The Annals of Statistics
1995, Vol. 23, No. 5, 1802-1822

THE ASYMPTOTIC ACCURACY OF THE BOOTSTRAP
OF U-QUANTILES!

By MIGUEL A. ARCONES
University of Utah

The order of the Kolmogorov-Smirnov distance for the bootstrap of
U-quantiles is considered. We observe that the order of the bootstrap of
U-quantiles depends on the order of the local variance of the first term
of the Hoeffding decomposition at the U-quantile. This order can be
smaller than the order of the bootstrap of quantiles: U-quantiles can be
smoother than quantiles.

1. Introduction. Let X,..., X, be independent identically distributed
random variables (i.i.d. r.v’s) with common distribution function (d.f) F.
Denote by F, the corresponding empirical d.f. The bootstrap [term coined by
Efron (1979)] consists in doing Monte Carlo approximation from the sample,
that is, take X ,,..., X, iid. r.v’s with distribution function F,. So,
conditionally on the sample, we have a bootstrap probability Pr*. The boot-
strap has proved to be a very versatile statistical method. We refer to Hall
(1992) for general facts about the bootstrap, in particular, its Appendix 6 on
the bootstrap of quantiles.

We will consider the bootstrap of U-quantiles. Next, we will describe the
framework we are going to work in. Let {X;}?_, be a sequence of ii.d. r.v.’s
with values in a measurable space (S, ). We define for a measurable
function f: S™ — R, the U-statistic with kernel f by

n—m)!
(11) Un(f) = (—-n'—) Z f(Xila"':X‘ )7

lm
Gy, ip)ELR

where I} ={Gi,...,i,): 1<i;<n, i;+i, for j #+ k). We refer to Serfling
(1980), Lee (1990) and Koroljuk and Borovskich (1994) for more on U-statis-
tics. The basic fact about U-statistics we will use is the Hoeffding decomposi-
tion, which we state next. We define

(1.2) T m (X155 %) = (8, = P) (8, — P)P" *f,
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BOOTSTRAP OF U-QUANTILES 1803

where @, - Q,,f = [f(x4,..., x,) dQ(x,) - dQ,,(x,,). Then, the Hoeffding
decomposition can be written as

(13) 0.(f) = L (7 Jou(mnf)

Observe that the variance of U,(w, ,, f) is of the order n~*. Fix a measurable
function A in S™. Let H,(¢t) = U,(I,_,) and let H(¢) = Pr{h(X;,..., X,,)) < t};
H,(t) is called the empirical d.f. of U-statistic structure. It takes the role of
the empirical d.f. in some problems involving U-statistics. Let 0 <p < 1.
Suppose that there is a ¢, € R such that H(&)) = p; &, is called a U-quan-
tile. Define

(1.4) & =H,'(p) =inf{t € R: H,(¢) > p};
¢, is the sample U-quantile. By Theorem 3.1 in Serfling (1984),
(15) n'?(& = &) —a N(0, (01/H'(&))’),

where o = Var(mg(X,, &) and g(x, ¢t) = Pr{h(x, X,,..., X,,) <t}

Several common estimators are U-quantiles. For example, one very often
used alternative to the median as a center of symmetry is the Hodges—
Lehmann estimator: the median of 271(X; + X)), 1 <i <j<n [see Hodges
and Lehmann (1963)]. This is the U-quantile (with respect to p = 1/2) of the
kernel h(x;, x,) = 271(x; + x,). Another interesting example is the U-quan-
tile of the kernel A(x,, x;) = |x; — x,| with respect to p = 1/2. This U-quan-
tile is a measure of the spread of the distribution. It was introduced by Bickel
and Lehmann (1979). Choudhury and Serfling (1988) introduced a U-quantile
which estimates the regression slope. Consider the linear regression model
Y, =a+ BX, + §;; a and B are constants; §; is independent of X;. The
U-quantile of the kernel A((x;, y;), (x5, ¥9)) = (yy —y1)/(xy — x,), With
respect to p = 1/2, is a natural estimator of the parameter . This estimator
is the median of the values (Y; — Y)/(X; — X;), 1 <i <j <n.

In Section 2, we will mention that

(1.6) limsup n'/? sup [Pr{n'/2( &, — &) <t} — ®(tH'(&)o7?)| <
t

n— o

where ® is the d.f. of a Studentized normal distribution. We will see that, in
general, the limit superior in (1.6) is not zero.

In Section 3, we will consider the bootstrap of U-quantiles. For a measur-
able function f in S™ we define

(n —m)!

U*(f) = — Y F(XF i, XF ).

Let HX(¢t) = U}(I, _,). We will study the asymptotic order of
(1.7) sup |Pri{n/2(&F — ¢&,) <t} — Pr{n/?(¢, — &) <t}|,
t
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where ¢* = (H?) !(p). Helmers, Janssen and Veraverbeke (1992) show that
sup |Pr{n'/2(&F — £,) <t} — Pr{n'/2(¢, — &) <t}]
t

= 0(n""/*(log n)3/4) a.s.

We will study the order of (1.7), both a.s. and in probability. It is remarkable
that the order in (1.7) can be different from the order for the bootstrap of
iid. quantiles. This order (as the order of the Bahadur representation of U-

quantiles) depends on E[|g(X, t) — g(X, &,)I?]. If m = 1, we have that

nl/4

limsup ———
n—-»ccp (loglog n)l/2

(18) X sup lPr*{nl/z( fn* - fn) = t}
t

—Pr(n'/2(¢, — &) <t}|=c as,
where c is a finite constant [Singh (1981), Theorem 2] and that
(1.9)  n'*sup|Pr*{n'/2(&F - &,) <t} — Pr{n'/2(¢&, — &) < t}]

¢

converges in distribution to a nondegenerate distribution function [Falk and
Reiss (1989) and Falk (1990)]. Here, we will see that

n'/* sup |Pr*{n'/2(&F - £,) <t}
(1.10) t
—Pr{n'/2(&, - &) <t}| = Op(1)
and

nl/4

—_— Pr* 1/2 % _ <
(1.11) (loglog n)"? S‘:Pl r*{n/2(&F — &,) <t}

—Pr{n¥?(¢, — &) <t}| =0(1) as.

These rates are the exact rates of convergence for some kernels. If the
function g(x, ¢) is differentiable enough in ¢, then the following exact rates
are obtained:

n'/2 sup IPr*{nl/z( & — &) < t}
(1.12) :

—Pr{n'/?(&, - &) < t}| = Op(1)
and

nl/2

————e Pr{nl/2( &* — <
(1.13) (loglog n)"* Sltlpl r{nl2(6 — &) <t)

—Pr{n¥%(¢, — &) <t}|=0(1) as.
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This is the order of the sample mean [see Theorem 1 in Singh (1981)] and,
therefore, the order of smooth enough statistics.

The main ingredients in the proofs are several limit theorems for empirical
processes and U-processes indexed by VC classes and a Berry—Eseen-type
inequality for U-statistics in van Zwet [(1984), Corollary 4.1]. Given a set S
and a collection of subsets &, for A c S, let A(A) = card{A N C: C € &}, let
m?%(n) = max{A¥(A): card(A) = n} and let (%) = infln: m¥(n) < 2"}; % is
said to be a VC class of sets if s(#) < «. General properties of VC classes of
sets can be found in Chapters 9 and 11 in Dudley (1984). Given a function f:
S — R, the subgraph of f is the set {(x, ) € S X R: 0 <¢ < f(x) or f(x)
<t < 0}. A class of functions & is a VC-subgraph class if the collection of
subgraphs of & is a VC class. The interest of these classes of functions lies in
their good properties with respect to covering numbers. Given a pseudometric
space (T, d), the e-covering number N(e, T, d) is defined as

N(e, T, d)

(1.14) = min{n: there exists a covering of T by n balls of radius < &}.

Given a positive measure u on (S, ) we define N,(e, &, w) = N(e¢, &,
I NlL,cwy) If & is a VC-subgraph class [Pollard (1984), Proposition II. 25],
there are finite constants A and v such that, for each probability measure u
with uF? < oo,

(1.15) Ny(e, 5, m) <A(u(F?)'*/e),

where F(x) = sup;.;/f(x)l and A and v can be choosen depending only on
s(¥), that is, uniformly over all the classes of functions with the same
number s(¥). By Pisier’s maximal inequality [see Theorem 3.1 in Marcus and
Pisier (1981); see also Dudley (1967)] there is constant ¢ depending only on A
and v such that, for any class of functions satisfying (1.15),

2

(1.16) E|sup < cE[F*(X)],

fes

n=t/? i & f(X;)
i=1

where {¢;};_, is a Rademacher sequence independent of the sequence {X;};_,
[see, e.g., (7.8) in Pollard (1990)].

2. Accuracy of the normal approximation for U-quantiles. The
following extends Theorem 1.1 in Reiss (1974) on the accuracy of the normal
approximation for quantiles to U-quantiles.

PropOSITION 1. Let {X;}7_, be a sequeﬁce of i.i.d. r.v’s with values in a
measurable space (S, %), let h: S™ - R be a measurable function and let
0 <p < 1. Define H(t) = Pr{h(X,,..., X,,) < t}. Suppose that there exists a
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& € R such that H(¢)) = p. Let g(x, t) = Pr{h(x, X,,..., X,,) < t}. Suppose
that H'(£¢y)) > 0, H" exists and is uniformly bounded in neighborhood of &,
and of = m? Var(g(X, &) > 0. Then

(2.1) limsup n'/2 sup |Pr{n/2( £, — &) <t} — ®(H'(&)tort)| < .
¢

n—o

Given the literature on Berry-Esseen bounds, the last proposition is
expected, so its proof is omitted.

REMARK 2. In general the lim sup in (2.1) is different from zero. Setting
t = 01in (2.1), we get

nV2|Pr(n'/2(H; ' (p) — &) < 0} — 27}
= n'2|Pr{0 < nV/2(H,( &) — H(&))} — 27

If m = 2, under mild conditions, we can apply Theorem 1.1 in Bickel, Gotze
and van Zwet (1986) to get that the last expression converges to

(22) 6707 |E[g(X, &)] + 3E[8(X,, £&)&(Xs» £0) Inx,, < 0] |»
which is, in general, different from zero. For example, if p = 1/2, X has the
uniform distribution on [0, 1] and A(x, y) = x + y, the expression in (2.2) is

2v/3/3.

3. Accuracy of the bootstrap of U-quantiles. We will see that
the accuracy of the bootstrap of U-quantiles depends on the order of
Ellg(X, t) — g(X, fo)l2]. First, we will consider the a.s. behavior of (1.7).

We will need the following lemma:

LEMMA 3. Let h: S™ - R be a measurable function and let 0 <p < 1.
Suppose that there is a ¢, such that H(&) =p, H'(§) >0 and of =
m? Var(g(X, ¢,)) > 0. Then there is a finite constant c such that

limsup supn®/*(loglog n) '/*

n-oo teR
X|H, (& +tn™2) — H,(&,) —H(&, +tn™ V%) + H(&)|(1 +¢2) 7

<c a.s.

(3.1)

Proor. We will denote by c¢ a finite constant which may vary from line to
line. By Theorem 4.1 in Arcones (1993), with probability 1,

(32) (n/2loglog n)"/*(&, - &),
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is almost sure relatively compact and its limit set is [—o,(H'(&)7,
a(H'(£))7t]. So, it suffices to show that, for each M < o,

limsup sup n3/*(loglog n) */? H,( & + s(loglog n/n)"? + tn~1/?)
n—o o teR
Isl<M

—H,( & + s(loglog n/n)l/z)

—H( &, + s(loglog n/n)"* + tn~1/?)

+H(& + s(loglog n/n)"/*)|(1 +¢2) ™"
<c a.s.

By the LIL for canonical U-processes indexed by VC-subgraph classes [Theo-
rem 2.5 in Arcones and Giné (1996)],

limsup sup (n/loglog n)**|U,(m, I, <t)|<c as.,

nox teR

for 2 < k < m. So, by the Hoeffding decomposition, it suffices to show that

limsup sup n%*(loglog n) “?|(P, — P)f, .. |(1 + ) <c as,
n— o teR
Isl<M

where
o () =560+ sloglog n/m) ™ 4 712)
_g(x, & + s(loglog n/n)1/2).

The first term of the Hoeffding expansion is the more difficult to handle, since
it is the one to give the rate. Next, we see that

(3.3) lim supE| sup n®*(loglog n) "*|(P, — P)f, ,.|(1 + t2) Y <e.
n—© teR
[sl<M

It is easy to see that the class
Fom {(Beu ~ L)1+ 80 Hiu,v,t € R)

is a VC-subgraph class. Hence, so is the class

‘?n = {(Ihs§O+s(loglogn/n)‘/2+tn"/2
2y L,
Ty e tovotogtogn my?) (1 +82) ilsl < M, t € IR}.

Moreover, s(#,) < s(&) for each n. Therefore, there are two constants a and
v, independent of n, such that

v

N(u, %,, Ly(n)) < a((ﬂ(H,?“v)z)l/z/u) ,
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for each u > 0 and each measure u on S™, where
env
H™(xy,...,%,)

- 2y71
= Sug IIhs§¢,+s(loglogrl,/rl,)1/2-i~tn_1/2 - Ihs§(~,-i~s(loglt:ugn/n)l/2 |(1 +1 ) .
te
Isl<M

The argument in Arcones and Giné [(1993), page 1524] implies that

_ _ 172 Y
N(u, 5, Ly(w) < af (Wl B [) ") |

for each u > 0 and each measure u on S™, where &, := {P™~!f: fe %} and
H™(x) = P™~'H™ . So, by symmetrization [see, e.g., Lemma 6.3 in Ledoux
and Talagrand (1991)] and the maximal inequality for VC classes [see, e.g.,
(1.16) above],

E| sup n*/*(loglog n) " "*|(P, - P)f, , . |(1 + t2)_1]
teR
|slesM
n1/4 E |I
<c——— sup V2, 4n-1/2
(loglog n)1/4 - h < ég+s(loglogn/n)/?+tn
Isl<M
1/2
-2
_Ihs§o+s(loglt.\gn/n)‘/2 |(1 + tz) ]J
We have that
1/2
(n/loglog n) / E Sung |Ih5 £o+s(oglogn/n)/24+tn-1/2
te

IslsM
=1 1+¢2)7°
h < £y+s(loglog n / n)l/? |( t%)

1/2
< (n/loglog n) / E'[Ilh—gols2M(log1tlgn/n)V2
- — -4
+I2M(logluagn/n)l/2<|h—§o|2 “n zlh - §0 | ] = 0(1)

By (3.3) and the Lemma 7.1 in Ledoux and Talagrand (1991), it suffices to
show that, with prokability 1,
Y & n,s’t(Xi)'(l +tH) '<c as.

i=1

(3.4) limsup sup n~!/%(loglog n)~ /2
n—o o teR
Isl<M
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=9J
Let n; =2/ For n;<n <n;,,,

n

sup n~V4(loglog n) "% ¥ ¢ ,,,s,t(Xi)‘(l +12) 7
teR i=1
|sl<M

_ ~1/2
< sup n; /*(loglog ;) /
teR
lsl<M

n
(35) X ‘Zl ai(g(Xi, & + s(loglog nj/nj)1/2i +tnj 1/2)
in

R -

n

-1
Z &; nj,s,t(Xi)‘(l + tz)

i=1

IA

sup nj /*(loglog n;)" 12
teR

Isl<M

By the Lévy inequality and the Talagrand isoperimetric inequality [see, e.g.,
Theorem 6.17 in Ledoux and Talagrand (1991)],

n

) nj,s,t(Xi)

i=1

Y Pr{ sup

Jj=1 n;<n<n;+1
teR
Isl<M

(1+¢2) " > enl/4(loglog ;)"

njv1

Z € nj,s,t(Xi)

i=1

<2 EPr{ sup
|

i=1 teR
J sl<M

(1+ 152)_1 > cnj/*(loglog nj)l/z}

s

< Y (272 +2e %)) <,

1

[Observe that sup, c g, 5 <y 7 Var(f, , (X1 + ¢*)7% < =] So (3.4) follows.
|

~.
I

Next, we will detect the term of greater order in the Edgeworth expansion
of the bootstrap of U-quantiles.

LEMMA 4. Let h: S™ — R be a measurable function and let 0 <p < 1. We
define V(¢t) =Pr{n(X,,..., X)) <t, WX, X, .1, Xom_1) <t}. Suppose
that there is a &, such that H(¢y) = p, H'(&,) > 0, o = m? Var(g(X, &) >
0 and H" exists and is uniformly bounded in a neighborhood of &,. Then

(n/loglog n)""* sup |[Pr*{n!/2(& - ¢,) <t}
teR
(3.6) —Pr{nV/2(¢, — &) <t)
—(H'(&)to11)Z,(t)| -0 as.,
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where

Z,(8) = —m™H'(£0)27'07*(V,( &) — V(&)
— m*tH'(£0)27'07*(V(£,) — V(&))
+o7'n'2(H,(&, + tn™1/?%)

_Hn( fn) - H(fn + tn_l/z) + H( gn))
— H"(&)t(H'(&)) o1 {(H,(&) — H(&))

and

X; )< tIh(Xil, X,

tm+12" 2m-1

ProoF. By Proposition 1,
(3.7 (n/loglog n)*/?sup |Pr{n'/2( ¢, — &) <t} — O(H'(&)tor)|- 0.
t

Take ¢ = 2m?(p(1 — p)/2(H'(£,))~t. We have that

sup  (n/loglogn)"?|Z,(¢)|¢(H'( &)tor') > 0 as.

|t]=c(log n)1/2

Let
H,(t)=n" . Z Iy x

By the Bernstein inequality for U-statistics [see, e.g., Serfling (1980)]

n'/? Pr*{nl/z(f,: - ¢,) < —c(log n)l/z}
log n\*?2
= nl/2 Pr*{p gH,‘,“(fn —c( g ) )}
n

[n/m](P. ~ )’
2pn(1 _pn) + (2/3)|pn _pl ’
where p, = H,(¢, — c(log n/n)"/2). By.the law of the large numbers for

U-processes indexed by VC classes [see Corollary 3.3 and Theorem 3.11 in
Arcones and Giné (1993)],

< nl/? exp{

sup|I?n(t) —H(t)| -0 aus.
teR
Hence,

(3.8) P, = ﬁn( &, — c(log n/n)1/2) —p as.
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We have that
(n/log n)"*(p, = p)
= (n/log n)"*
X (Hn(g,, — ¢(log n/n)"* — H,( &, — c(log n/n)l/z)))
+(n/log n)""*(H,(&,) = p)
+(n/log n)"*(H,(&, — c(log n/n)""?) — H,(&,)
—H(&, — c(log n/n)""*) + H( £))

+(n/log n)"*(H(&, - c(log n/n)"*) = H(£,))
=1+ II + IIT + IV.
We have that

(3.10) |H,(t) — H,(t)l < tn™ !,

(3.9)

where 7 is a finite constant independent on ¢. Hence, I — 0 a.s. By hypothe-
sis, there is a 8, > 0 such that H(¢) is continuous and increasing in (£, — &,
£, + 6,). Hence, for {iy, ..., i) N {j1, s Jm} =D, iy < =+ <i, and j; < -
<Jm>

Pr{h(X,,.... X;) = h(X;...» X;) € (0= 80, b0 + 80)} = 0.
This implies that, for all |s — &l < &,

|H,(s) —H,(s -)l< (r':l)_l (;}l) - (n ;m)\ <cn™! as.

Therefore, eventually
(3.11) |H,(¢&,) —pl<en™ as.

So, IT — 0 a.s. By the LIL for U-processes indexed by VC classes [Theorem 2.2
in Arcones (1993)],

lim limsup sup

1/2
_ |H,(s) —H,(t) —H(s +H(t)|=0 a.s.,
lim lim v ,,<t,s>55(loglogn) (s) — Hy(t) - H(s) + H(t)

where p2(s, t) = Var(g(X, t) — g(X, s)). So, III - 0 a.s. Since H is differen-
tiable at £, and ¢, — &, a.s.,

(3.12)  lim (n/log n)"/?|H( £, — c(log n/n)"?) — H(&,)

=cH'(§,) as.

From all these estimations,

(3.13) ’}i_r’ralo(n/log n)l/z( p, —p) =cH'(&) as.
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Hence,
n/2 Pr{n'/2( & — &,) < —c(log n)l/z} -0 a.s.

Therefore, it suffices to deal with the part where |t| < c(log n)'/2. By the
Berry-Esseen inequality for U-statistics,

(n/loglog n)?  sup |Pr*{n1/2(§,: - &) <t}
[t|<c(log n)/2

—((Var(H;(4,,0)) " (H, (4,0 ~ )|
< K,(loglog n)_l/z((Vn(é“n,t) — (Hy( fn,t))z)_m
+ (Vn( é‘n,t) - (H"( g”*t))z)_l)’

where £, , = £, + tn~'/%. By the LLN for U-processes,
sup|V,(¢) — E[g%(X,t)]| > 0 aus.
teR

(3.14)

and
sup | H,(¢) —H(t)| -0 as.
teR
Hence,
(3.15) sup |V, (&) —E[g%(X, &)]|» 0 as.
[¢| < c(log n)1/2
and
(3.16) sup |I7n( &) — H( §0)| -0 a.s.

|| <c(log n)1/2

So, (8.14) goes to zero a.s.
Next, we will show that

( n )1/2
- sup
loglog n I¢]< c(log n)!/2

o((Var*(H;(£,,1))) " *(H,(£,.0) - p))

(3.17) —O(H'(&o)to7?)
~((Var*(H,(£,0) (B 4,,0) — P)
—H'(&)tor! = Z,(t))(H'(£)t07 )| > 0 as.
By the Taylor theorem, if suffices to show that
Ho(L.) = p H'(&)t

(Var*(H,(4,.))) " oy

X(1+t2) ' >0 as.

n

1/4
—_ sup
(318) ( loglog n ) |t|< (log n)'/?
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and

Hn( gn t) -P H’( gO)t
. 5 —-Z,(t
(Var*(H;(,.)))" 71 “

X(1+¢2) ' >0 as.

(o)
—_— sup
(3.19) \loglogn /), oqny2

We have that
V(¢) = V(&)

=E[Ih(X1 ,,,,, X,,,)st(Ih(Xl,XmH ..... X2m_1)_<_t_Ih(X1,X,,,H ..... sz_l)sgo)]

(3.20) IV(¢) = V(&) < 21H(2) — H(&o)l-

(8.21) (n/loglogn)”? sup |1Z,(¢)I(1+¢2)" " =0(1) as.

|| < c(log n)/2

Therefore, (3.19) implies (3.18). So, it suffices to prove (3.19). We have that
H,(4,)-p  H(&)t
(Var*(H;(4,,)))”
= n?(H,({,0) = )
) (nVar'(Hy (5,,)) = o?)
(nVar*(H}( (n,t)))l/zal((nVar*(H,’f( 4.0)))
0T (02 (H(4.,) — p) — tH'(£)) = L,(t) + I (0).

In order to deal with the last decomposition, we need some estimations in the
variance of the empirical d.f. of U-statistic structure. We have that

m _ -1
Var(Hn( & + tn_l/z)) = Z (’7)(777. _’;1)(’1’1;) 0}'2(Ihs§o+tn'1/2)’
j=1

where

crj2(f) = Ef(X,,..., Xm)f(Xl,...;Xj, Xii1sees X)) - (Ef(Xy,..., Xm))2
and {X}};‘;l is an independent copy of {Xj};f’=1 [see, e.g., Serfling (1980),
Lemma A, page 183]. Since 0;([, .,) < 1, we have that

-1
nm(n - m)( n ) 02(Ih < g+ in-12) <nVar(H, (& + tn”V/?))

m—1)\m

-1 m -1
n—m m nom

Snm(m _ 1)(;}1) 0'12(Ihs§o+t"_1/2) + njgz(-] )( m —J)(;}’l)

(51

(3.22)

7o)
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and

supanar(Hn( {o +tn"1?)) — m20'12(Ih5§0+tn—1/2)| <rn’l,
teR

where 7 is a finite constant. So, we have that

(3.23) sup|nVar*(Hy({,,)) — m*(Vi(&) — H2(4,,0))| < oY,
teR

where 7 is a finite constant. By this, (3.15) and (3.16),
sup  |nVar*(H;(¢,,)) = m*(Vu(4,,) = HX(4,,0))| 2 0 as.

It|< c(log n)t/?
We have that
(n/loglog n)"*(V,(£,..) = V(o))
= (n/loglog n)"*(V, (&) — V(&))
+(n/loglog n)l/z(Vn( & +itn"V2) =V, (&)
—Va(& +tn71%) + V(&)

+(n/loglog n)*(V(&, + tn™/2) — V(&,))
+(n/loglog n)""*(V(&,) — V(&)).

By the LIL for U-processes indexed by VC classes,

(n/loglogn)"?  sup |V, (& +tn"/2) = V,(&)

[t|<c(log n)'/?
~V. (& +tn712) + V( §0)| -0 a.s.
We also have that

sup  (n/loglog n)l/le(fn +tn~1/?)
|t|<c(log n)/2

V(&)1 +62) 7 50 as.
Therefore, we get that
(n/loglog n)*(V,(£,..) — V(&)
(3.24) ~ (n/loglog n)""*(V,(&) — V(&))
+(n/loglog n)*(V(&,) = V(&))-
We also have that
(n/loglog n)"*(H?(£,,) — H2(&))
= (n/loglog n)""*(H,(4,,,) = H(4,))(H.(40,0) + Ho(4,0))
+(n/loglog n)"*(H,(&,.0) = H(£o))(Ho(4,1) + H(&)))-



BOOTSTRAP OF U-QUANTILES 1815

So, from this, (3.10) and (3.16),

(3.25) (n/loglog n)V*(H2(¢L,,) — H2(L0.0))
' ~ 2p(n/loglog n)/*(H,(,,) — H(£y)).

We have that

(n/loglog n)"*(H,(¢,,.) = H(&))
= (n/loglog n)""*(H,( &) — H(£))
+(n/loglog n)"?(H,(&, + tn"Y/?) — H( &)
—H(& +tn™ V%) + H(&)))
+(n/loglog n)l/z(H( & +tn~V?%) — H(&)).
By an argument similar to those before,

(n/loglog n)l/z(Hn( gn,t) - H( gO))

(3.26) Y
=~ (n/loglog n)"/*(H,(&) — H(&) + H'(&)(&, — &))-

By the Bahadur-Kiefer representation for U-quantiles [see Theorem 8 in
Arcones (1992)], (3.26) goes to zero a.s.
We have that

(n'/?(H,(&,,,) —p) — tH'(&))(1 + t2) "
= 2 (H(4,,) — H(L, )1 +¢2) 7

+nl2(H,(&) —p)(1 + %)
(3.27) +n'?(H, (&, +tn™?) — H,(&,)

~H(g& +tn" V) + H(E)) (1 + %)

+n2(H(&, + tn~V2) + H(&,) — tn”V2H'(£,))(1 + %)

+t(H'(&) — H'(&) 1+,
which goes to 0 a.s., uniformly in |¢| < c(log n)/2. So we get that

n 1/2
Itlsc(sltalg%)n)l/2 (m)
X |1, (¢) + m*tH'(&)2 o7 °
X(V,(£) — V(&) + V(&) — V(&) =0 as.

(3.28)
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As to II,

(n/loglog n)"*(n/*(H,(&,,,) — p) — tH'(&))
= n(loglog n) V*(H,(&, + tn™V/%) — H,(&, + tn~1/%))
+ n(loglog n)~*/?
X(H,(& +tn™'/?) — H(&,) — H,(& +tn™V/%) + H(E,))
+ n(loglog n) "V*(H(&,) - p)
+ n(loglog n) "*(H(¢&, + tn™/2) — H(§&,) — tn™Y2H'(&,))
+(n/loglog n)'/*t(H'(&,) — H'(&)))
~ n(loglog n) ~"/*(H,( & +tn~1/?) —H(¢&,) —H,(& +tn"7?) +H(E,))
+(n/loglog n)Y?*tH" (&) (&, — &).
So,
1/2

sup  (n/loglog n)
[t|<c(log n)1/2

(320)  X|IL(8) = o7 2 (H,(&, + tn™ /%) — H,(&,)
—H,(& +tn'?) + H(E,))
FH" (&)t (H'(&)) o7 (Ho(&) - H(£&))| - 0 as.
From (3.28) and (3.29), (3.19) follows. O
THEOREM 5. Let h: S™ — R be a measurable function and let 0 < p < 1.
Suppose that there is a ¢, such that H(&) =p, H'(&) >0, of =

m? Var(g(X, &,)) < 0 and H" exists and is uniformly bounded in a neighbor-
hood of &,. Then there is a finite constant ¢ such that

lim supn'/4(loglog n) ~'/* sup |Pri{nl/2( & — ¢,) <t}
teR

n—ow

—Pr{n'/2(¢, - &) <t}| <c as.

ProoF. We apply Lemmas 3 and 4. Here, ¢ will denote a finite constant
which may vary from line to line. By the LIL for U-statistics [Serfling (1971)],

(3.30) limsup (n/loglog n)?|V,( &) — V(&) <c as.
and
(3.31) limsup (n/loglog n)"/?|H,( &) — H(&)l <c as.

n—ow
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By (3.2) and (3.20),
(3.32) limsup (n/loglog n)/?|V(&,) — V(&) <c as.

n—o®

so the result follows. O

The next proposition shows that the order in the last theorem is attainable
in some situations.

PROPOSITION 6. Let h: S™ — R be a measurable function and let 0 <p < 1.
Suppose that there is a &, such that H(&) =p, H'(&) >0, of =

m? Var(g(X, £,)) > 0 and H" exists and is uniformly bounded in a neighbor-
hood of ¢,. Assume also that there is a number B such that

nl/zEl(g(X, & + (loglog n/n)"? + tn=1/?)
—g(X, & + (loglog n/n)l/z))z] - B3¢,
for each t € R, and

nl/zE’(g(X, £,(loglog n/n)"? + tln_l/z)

—g(X, £ (loglog n/n)"/? + tzn'l/z))Z] - Bt — t,l,
for each t,, t, € R. Then with probability 1,
<n1/4(2loglogn)_l/z(Pr*{nl/z( &F — &) <t}
—Pr{n/%( &, — &) <t}):t e [R}

is relatively compact and its limit set is
{(mo-l'lﬁ¢>(a'l‘lH’(fo)t)fta(z) dz) : [m a?(z)dz < 1}.
0 teR “—»

ProoF. By Lemma 4 and (3.30)-(3.32),
n/4(2loglog n) /% sup |[(Pr*{n'/2( &F — &,) <t}
teR
—Pr{n'2(¢, — &) <t}) — o7'd(o7 " H'(&)t)n'/?
X(H,(&, +tn~'?) — H,(&,)
—H(& +tn"Y2) + H(E,))| =0 as.

It is easy (and quite tedious) to see that the method in the proof of Theorem 1
in Arcones (1994) and the estimations used in Lemma 4, give that, with
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probability 1,

{(n%74(210g10g n) " 07 (o7 H'(£)t)

X (H,,(EO +s(2loglog n/n)"? + tn‘l/z)
_Hn(fo + s(2loglog n/n)l/z)
_H( & + s(2loglog n/n)"? + tn—l/z)
+H( & + s(2loglog n/n)l/z))’
(n/2loglog n)"*(&, - &)): s, € R

is relatively compact and its limit set is

{[mBoi 0o 1 Ce0)e) [[a(2) de, (B (60) ).

(3.33)

,teR

— 00

f a?(z)dz + u? < 1}.
Taking a convenient composition in (3.33), the result follows. O
The last proposition applies to A(x,,..., x,,) = max(x,,..., x,,).

THEOREM 7. Let h: S™ — R be a measurable function and let 0 <p < 1.
Suppose that there is a &, such that H(&) =p, H'(&) >0, of =
m? Var(g(X, £,)) > 0 and H" exists and is uniformly bounded in a neighbor-
hood of &,. Suppose also that there is a nonnegative function Mx) and a
8, > 0 such that E[\2(X)] < « and

(3.34) lg(x,t) —g(x,s)l < Mx)lt —sl,
for all |t — &, |s — &y < 8,. Then there is finite constant ¢ such that
nl/2
lim sup ——— sup |Pr*{n1/2( £F — &) <t}
) teR

»» (loglog n
(335 "o Uosles

—Pr{nV%(&, - &) <t}| <c as.
PrOOF. By the argument in Lemma 3, it suffices to show that
sup n(loglog n) */?((P, — P)f, , |é(at) = O(1) as.,

teR
|slsM

where, as defined in the proof of Lemma 3,

foo.(%) =g(x, & + s(loglog n/n)"? + tn'1/2)

—g(x, & + s(loglog n/n)l/z)
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and a = H'({)to™!; ¢(at) is related to the coefficient of Z,(¢) in (3.6). By
symmetrization [see, e.g., Ledoux and Talagrand (1991), Lemma 6.6]

E| sup n(loglog n) "'/*(P, — P)f, , ,|é(at)
ey

sup (loglog n) /2
teR
lsl<M

<2E

n
Z & n,s,t(Xi)
i=1

¢<at>].

We have that

n

Z &; n,s,t(Xi)’d)(at)] - 0~

i=1

E[ sup (loglog n)_l/2

[¢|=2a " (log n)'/2

We also have that

n

Z & n,s,t(Xi) ‘d)(at)]

i=1

E sup (loglog n) ~*/?
2a~Y(loglog n)'/2|t|<2a " (log n)1/2

1/2

i &; n,s,t(Xi)H

< E[ sup (log n) _2(loglog n)
i=1

2a~(loglog n)'/2|t|<2a " Y(log n)1/2

< cn'/2(log n) “*(loglog n) ~'/2

1/2
X(E sup Ifn,s,t(X)Iz])

2a " log n)'/?|t|<2a~ L(log n)!/2
1/2

< cn/?(log n) “*(loglog n)~

x(E[lg(X, & + 3a~*(log n/n)""?) - g(X, £)I])

1/2

1/2

+en'/2(log n) “*(loglog n)~
x(E[lg(X, & + 3a~ (tog n/m)"*) ~£(X, £)*])" ~ 0

and that

! n
E[ sup (loglog n) %I ¥ & n,s,t(Xi)‘(ﬁ(at)]
[t|<2a~Y(loglog n)/2 i=1
< 2E[ sup (loglog n)_l/2
[t|<3a~1(loglog n/n)'/2

X

Eilgi(g(Xi’ §o+t) —8(X,, &)) ] = 0(1).
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So

sup n(loglog n) ""/*I(P, = P)f, , |(at)| = O(1).

teR
|slsM

Hence, by the Lemma 7.1 in Ledoux and Talagrand (1991), it suffices to show
that there is a finite constant ¢ such that

E

lim sup sup (loglog n)_l/2
n—ow teR
[sl<M

Let n; = 2/, Forn, <n < N1 by the argument in (3.5),
&; n,s, t(X)’d)(at)

Zs nst(X)‘qb(at) <c as.

i=1

sup (loglog n) —
teR
[sl<M

i=1

&; nj,s, t(X)’d)(at)

< sup (loglog nj)_l/
teR
|slsM
By the Lévy inequality and the Talagrand isoperimetric inequality [see, e.g.,
Ledoux and Talagrand (1991), Theorem 6.17],

Y Pr{ sup
j=1

n;<n<nj.

i=1

n

Z zn,st(X)

¢(at) = c(loglog nj)l/z}
i=1

j+1

Y & n,,s,t(Xi)’qb(at) > c(loglog nj)”z}

i=1

J=1 teR
<M

<2 Z Pr{ sup
s

s

<2

91-2j 4 2Pr{  max sup |f,, s, t(X)|¢(at)
<i<n; te

1
|s|<M

J

> 2(loglog nj)_l/z} + 2e'°1°gf).
We have that

Y Pr { max sup |fn ., t(X)|¢>(at) > 2(loglog nJ) }
j=1 1<L<n]|tl<M
s

< ¥ n;Pr{A(X) > enl/?} <
j=1
Therefore, the result follows. O

In general, the constant ¢ in the previous theorem is different from zero.
This follows from the fact that the a.s. order of the terms in Z, is
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n%(loglog n)~1/2, as is easy to see. Next, we give two examples of U-statis-
tics which satisfy (3.34).

Suppose that h(x;, x,) = x; + x,. Then g(x, t) = F(x —¢t). Soif F is a
Lipschitz function with Lipschitz constant A, then

E[Ig(X, t) —g(X, s)|2] < A%[s — t)%.

Suppose that A(x,, x,) = |x; — x,|" for some r > 0. Then g(x, t) = F(x +
t/7) — F(x — tY/7). So if F is a Lipschitz function with Lipschitz constant A,
then

Elg(x,t) —g(X, s)I?] < 4a2s¥/" — /7% < clt — s,

for s and ¢ close to &,.
Similarly to the a.s. case, we have the following bounds in probability:

THEOREM 8. Under the assumptions in Theorem 5,

n'/4 sup |Pr*{n/2(&F - ¢,) < t}
(3.36) teR
—Pr{n'/%(¢, - &) < t}] = Ope(1).

THEOREM 9. Under the assumptions in Theorem 7,

nl/? sup|Pr*{n1/2(§n* -¢,) < t}
(3.37) teR
—Pr{n'/2(&, — &) < t}| = Op(1).
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