJECTURE 1. Forallk =1,...,n—1,ifk <s <k + 1, then

1
zlf;lg. P(S}(Z) <s)=1- oF

We have checked this conjecture numerically up to n = 10. A complete
analytic proof was not possible. Now, since ii.d. samples from symmetric

TABLE 2
Minimum coverage of the t-interval in symmetric unimodal family

Sample size (n) 2 3 5 7 10
Py(T,| < ¢) = 0.80 0.75 0.77
Po(T,| < ¢) = 0.90 0.86 0.87 0.89
P,(T,l<¢t) =095 0.92 0.92 0.93 0.94 0.945

Po(IT,| < t) = 0.99 0.98 0.98 0.98 0.983 0.986
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unimodal distributions constitute a subclass of the class of all orthant sym-
metric random vectors, the bound in the conjecture provides a lower bound
for infp . o Py(S2(Z) < s). We also obtain upper bounds by computing the
probability for a fixed, suitably chosen, mixture of two symmetric uniforms.
The reader is referred to Basu and DasGupta [(1992), Table 3], where
numerical values of these bounds are reported. This table shows that the
conjectured lower bounds are sometimes indeed useful. Also, the discontinu-
ity at the point s = 1 comes out sharply; for s < 1 the infimum over . is zero
(by Theorem 4), whereas for s > 1 the infimum over # is > 0.5 (if Conjec-
ture 1 is valid).

2.4. Symmetric contaminations. Instead of all symmetric unimodal distri-
butions, in this section we look at the restricted class of symmetric contami-
nations of normal ¢ = {F: F = (1 — ¢)N(0,1) + ¢G, G € @,}, where @, = {all
symmetric (about 0) distributions G on R}.

We want to find infp. s Pp(IT,(X) < t). Using independent embedding
(see Section 2.3), we embed it into the problem of finding

inf T,X)l <t
Fl,...l,Fnegg ..... F(l u( )| )
where the X;’s are now independent and X; ~ F, € 95, i=1,...,n
THEOREM 5.
inf  P(IT,(X)| < ¢t|X; ~ F; and independent)
1., Fo€F5
= inf P(IT,(X)| < t|X; ~ F{* and independent),
F¥,... F*eg¢
where

g¢={F*.F* = (1 - &)N(0,1) + eG* and
G* e @ ={G,=058_, + 0.55,,v = 0}}.

ProoF. Let F;=(1 - &)+ &G, i=1,...,n. It can be shown that
Pp  p(IT,X)| < t) can be written as the integral of a suitable Borel measur-
~~~~~~~~~ z,) with respect to the product measure G; ® G,
G, [for details, see Basu (1991)]. Notice that (i) [h(z,,...,z,)
dG(zy) -+ dG,(z,) is a linear function of each of G4,...,G,, and (ii) &, is the
closed (in weak topology) convex hull of @° (follows from Theorem A.5 of
Dharmadhikari and JoagDev (1988), page 255). It follows that

inf _, Jh(z1-02,) dGi(2) - dGi(2,)

= inf [h(zl, 2,) dGi(2,) - dG,*(z,),

which completes the proof. a
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Theorem 5 reduces the problem to (n-dimensional) minimization of an
integral, and this integral can be exactly evaluated [see Basu (1991)]. Numer-
ical minimization for some cases shows that the infimum is attained when
the v;’s are all identical. Combining Theorem 5 and the subsequent numerical
work we thus get (for selected n and ¢) infp.g, PF(IT | <t) =
1an*eg,, P.(IT,| < ¢). These minimum coverages are listed in Basu and
DasGupta [(1992), Table 4]. When nominal coverage is greater than or equal
to 70%, (nominal — minimal) coverage is small, but a drastic difference
appears when nominal coverage is less than or equal to 60%. Thus, the
phenomenon we observed for the symmetric unimodal family is partially
present for symmetric contaminations as well.

3. Arbitrary contaminations. In the previous section, we considered
symmetric contaminations of normal. Here, we look at the general &-con-
tamination class ° = {F = (1 — ¢)N(0,1) + £G, G € @}, where @ = {all dis-
tributions G on N with E;(Z) = 0}. Such a class arises when we are
100(1 — £)% certain that the underlying distribution is normal and 100&%
uncertain about the form of the distribution. Note that .#* is not a superclass
of 3, since here we are assuming finite first moment. As before, we use the
technique of independent embedding.

THEOREM 6.

inf P(IT (X)| < t|X; ~ F; and independent)
L, F eF®

= inf P(IT,(X)| < t|X; ~ F} and independent),
F¥, ... Ffeg”®

where
g°={F*:F*=(1-&)N(0,1) + £G*, G* = ps oy + (1 =P) 8y,
withpv + (1 —p)w = }

ProoF. Following arguments similar to Theorem 5, P(IT,(X)| < ¢|X, ~
F; € 7 and independent) can be written as [h(z,,..., z,) dG(z;) - dG,(z,),
where F; = (1 — £)® + ¢G; with the G/’s satisfying [xdG;(x) = 0 V i. The
fact that it is enough to consider only two point G,’s for the minimization now
follows from Mulholland and Rogers [(1958), Theorems 2 and 8]. O

By Theorem 6, the infimum problem in the independent (not i.i.d.) case is
reduced again to (2n-dimensional) minimization of an integral (this integral
can be exactly calculated). Numerical minimization shows that the minimum,
again, is attained when the Fj*’s are identical, thus giving us the required
infimum for the i.i.d. case. Table 5 in Basu and DasGupta (1992), where these
minima are listed, shows that the ¢-interval is conservative for small 7, but
as n increases the minimum coverages differ more from the nominal ones.
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4. Robustness of P-values: tyranny of large samples. In our setup,
if we desire to test the null hypothesis H,: 6 = 6, against the alternative
hypothesis H;: 6 # 6,, the p-value (or observed significance level) for the
observed data x = (xy,...,x,) is p, = PE=%(T,X)| > t) = Pr(IT,(Z) > t),
where ¢t = T,(x) is the observed value of the ¢-statistic. Thus, our findings on
the infimum coverage of the interval carry over directly to the problem of
finding the supremum of the p-value over the respective family of distribu-
tions. For example, if we only know that the unknown distribution F' belongs
to a family .7 satisfying the conditions of Theorem 4, and if we observe
IT,(z)| <1, n > 2, then Theorem 4 says that in the worst case we have
p, = 1, that is, we are always going to accept H,. Reinterpretation of other
results, in terms of robustness of p-values, follows similarly.

The preceding section suggests that, as the sample size (n) increases, the
maximum p-value over the class .#° differs more from the nominal p-value.
However, the numerically intensive method cannot be carried out for higher
n’s. Instead, suppose, for large n, we consider F, = (1 — £)N(0,1) + &G,
where ¢ is small, and G = p§,_,, + (1 — p)§,,, with a small and b large;
E;(X) =0 implies p = b/(a + bS, making p close to 1. For n large and
X,..., X, iid. from F, it can then be shown that [see Basu (1991)]

Pr(IT,(X)| < ¢)

n
< Y (Z)(l_a)kgn—kpn—k
k=n/2

XP[IT,(X)| < tIX;,..., X, ~N(0,1), X;,4,..., X, ~ 8oy
n/2 n

+k§0(z)(1—a)k8n-k+ r (Z)(l—e)ka”_k(l—p"_k).

k=n/2+1

Lower bounds on the p-value of F, computed according to above are listed in
Table 3. Consider the case when the nominal p-value is 0.10. If we allow 10%
contamination (& = 0.1), the p-value of F, is greater than or equal to 0.21
(0.35 and 0.54) for n = 20 (n = 50 and n = 100). Notice that F, €.%°. Hence,
the supremum p-value over F° is also greater than or equal to 0.21 (0.35 and
0.54) for n = 20 (n = 50 and n = 100). Thus, over the contamination class,
the p-value of the ¢-statistic is not very sensitive for small 7, but the lack of
robustness becomes more pronouncéd as the sample size n increases.

TABLE 3
Lower bounds on the p-value (¢ = 0.1)

Nominal = 0.30 Nominal = 0.10 Nominal = 0.05 Nominal = 0.01

n 20 50 100 20 50 100 20 50 100 20 50 100
045 0.60 0.76 021 0.35 054 0.14 024 042 0.04 0.09 0.20
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5. Comments. In this article, we establish some explicit and surprising
results about the robustness of the widely used ¢ confidence interval under
departure from normality. When the population variance o? is known, a
frequentist optimal confidence interval, under normality, for the unknown
mean 0 is the z-interval X + z, 120/ Vn. Without loss of generality, we
can assume o2 = 1. Thus, X; = 6 + Z;, Z/s iid. from F with En(Z,) =0,
En(Z?) = 1. To examine robustness against nonnormality, one can take
F €%, a suitably chosen family, and consider inf,_, Py (Zl<e¢) as a
sensitivity criterion (here ¢ =z, ,,/ Vn). The detailed technical results will
appear separately. It turns out that, consistent with common belief based on
simulation studies, the theorems show that the z-interval is more robust in
comparison under skewness and very robust for broad general symmetric
unimodal populations.
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