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The classical problem of testing goodness-of-fit of a parametric family
is reconsidered. A new test for this problem is proposed and investigated.
The new test statistic is a combination of the smooth test statistic and
Schwarz’s selection rule. More precisely, as the sample size increases, an
increasing family of exponential models describing departures from the
null model is introduced and Schwarz’s selection rule is presented to se-
lect among them. Schwarz’s rule provides the “right” dimension given by
the data, while the smooth test in the “right” dimension finishes the job.
Theoretical properties of the selection rules are derived under null and al-
ternative hypotheses. They imply consistency of data driven smooth tests
for composite hypotheses at essentially any alternative.

1. Introduction. When testing for goodness-of-fit, alternative hypotheses
are often vague and an omnibus test is welcome. By an omnibus test, we mean
a test that is consistent against essentially all alternatives. In this paper we
propose and investigate an omnibus test for testing composite goodness-of-fit
hypotheses. To motivate our choice, let us start with some background.

Let X1; : : : ;Xn be i.i.d. random variables with density f�x�. First consider
the simple hypothesis Hx f�x� = f0�x�, where f0 is some specified density.
Among the most celebrated tests for H are the Kolmogorov–Smirnov test de-
fined in 1933 and the Cramér–von Mises test proposed in 1928 by Cramér
and corrected in 1936 by Smirnov. These test statistics are reported in most
textbooks and a lot of work has been done on their empirical and asymp-
totic powers, efficiencies and other properties. As a result, nowadays there
is strong evidence that, although the tests are omnibus, for moderate sam-
ple sizes only a few deviations from f0 can be detected by these tests with
substantial frequency. Simulation results confirming this observation can be
found in Quesenberry and Miller (1977), Locke and Spurrier (1978), Miller
and Quesenberry (1979), Eubank and LaRiccia (1992) and Kim (1992).

There are also very interesting asymptotic results on this phenomenon
due to Neuhaus (1976) and Milbrodt and Strasser (1990). See also Janssen
(1995) for some recent developments. Their results show how these tests dis-
tribute their asymptotic powers in the space of all alternatives. In particular,
they show that there are only very few directions of deviations from f0 for
which the tests are of reasonable asymptotic power. These directions corre-
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spond to very smooth departures from the null density. There is only one
direction with the highest asymptotic power that is possible and for “bad”
directions the asymptotic power is close to the significance level. A conclu-
sion is that these tests behave very much like a parametric test for a one-
dimensional alternative and not like a well-balanced test for higher dimen-
sional alternatives.

The above results caused renewed interest in Neyman’s (1937) smooth test
of fit and the whole class of smooth tests. For details see Rayner and Best
(1989, 1990), Milbrodt and Strasser (1990), Eubank and LaRiccia (1992) and
Kaigh (1992). While smooth tests are recommended, it turns out that a wrong
choice of the number of components in the test statistic may give a consider-
able loss of power [cf. Inglot, Kallenberg and Ledwina (1994) and Kallenberg
and Ledwina (1995a)]. Therefore, a good procedure for choosing k is very wel-
come. Some data driven versions of smooth tests have been recently proposed
by Bickel and Ritov (1992), Eubank and LaRiccia (1992), Eubank, Hart and
LaRiccia (1993), Ledwina (1994), Kallenberg and Ledwina (1995a) and Fan
(1996). Extensive simulations presented in Ledwina (1994) and Kallenberg
and Ledwina (1995a) show that the data driven Neyman’s test proposed in
Ledwina (1994) and extended in Kallenberg and Ledwina (1995a) compares
very well to classical tests and other competitors.

An important role in this data driven smooth test is played by Schwarz’s
selection rule. It provides the “right” dimension (or, equivalently, number of
components) for the smooth test. The selection rule may be seen as the first
step, followed by the finishing touch of applying the smooth test in the se-
lected dimension. Kallenberg and Ledwina (1995a) have shown that this test
is consistent at essentially any alternative. Moreover, for a very large set of al-
ternatives �fn� converging to the null density f0, Inglot and Ledwina (1996)
have shown that this data driven test is asymptotically as efficient as the
most powerful Neyman–Pearson test of f0 against fn. So, the test has quan-
titatively and qualitatively better properties than the Kolmogorov–Smirnov
and Cramér–von Mises tests, for example.

Next consider the composite null hypothesis

H0x f�x� ∈ �f�xyβ�; β ∈ B�;(1.1)

where B ⊂ Rq and �f�xyβ�; β ∈ B� is a given family of densities (for in-
stance, the family of normal or exponential densities). Again a lot of work has
been done to construct and investigate Kolmogorov–Smirnov and Cramér–
von Mises test statistics in this case. As is well known, when a nuisance
parameter β is present, the situation is more complicated than in the case
of testing a simple null hypothesis. The reason is that, in general, a natu-
ral counterpart of the empirical process, on which these statistics are based,
is no longer distribution free or even asymptotically distribution free. For an
exhaustive discussion of the problem and for proposed partial solutions, we re-
fer to Durbin (1973), Neuhaus (1979), Khmaladze (1982) and D’Agostino and
Stephens (1986). To solve the above problem two general solutions have been
proposed also. The first one, proposed by Khmaladze (1981), relies on modify-
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ing the natural empirical process with estimated parameters to get a martin-
gale converging weakly, under the null hypothesis, to a Wiener process. This
makes it possible to construct some counterparts of the classical Kolmogorov–
Smirnov and Cramér–von Mises statistics based on the new process. The sec-
ond solution, given by Burke and Gombay (1988), consists in taking a single
bootstrap sample to estimate β, which makes the Kolmogorov–Smirnov and
Cramér–von Mises statistics, based on the related empirical process, asymp-
totically distribution free. The two above-mentioned solutions, mathematically
very elegant, were proposed in principle to enable the use of classical solutions
in a more complicated situation when the nuisance parameter is present. How-
ever, it is hardly expected that the power behavior of such counterparts of the
classical tests will be more appealing than for the case of testing the sim-
ple hypothesis. In fact, the above-mentioned results of Neuhaus (1976) on
the Cramér–von Mises test hold for the general case when nuisance parame-
ters are present as well. Moreover, simulation studies by Angus (1982), Ascher
(1990) and Gan and Koehler (1990) show that more specialized tests like Gini’s
test for exponentiality or Shapiro-Wilk’s test for normality in most situations
dominate both Kolmogorov–Smirnov and Cramér–von Mises tests constructed
to verify those hypotheses. Therefore, as in the case of testing a simple hy-
pothesis, it seems to be promising to consider data driven smooth tests. This
is the subject of the present work.

To be more specific, we shall present now the basic version of the data
driven smooth test considered in this paper. A crucial step in the construction
of a smooth test is embedding the null density into a larger family of models.
We took the family defined as follows.

Let F�xyβ� be the distribution function of Xi when β applies. For k =
1;2; : : : ; d�n�; d�n� → ∞ as n→ ∞, define exponential families (w.r.t. θ) by
their density

gk�xy θ;β� = exp�θ ◦φ�F�xyβ�� − ψk�θ��f�xyβ�;(1.2)

where

θ = �θ1; : : : ; θk�′; φ = �φ1; : : : ; φk�′; ψk�θ� = log
∫ 1

0
exp�θ ◦φ�y��dy:

When there is no confusion, the dimension k is sometimes suppressed in the
notation. The Euclidean norm in Rk (or Rq) is denoted by � ·�, the transpose of
a matrix or vector by ′ and ◦ stands for the inner product in Rk. The functions
φ1; φ2; : : : and φ0 ≡ 1 form an orthonormal system in L2��0;1��. The functions
φ1; φ2; : : : are assumed to be bounded but not necessarily uniformly bounded.

Assume for a moment that β is known and consider gk�xy θ;β� for a fixed k.
In this situation, an asymptotically optimal test for testingH0 or, equivalently,
θ = 0, rejects the null hypothesis for large values of

Tk =
k∑
j=1

{
n−1/2

n∑
i=1

φj�F�Xiyβ��
}2

:
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This is the smooth test or, equivalently, the score test for θ = 0 against θ 6= 0
in the family (1.2). To select k, Ledwina (1994) proposed to apply Schwarz’s
rule. The idea behind this choice is clear. First we select a likely model, among
d�n�models given by (1.2), fitting the data at hand. Then we apply the optimal
test for the fitted model. To define the Schwarz rule (in case β is known) set

Yn�β� = �φ̄1�β�; : : : ; φ̄j�β��′ = n−1
n∑
i=1

(
φ1�F�Xiyβ��; : : : ; φj�F�Xiyβ��

)′

with j depending on the context. The likelihood of the independent random
variables X1; : : : ;Xn each having density (1.2) is given by

exp�n�θ ◦Yn�β� − ψk�θ���
n∏
i=1

f�Xiyβ�:

Schwarz’s (1978) Bayesian information criterion for choosing submodels cor-
responding to successive dimensions yields

S�β� = min�ky1 ≤ k ≤ d�n�; Lk�β� ≥ Lj�β�; j = 1; : : : ; d�n��;(1.3)

where

Lk�β� = n sup
θ∈Rk

�θ ◦Yn�β� − ψk�θ�� − 1
2k log n:

Although it is not mentioned in the notation, S�β� depends of course on the
upper bound d�n� of the dimensions of the exponential families under consid-
eration. So, the data driven smooth test statistic, when β is known, is TS�β�.
TS�β� shares the property of classical goodness-of-fit statistics being, under the
null hypothesis, distribution free for each fixed n.

While some authors [cf. Eubank, Hart and LaRiccia (1993) and references
mentioned there] include dimension 0 as a candidate dimension or even take
the selection rule itself as test statistic, others [e.g., Bickel and Ritov (1992)]
start from dimension 1. We prefer the latter approach as argued in Kallenberg
and Ledwina (1995a), Section 2.

Our extension of the above solution to the case when β is unknown is based
on a similar idea. For fixed k we use an asymptotically optimal test statistic
for testing H0 in the family gk�xy θ;β�. Such a statistic is Neyman’s C�α�
statistic or, equivalently, the score test for θ = 0 against θ 6= 0 in (1.2). This
test statistic is also called (generalized) smooth or Neyman’s smooth statistic.
For details see Javitz (1975) or Thomas and Pierce (1979). This statistic is
denoted throughout by Wk�β̃�, where β̃ is an estimator of β. As in the case of
testing a simple hypothesis, the choice of k is crucial for the power of Wk�β̃�.
This is clearly illustrated in Kallenberg and Ledwina (1997). Therefore, a
careful selection of k is very important. In this paper we extend Schwarz’s
selection rule S�β� to the present case by considering

S = S�β̃�:(1.4)

In many cases we take as estimator of β the maximum likelihood estimator
β̂ of β under θ = 0, that is, the maximum likelihood estimator of β based on
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∏n
i=1 f�xiyβ�. Some other versions of the selection rule, which are easier to

calculate, are discussed as well. We show, under mild regularity conditions,
that under the null hypothesis S�β̃� selects k = 1 with probability tending to
1 as n→∞.

The basic version of the data driven smooth test considered in this paper is
WS�β̂��β̂�, denoted for short byWS�β̂�. By the above, the test statisticWS�β̂� has
as asymptotic null distribution a central chi-square distribution with 1 degree
of freedom. So, similarly to the development by Khmaladze (1981, 1993) and
Burke and Gombay (1988), the limiting distribution of the test statistic is the
same for a large class of null distributions F�xyβ�. However, contrary to their
approach, much simpler tools suffice to get the result. Furthermore, while
Khmaladze (1981, 1993) and Burke and Gombay (1988) restrict attention to
asymptotically efficient estimators of β, we provide also a version of the score
statistic and selection rule related to a

√
n-consistent estimator of β. Moreover,

we show that rejecting H0 for large values of WS�β̂� provides a test procedure
which is consistent at essentially any alternative. Similar results are proved
for some modified selection rules and the corresponding data driven tests. The
main ingredients for deriving the asymptotic null distribution and for proving
consistency are properties of the selection rule S�β̃� and its modifications.
These results are of independent interest.

The main theme of this paper is to prove that the proposed tests have a
simple asymptotic distribution under the null hypothesis (chi-square-one) and
good power properties (consistency). As a counterpart it is interesting to check
the validity of the proposed construction for finite sample sizes. Therefore, the
method has been applied in Kallenberg and Ledwina (1995c) to testing expo-
nentiality and normality. From the extensive simulation study reported in that
paper it follows that the data driven smooth tests, in contrast to Kolmogorov–
Smirnov and Cramér–von Mises tests, compare well for a wide range of alter-
natives with other, more specialized tests, such as Gini’s test for exponentiality
and Shapiro–Wilk’s test for normality. Finally, it is worthwhile to emphasize
that the solution presented here is based on general likelihood methods and
hence can be extended to a wide class of other problems both univariate and
multivariate. On the other hand, the solution is naturally related to sieve
methods and can be extended to some other nonparametric problems as well.

The paper is organized as follows. In Section 2 the selection rules are for-
mally defined, the assumptions are stated and the asymptotic null distribu-
tion and behavior of selection rules under alternatives is discussed. Section
3 presents smooth tests for composite hypotheses. In Section 4 the selection
rules and the smooth test statistics are combined to give data driven smooth
tests for composite hypotheses. Consistency at essentially any alternative is
proved. The Appendix is mainly devoted to the proof of Theorem 2.1 and The-
orem 3.1. This involves new results on exponential families with dimension
growing with n and may be of independent interest.

Except for the basic questions addressed in the present paper, many other
aspects may be interesting from an applicability point of view. We conclude
this section by discussing some of them.
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The first question concerns the choice of the orthonormal system on which
the smooth test is based. Neyman’s (1937) smooth test is based on the or-
thonormal Legendre polynomials. Typical statements for choosing the ortho-
normal system are “Neyman’s test would have substantially greater power
than the chi-squared test for smooth alternatives” (Barton, 1985) and “to de-
tect alternatives of particular interest, an orthonormal basis should be selected
that gives a compact representation of those alternatives” [Rayner and Best
(1986, 1990)]. In Bogdan (1995), data driven versions of Pearson’s chi-square
test for uniformity are investigated and in Bogdan and Ledwina (1996) in-
creasing log-spline families are studied. Such families have been extensively
exploited in recent years in the context of nonparametric density estimation
[cf., e.g., Stone (1990) and Barron and Sheu (1991)]. In Bogdan and Ledwina
(1996) it is shown that the theoretical results of Kallenberg and Ledwina
(1995a) can be extended to cover log-spline models. However, for moderate
sample sizes there is no substantial gain of empirical power in comparison
with the much simpler data driven Neyman’s test based on the orthonormal
Legendre polynomials. This agrees with our experience that the sensitivity
w.r.t. the number of components k is much larger than the sensitivity w.r.t
the (commonly used) orthonormal systems. On the one hand, as a rule, the
orthonormal systems are complete and hence the systems as a whole are not
really different, implying that the “ordering” within the system is the most
important feature. On the other hand, a change in the ordering of a given
orthonormal system may be considered as resulting in a “new” orthonormal
system. So, the choice of the system and the ordering are intimately related.
In this paper the interesting question of the (possibly data driven) choice of
the orthonormal system is not further addressed, except for the discussion on
the ordering within a chosen orthonormal system, which is given below.

Well-known examples of the orthonormal functions φ0; φ1; φ2; : : : are the
orthonormal Legendre polynomials on [0,1] and the cosine system, given by
φj�x� =

√
2 cos�jπx�. To these two systems we will refer explicitly in the next

sections.
When referring to the orthonormal Legendre polynomials, it will be im-

plicitly assumed that φj is of degree j. One might ask what happens if the
“ordering” of a system is mixed up, for instance, for the Legendre polynomials
in a way that φ1 is of degree 3 and not 1. The question on “ordering” is also
addressed in Eubank, Hart, Simpson and Stefanski (1995), Section 3. In fact,
it means that one considers another orthonormal system. For the example of
the Legendre polynomials, the “new” orthonormal system then starts with the
Legendre polynomial of degree 3 instead of degree 1. It should be noted that
due to the penalty in the selection rule, the ordering reflects what kind of
deviations from the null hypothesis are of greatest concern.

As a rule, the results of this paper will go through for such mixings of the
orthonormal system as well. One simply has to verify the conditions for the
“new” system and except for extreme mixings (e.g., strongly dependent on n)
the conditions will be satisfied and the results also hold for the “new” system.
However, in the finite sample case the power may change.
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When applying the orthonormal Legendre polynomials in testing the sim-
ple goodness-of-fit hypothesis of uniformity on [0,1], it seems natural to start
with degree 1, corresponding to testing a shift of the mean. Presumably, this
is of prime interest. If there is no significant difference in mean, with degree
2 one investigates the next interesting property: the variance. If there is also
no significant difference in variance, with degree 3 the skewness is tested and
so on. In this way well understood properties of the distribution are system-
atically investigated in a natural ordering of interest. Moreover, if one starts
with the Legendre polynomial with degree 3, being

√
7�20x3−30x2+12x−1�,

one starts testing a mixture of difference in mean, variance and skewness.
Therefore, in the simple hypothesis case, the “degree ordering” starting with
degree 1 seems (when aiming for an omnibus test) the most appropriate.

In the composite hypothesis case when testing, for instance, normality, one
may propose to start with degree 3 instead of 1, because of location and scale
invariance. However, it should be noted that in the composite hypothesis case
we are not testing a shift in mean of Xi, but of F�Xiyβ�, when dealing with
degree 1 and similarly for degree 2. Nevertheless, if we consider a symmetric
alternative, there will be no shift in the mean of F�Xiyβ�. Therefore, in simu-
lations we have experimented with selection starting at dimension 2. Indeed,
for symmetric alternatives a higher power is obtained, but for skew alterna-
tives some power is lost. Since the aim is to get a well performing omnibus
test, we do not recommend starting at dimension 2 or 3.

One may also ask whether the problem of choosing the number of compo-
nents k is replaced by the choice of d�n�. However, in contrast to the power of
Wk, the power of WS does not change for larger d�n�. For empirical evidence
of this and a discussion of some other aspects, see Kallenberg and Ledwina
(1997).

2. Selection rules.

2.1. Definitions, assumptions, notation. In this section we set out some
of the notation, definitions and conditions to be used in subsequent sections.
First we present an alternative to Schwarz’s rule (1.3) for choosing k that we
will also investigate.

Schwarz’s rule S�β� as given in (1.3) compares (penalized) maximized like-
lihoods. It turns out (cf. also Remark 2.5) that the maximized likelihood (which
is in fact the likelihood ratio statistic for testing Hx θ = 0 against Ax θ 6= 0
when β is known) is locally equivalent to 1

2n�Yn�β��2. The following modifi-
cation of Schwarz’s rule is based on this fact and is easier to calculate:

S2 = S2�β̃� = min
{
kx 1 ≤ k ≤ d�n�; n�Yn�β̃��2�k� − k log n

≥ n�Yn�β̃��2�j� − j log n; j = 1; : : : ; d�n�
}
;

(2.1)

where the index of the norm denotes the dimension.
Denote by Pβ that Xi has density f�xyβ� and by Eβ and varβ the corre-

sponding expected value and variance, respectively. For the family �f�xyβ�x β∈
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B� we will need the following regularity conditions. These conditions should
hold on an open subset B0 of B. (The “true” value of β is supposed to lie in B0.)

(R1) For t; u = 1; : : : ; q; �∂/∂βt�f�xyβ� and �∂2/∂βt∂βu�f�xyβ� exist almost
everywhere and are such that for each β0 ∈ B0 uniformly in a neighborhood
of β0,

��∂/∂βt�f�xyβ�� ≤Ht�x�
and

��∂2/∂βt∂βu�f�xyβ�� ≤ Gtu�x�;
where

∫

R

Ht�x�dx <∞ and
∫

R

Gtu�x�dx <∞:

(R2) For t; u = 1; : : : ; q; �∂/∂βt� log f�xyβ� and �∂2/∂βt∂βu� log f�xyβ� exist
almost everywhere and are such that the Fisher information matrix,

Iββ = Eβ

{[
∂

∂β
log f�X1yβ�

][
∂

∂β
log f�X1yβ�

]′}
;

is finite, positive definite and continuous and, as δ→ 0, we have

Eβ

{
sup

�hx �h�≤δ�

∥∥∥∥
∂2

∂β∂β′
log f�X1yβ+ h� −

∂2

∂β∂β′
log f�X1yβ�

∥∥∥∥
}
→ 0:

(R3) For each β0 ∈ B0 there exists η = η�β0� > 0 with

sup
�β−β0�<η

sup
x∈R

∣∣∣∣
∂2

∂βt∂βu
F�xyβ�

∣∣∣∣ <∞; t; u = 1; : : : ; q

and

sup
x∈R

∣∣∣∣
∂

∂βt
F�xyβ�

∣∣∣∣
β=β0

<∞; t = 1; : : : ; q:

(R4) There exist positive constants c1, c2, ρ1 and n1 such that the estimator
β̃ of β ∈ B0 satisfies

Pβ�
√
n�β̃− β� ≥ r� ≤ c1 exp�−c2r

2�

for all r = ρ
√

log n with 0 < ρ ≤ ρ1 and n ≥ n1.

The next conditions concern the orthonormal system �φj�∞j=0.

(S1) sup
x∈�0;1�

� φ′j�x� �≤ c3j
m1

for each j = 1;2; : : : ; d�n� and some c3 > 0; m1 > 0.

(S2) sup
x∈�0;1�

�φ′′j�x�� ≤ c4j
m2

for each j = 1;2; : : : ; d�n� and some c4 > 0; m2 > 0.
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Finally we have conditions on the dimension d�n� of the exponential family.

(D1)
�d�n�Vd�n��2n−1 log n→ 0 as n→∞;

where Vk = max
1≤j≤k

sup
x∈�0;1�

� φj�x� � :

(D2) d�n� = o��n/ log n��2m�−1� as n→∞ where m = max�m1;m2�:

(D3) d�n� = o�nc� as n→∞
for some c < c2b

−2 if ρ1b ≥ 1, and with c = c2ρ
2
1, otherwise, where c2 and ρ1

are given by (R4) and

b =
{ q∑
t=1

varβ
∂

∂βt
log f�Xyβ�

}1/2

:

It should be noted that some of the lemmas and theorems require only a subset
of these assumptions.

If we take �φj� to be the orthonormal Legendre polynomials on �0;1� we
get [cf. Sansone (1959), page 190] Vk = �2k + 1�1/2 and hence (D1) reduces
in this case to �d�n��3n−1 log n → 0 as n → ∞. Moreover, (S1) and (S2) are
fulfilled with [cf. Sansone (1959) page 251] m1 = 5/2 and m2 = 9/2.

If �φj� is the cosine system we have Vk =
√

2 and hence (D1) reduces
in this case to �d�n��2n−1 log n → 0 as n → ∞. Moreover, (S1) and (S2) are
fulfilled with m1 = 1 and m2 = 2.

If the family �f�xyβ�x β ∈ B� is a location-scale family �σ−1f0�σ−1�x −
µ��x µ ∈ R; σ > 0�, say, and if f0 is continuously differentiable with x2f′0�x�
and xf0�x� bounded, then (R3) holds. Consequently, (R3) holds for the normal
family. Similarly, it can be shown that (R3) holds for many other well-known
families as, for instance, the scale family of exponential distributions.

As a rule condition (R4) can be checked by application of standard mod-
erate deviation theory. A particularly important example is for β̃ =
�X̄; �n−1∑n

i=1�Xi − X̄�2�1/2�′, which is often used in the location-scale case.
We study this case in Appendix A.3 and show, for example, that in the nor-
mal case (R4) holds and (D4) reduces to d�n� = o�nc� for some c < 1

6 . Other
estimators based on sample moments can be treated in a similar way.

Another important example is when �Pβ� is an exponential family with
β the natural parameter in this family and β̃ = β̂, the maximum likelihood
estimator. Condition (R4) then easily follows from Example 2.1 (continued) on
page 502 of Kallenberg (1983).

For M-estimators, including sample quantiles, (R4) follows from the results
in Jurečková, Kallenberg and Veraverbeke (1988). For L-statistics we refer to
Section 5 of Inglot, Kallenberg and Ledwina (1992), where also many other
references can be found.

Condition (R4) can also be checked by an application of Berry–Esséen the-
orems. Suppose that for some c∗ > 0,

sup
x

∣∣Pβ
(√
n�β̃− β� ≤ x

)
−8�x�

∣∣ ≤ c∗n−1/2
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with 8 the standard normal distribution function. Then we have for all r =
ρ
√

log n with 0 < ρ ≤ 1,

Pβ
(√
n�β̃− β� ≥ r

)
≤ 8�−r� + c∗n−1/2 ≤

{ 1
2 + c∗

}
exp

(
− 1

2r
2)

and hence (R4) holds with c1 = � 1
2 + c∗�; c2 = 1

2 and ρ1 = 1.
If β̃ is of the form T�F̂n� with T some functional and F̂n the empirical

distribution function, (R4) may occasionally be checked by application of the
Dvoretzky–Kiefer–Wolfowitz (DKW) inequality. Suppose that β̃−β = T�F̂n�−
T�Fβ� satisfies �T�F̂n�−T�Fβ�� ≤ c̃�F̂n−Fβ�∞ for some c̃ > 0, where �·�∞ is
the sup-norm and Fβ�x� = F�xyβ�. Then, by the DKW inequality [cf. Massart
(1990)], for all r,

Pβ
(√
n�β̃− β� ≥ r

)
≤ Pβ

(√
n�F̂n −Fβ�∞ ≥ r/c̃

)
≤ 2 exp�−2r2/c̃2�

and hence (R4) holds for any ρ1, with c1 = 2 and c2 = 2/c̃2.

2.2. Null distribution of selection rules. This subsection gives the asymp-
totic null distribution of the selection rules. It will be tacitly assumed that the
“true” parameter β belongs to B0 [cf. (R3), (R4)]. The probability measure Pβ
denotes that Xi has density f�xyβ�.

The first theorem states how close Yn�β̃� is to Yn�β�.

Theorem 2.1. Assume (R1)–(R4), (S1), (S2), (D2), (D3). Then there exists
ε > 0 such that

lim
n→∞

d�n�∑
k=2

Pβ
(
�Yn�β̃� −Yn�β�� ≥ �1− ε���k− 1�n−1 log n�1/2

)
= 0:(2.2)

The proof of Theorem 2.1 is given in the Appendix.
The next theorem shows that under H0, Schwarz’s selection rule and its

modification asymptotically concentrate on dimension 1. For empirical evi-
dence of this, see Kallenberg and Ledwina (1997).

Theorem 2.2. Assume (R1)–(R4), (S1), (S2), (D1), (D2), (D3); then

lim
n→∞

Pβ�S�β̃� ≥ 2� = 0;(2.3)

lim
n→∞

Pβ�S2�β̃� ≥ 2� = 0:(2.4)

Before proving Theorem 2.2, we present the following lemma, which is given
in Inglot and Ledwina (1996) (cf. Theorem 7.4). Let uk = k1/2Vk.

Lemma 2.3. For every k ≥ 1; 0 < ε < min�1; 2
3u

2
k� and a ≤ �2−ε�ε2/�16u2

k�
we have {

x ∈ Rkx sup
θ∈Rk
�θ ◦ x− ψk�θ�� ≥ a

}
⊂
{
xx �x�2 ≥ �2− ε�a

}
:
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Proof of Theorem 2.2. Take any k ∈ �2; : : : ; d�n��. Let ak = �k − 1� ×
n−1 log n: Then we get

�S�β̃� = k� ⊂
{

sup
θ∈Rk
�θ ◦Yn�β̃� − ψk�θ�� ≥ 1

2ak

}
:

In view of (D1), we have for any 0 < ε < 1, 2 ≤ k ≤ d�n� and sufficiently
large n,

1
2ak ≤ �2− ε�ε2/�16u2

k�
and hence by Lemma 2.3,

�S�β̃� = k� ⊂
{
�Yn�β̃�� ≥ ��1− 1

2ε�ak�1/2
}
:(2.5)

By Theorem 2.1 there exists 0 < ε0 < 2−
√

2 such that

lim
n→∞

d�n�∑
k=2

Pβ
(
�Yn�β̃� −Yn�β�� ≥ �1− ε0�a1/2

k

)
= 0:(2.6)

Take 0 < ε < 1 in (2.5) such that �1 − 1
2ε�1/2 = 1 − 1

2ε0. Combining (2.5) and
(2.6) then yields

Pβ�S�β̃� ≥ 2� =
d�n�∑
k=2

Pβ�S�β̃� = k�

≤
d�n�∑
k=2

Pβ
(
�Yn�β̃�� ≥

(
1− 1

2ε0
)
a

1/2
k

)

≤
d�n�∑
k=2

[
Pβ
(
�Yn�β�� ≥ 1

2 ε0a
1/2
k

)

+Pβ
(
�Yn�β̃� −Yn�β�� ≥ �1− ε0�a1/2

k

)]

=
d�n�∑
k=2

Pβ
(
�Yn�β�� ≥ 1

2ε0a
1/2
k

)
+ o�1�:

(2.7)

Next we apply formula (2) of Prohorov (1973) with, in the notation of that
paper, ρ = 1

2 ε0�nak�1/2; m = k; λ = 1; a = 1
2 ε0k

1/2a
1/2
k Vk, yielding [cf. also

the proof of Theorem 3.2 in Kallenberg and Ledwina (1995a)]

d�n�∑
k=2

Pβ
(
�Yn�β�� ≥ 1

2ε0a
1/2
k

)
≤ c5

d�n�∑
k=2

exp
{
− 1

9 ε
2
0�k− 1� log n

}
(2.8)

for some positive constant c5. The right-hand side of (2.8) tends to 0 as n→∞.
This completes the proof of (2.3). Since

Pβ�S2�β̃� ≥ 2� ≤
d�n�∑
k=2

Pβ
(
�Yn�β̃��2 ≥ ak

)
;
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it follows immediately from the previous proof [cf. (2.6), (2.7) and (2.8)] that
(2.4) holds as well. 2

Remark 2.4. Since
∫ 1

0 φ
2
k�x�dx = 1, we have Vk ≥ 1 and hence 2

3u
2
k ≥

2
3k ≥ 1 if k ≥ 2, and thus min�1; 2

3u
2
k� = 1 for k ≥ 2 in Lemma 2.3.

Remark 2.5. As a counterpart of Lemma 2.3 one may also prove that for
every k ≥ 1, 0 < ε ≤ 1 and a ≤ ε2�2+ ε�−3u−2

k it holds that
{
x ∈ Rkx sup

θ∈Rk
�θ ◦ x− ψk�θ�� ≥ a

}
⊃
{
xx �x�2 ≥ �2+ ε�a

}
y

compare Inglot and Ledwina (1996), Theorem 7.3. This shows that the likeli-
hood ratio statistic for testing Hx θ = 0 against Ax θ 6= 0 in the model (1.2)
with β known; that is,

n sup
θ∈Rk

[
θ ◦Yn�β� − ψk�θ�

]
;

is locally equivalent to 1
2n�Yn�β��2, not only in fixed dimension (as is well

known), but also as the dimension tends to infinity with n.

2.3. Selection rules under alternatives. Here we consider the behavior of
the selection rules under alternatives. So, X1;X2; : : : are i.i.d. r.v.’s each dis-
tributed according to P. Under alternatives, the meaning of β is at first sight
less clear. We only have an estimator β̃. Under the alternative distribution P,
β̃ will as a rule converge to some element of B0. This element will then be
called β [cf. (2.10)]. So, the “artificial” parameter β under P is determined by
the estimator and the alternative distribution P. For instance, if we estimate
a location parameter by the sample mean, under the alternative P the pa-
rameter β will be the expectation of Xi under P. However, if we estimate the
location parameter by the sample median, the parameter β should be read as
the median of Xi under P.

We shall consider P to be an alternative to the family �f�xyβ�x β ∈ B� if
there exists (for the β associated with β̃ and P) K�β� such that

EPφ1�F�Xyβ�� = · · · = EPφK�β�−1�F�Xyβ�� = 0;

EPφK�β��F�Xyβ�� 6= 0:
(2.9)

Note that if (2.9) does not hold, EPφj�F�Xyβ�� = 0 for all j and therefore
essentially any alternative of interest satisfies (2.9).

While underH0 the selection rules concentrate on dimension 1 (cf. Theorem
2.2), under alternatives, higher dimensions also play a role.

Theorem 2.6. Assume that (2.9) holds and let β be associated with β̃ and
P in the sense that

�β̃− β� →P 0:(2.10)
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Further assume that there exists η > 0 such that

sup
�γ−β�<η

sup
x∈R

∣∣∣∣
∂

∂γt
F�xyγ�

∣∣∣∣ <∞; t = 1; : : : ; q

and that

sup
x∈�0;1�

∣∣φ′j�x�
∣∣ <∞; j = 1; : : : ;K�β�:

Then

lim
n→∞

P�S�β̃� ≥K�β�� = 1;

lim
n→∞

P�S2�β̃� ≥K�β�� = 1:

Proof. Consider a fixed k ∈ �1; : : : ;K�β��. Since

φ̄k�β̃� − φ̄k�β� = O��β̃− β��
and, by the law of large numbers,

φ̄k�β� →P EPφk�F�Xyβ��;
it follows that

φ̄k�β̃� →P EPφk�F�Xyβ��:(2.11)

By continuity of the function

x→ sup
θ∈Rk
�θ ◦ x− ψ�θ��

at x = 0, it follows that for each k ∈ �1; : : : ;K�β� − 1�,
sup
θ∈Rk
�θ ◦Yn�β̃� − ψk�θ�� →P 0:(2.12)

Since

d

dt
ψK�β��0; : : : ;0; t�

∣∣∣
t=0
= EβφK�β��F�Xyβ�� = 0;

it holds that for every a 6= 0,

sup
t∈R
�ta− ψK�β��0; : : : ;0; t�� > 0:

Further we have

sup
θ∈RK�β�

�θ ◦Yn�β̃� − ψK�β��θ�� ≥ sup
t∈R
�tφ̄K�β��β̃� − ψK�β��0; : : : ;0; t��:(2.13)

By the continuity of the function

x→ sup
t∈R
�tx− ψK�β��0; : : : ;0; t��
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we therefore get

sup
t∈R

[
tφ̄K�β��β̃� − ψK�β��0; : : : ;0; t�

]

→P sup
t∈R

[
tEPφK�β��F�Xyβ�� − ψK�β��0; : : : ;0; t�

]
> 0:

(2.14)

Combination of (2.12), (2.13) and (2.14) yields, for each k ∈ �1; : : : ;K�β� − 1�,

P�S�β̃� = k� ≤ P
(

sup
θ∈Rk
�θ ◦Yn�β̃� − ψk�θ�� ≥ − 1

2�K�β� − k�n−1 log n

+ sup
θ∈RK�β�

�θ ◦Yn�β̃� − ψK�β��θ��
)
→ 0

as n→∞ and therefore

P�S�β̃� ≥K�β�� → 1:

Since for k ∈ �1; : : : ;K�β� − 1�,
�Yn�β̃��2�k�→P 0

and

�Yn�β̃��2�K�β��→P

{
EPφK�β��F�Xyβ��

}2
> 0;

it easily follows that

P�S2�β̃� ≥K�β�� → 1: 2

For illustration of Theorem 2.6 by Monte Carlo results we refer to Kallenberg
and Ledwina (1997). Indeed, the behavior under alternatives is quite different
from that under H0 with less concentration on dimension 1.

Remark 2.7. The natural setting for d�n� is that d�n� → ∞ as n → ∞.
Nevertheless, all results in the paper also hold if d�n� is bounded, provided
that, in case of results on alternatives, lim infn→∞ d�n� ≥K�β�.

3. Smooth tests for composite hypotheses. Our test statistic is a com-
bination of the selection rule and the score test within the family (1.2). Having
introduced the selection rule in Section 2, we now present the score test. The
most popular version of the score test statistic for testing θ = 0 against θ 6= 0
in (1.2) is defined as follows. Let I be the k×k identity matrix. Further define

Iβ =
{
−Eβ

∂

∂βt
φj�F�Xyβ��

}

t=1;:::;q; j=1;:::;k
;

Iββ =
{
−Eβ

∂2

∂βt∂βu
log f�Xyβ�

}

t=1;:::;q; u=1;:::;q
;

R�β� = I′β�Iββ − IβI′β�−1Iβ:

(3.1)
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Applying β̂, the maximum likelihood estimator of β under Hx θ = 0, the score
statistic is given by

Wk = nY′n�β̂��I+R�β̂��Yn�β̂�:(3.2)

A more general version, which gives more flexibility in choosing an estima-
tor of β, is defined in the following way. Let β̃ be a

√
n-consistent estimator

of β (we will assume this condition for β̃ in the rest of the paper), then the
score statistic is given by [cf. Cox and Hinkley (1974), page 324, Thomas and
Pierce (1979), page 443]

Wk�β̃� = nỸ′n�β̃��I+R�β̃��Ỹn�β̃�(3.3)

with

Ỹn�β� = Yn�β� − I′βI−1
ββCn�β�;(3.4)

where

Cn�β� = n−1
n∑
i=1

(
∂

∂β1
log f�Xiyβ�; : : : ;

∂

∂βq
log f�Xiyβ�

)′
:(3.5)

Note that Cn�β̂� = 0 and indeed in that case the extra term vanishes; compare
(3.2).

In the case that the φj’s are polynomials, Thomas and Pierce (1979) have
formulated a set of assumptions which guarantee that Wk, given by (3.2), has
an asymptotic chi-square distribution. A general theory on the asymptotic
distribution of score test statistics when the maximum likelihood estimator is
used is presented in Sen and Singer (1993), Chapter 5. The assumptions they
impose are standard Cramér-type regularity conditions, sufficient for asymp-
totic normality of maximum likelihood estimators, as developed by Le Cam
(1956) and Hájek (1972). Checking those assumptions for the family (1.2),
conditions can be formulated sufficient to ensure that Wk, given in (3.2), is
asymptotically chi-squared distributed. Hall and Mathiason (1990) introduced
an extension of the score statistic which they have called Neyman–Rao, or ef-
fective score statistic. The modification allows both

√
n-consistent estimators

of β and a nonsingular consistent estimate of R�β�. They also give a set of
assumptions sufficient to derive the asymptotic distribution of their statistic.

The asymptotic distribution of Wk�β̃� with φj’s being the Legendre poly-
nomials has been considered in Javitz (1975). The general case is treated in
Theorem 3.1. Its proof is given in the Appendix. By χ2

k we denote a r.v. with a
central chi-square distribution with k degrees of freedom.

Theorem 3.1. Assume (R1)–(R3) and (S1), (S2). Then

Wk�β̃� →Pβ
χ2
k:

Remark 3.2. Theorem 3.1 shows thatWk�β̃� is asymptotically distribution
free, in the sense that the limiting distribution of it under H0 does not depend
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in any way on F and β. For location-scale families also the finite sample null
distribution of Wk does not depend on β (cf. Section 4).

Remark 3.3. It is not always obvious that the smooth test statistic for
the composite hypothesis has a chi-square limiting distribution, even in the
location-scale case. This is shown by Boulerice and Ducharme (1995) when
considering smooth test statistics proposed by Rayner and Best (1986). Theo-
rem 3.1 shows that Wk�β̃� does not suffer from this problem.

4. Data driven smooth tests for composite hypotheses. In view of
the good performance of the data driven smooth test in the simple hypothesis
case, it is natural to investigate data driven versions of the smooth tests for
composite hypotheses, being far more important in applications.

The data driven smooth test statistics for testing the composite hypothesis
H0 are given by

WS�β̃��β̃�; WS2�β̃��β̃�(4.1)

with Wk�β̃� given in (3.3), S�β̃� in (1.4), (1.3) and S2�β̃� given in (2.1). The
null hypothesis is rejected for large values of the test statistic.

The asymptotic null distribution of the test statistics is given in the follow-
ing theorem.

Theorem 4.1. Under the conditions of Theorem 2.2 we have

WS�β̃��β̃� →Pβ
χ2

1; WS2�β̃��β̃� →Pβ
χ2

1:

Proof. Since for T = S�β̃� or S2�β̃�,
Pβ�WT�β̃� ≤ x� = Pβ�W1�β̃� ≤ x� −Pβ�W1�β̃� ≤ x; T ≥ 2�

+Pβ�WT�β̃� ≤ x; T ≥ 2�
and, by Theorem 3.1,

W1�β̃� →Pβ
χ2

1;

the result follows immediately from Theorem 2.2. 2

Note that WS�β̃��β̃� and WS2�β̃��β̃� are asymptotically distribution free, in
the sense that the limiting null distribution neither depends on F nor on β.
For location-scale families, the finite sample null-distribution does not depend
on β (cf. the end of this section).

Although the selection rules under H0 concentrate on dimension 1, the
implied chi-square distribution with one degree of freedom does not work very
well as an approximation to establish accurate critical values [cf. Kallenberg
and Ledwina (1997)]. The same phenomenon occurs in the simple hypothesis
case. An accurate approximation when testing a simple hypothesis is given in
Kallenberg and Ledwina (1995b). A similar approach can be proposed for the
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composite null hypothesis, yielding a simple and accurate approximation of the
critical values. For example, let �f�xyβ�x β ∈ B� be a location-scale family and
let β̂ be the maximum likelihood estimator of β in this family. Under classical
regularity conditions we have under H0 that

√
n�φ̄1�β̂�; φ̄2�β̂�� converges to a

two-dimensional normal distribution with correlation coefficient r, say. Under
H0; Pβ�S ≥ 3� and Pβ�W2 ≤ x; S = 2� are negligible. The most important
part of �S = 1� is that dimension 1 “beats” dimension 2 which is approximately
equal to �n�φ̄2�β̂��2 ≤ log n�. Hence [cf. (1.4.18) on page 25 of Bickel and
Doksum (1977)],

Pβ�WS ≤ x� ≈ Pβ
(
W1 ≤ x; n�φ̄2�β̂��2 ≤ log n

)

≈ Pr
({√

1− r2U1 + rU2
}2 ≤ x; U2

2 ≤ v log n
)
;

where U1 and U2 are independent and N�0;1�-distributed and v−1 equals the
limiting variance of

√
nφ̄2�β̂�. An even more simple approximation in terms

of the standard normal distribution function is given by

Pβ�WS ≤ x� ≈ 28�√x� − 1− 2
[
1−8

{
�v log n�1/2

}][
8�b�x�� −8�a�x��

]

with

b�x� =
[√
x− r

2

{√
v log n+

√
2 log n

}]/√
1− r2;

a�x� =
[
−√x− r

2

{√
v log n+

√
2 log n

}]/√
1− r2:

For more details we refer to Kallenberg and Ledwina (1997).
Before proving consistency we consider the distribution of the test statistics

under alternatives. First we take as estimator β̂, the maximum likelihood
estimator of β under H0.

Theorem 4.2. Under the conditions of Theorem 2.6 we have

WS�β̂�→P ∞; WS2�β̂�→P ∞:

Proof. Since R�β� is nonnegative definite, we have

Wk ≥ n�Yn�β̂��2(4.2)

and hence for any k ≥K�β�,

Wk ≥ n�φ̄K�β��β̂��2:(4.3)

Therefore, for T = S�β̂� or S2�β̂� and for any x ∈ R,

P�WT ≤ x� = P�WT ≤ x; T ≥K�β�� +P�WT ≤ x; T ≤K�β� − 1�
≤ P�n�φ̄K�β��β̂��2 ≤ x� +P�T ≤K�β� − 1�:
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In view of (2.11) with β̃ = β̂, we have

φ̄K�β��β̂� →P EPφK�β��F�Xyβ�� 6= 0:(4.4)

By Theorem 2.6 it holds that

P�T ≤K�β� − 1� → 0

and hence, for any x ∈ R,

lim
n→∞

P�WT ≤ x� = 0: 2

A combination of Theorems 4.1 and 4.2 yields Theorem 4.3.

Theorem 4.3. Under the conditions of Theorems 4.1 and 4.2, the tests
based on WS�β̂� and WS2�β̂� are consistent against any alternative of the form
(2.9), that is, against essentially any alternative of interest.

Corollary 4.4. For testing normality or exponentiality, the test based on
WS�β̂� with �φj� the orthonormal Legendre polynomials on �0;1� is consistent
against any alternative of the form (2.9) with finite second moment if d�n� =
o��n/ log n�1/9�.

The same result holds if �φj� is the cosine system, in which case for each ε >

0, d�n� = o�n�1/6�−ε� suffices for testing normality and d�n� = o��n/ log n�1/4�
for testing exponentiality.

An extensive simulation study of the power of tests based on WS�β̂� and
WS2�β̂� with �φj� the Legendre polynomials is presented in Kallenberg and
Ledwina (1995c). It turns out that these data driven versions of Neyman’s test
compare well for a wide range of alternatives with other, possibly more spe-
cialized, commonly used tests. The data driven smooth tests are competitive
with well-known tests such as Shapiro–Wilk’s test in case of normality and
Gini’s test for exponentiality.

Theorems 4.2, 4.3 and Corollary 4.4 can easily be extended to other estima-
tors than β̂ if we, apart from (2.9), assume that

EPφj�F�Xyβ�� −
{
I′βI

−1
ββEP

∂

∂β
log f�Xyβ�

}

j

6= 0;(4.5)

for some j ≤K�β�, where �: : :�j denotes the jth element of the vector between
braces. Condition (4.5) is used in the adjusted (4.4); compare also (4.2) and
(4.3).

In case of a location-scale family �f�xyβ�x β ∈ B� we write β = �µ;σ�′;
f�xyβ� = σ−1f0��x − µ�/σ� and F�xyβ� = F0��x − µ�/σ�. Now R�β� defined
in (3.1) does not depend on β. The statistics S�β̂�; S2�β̂�; WS�β̂� and WS2�β̂�
all depend on X1; : : : ;Xn by means of

Xi − µ̂
σ̂

; i = 1; : : : ; n;
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where �µ̂; σ̂�′ = β̂. Since �µ̂; σ̂� is location-scale equivariant, the distribution
of

(
X1 − µ̂
σ̂

; : : : ;
Xn − µ̂
σ̂

)

does not depend on the location-scale parameter if Xi comes from a location-
scale family. Therefore in case of a location-scale family �f�xyβ�x β ∈ B�
the finite sample null distributions of S�β̂�; S2�β̂�; WS�β̂� and WS2�β̂� do not
depend on β. Moreover, if the alternative also belongs to a location-scale fam-
ily, the distribution of S�β̂�; S2�β̂�; WS�β̂� and WS2�β̂� do not depend on the
location-scale parameter of that family. Of course, the preceding remarks also
apply to other estimators of β, provided they are also location-scale invariant.
The same remark applies to location families and to scale families.

We close this section by refering to Section 7 of Kallenberg and Ledwina
(1997) for some modifications. Another modification, not mentioned there, is to
replace n�Yn�β̃��2 in S2 by Wk�β̃�, thus taking into account that an estimator
is plugged in. Since simulation (with β̃ = β̂) of this modified selection rule
gives no better results, we do not work it out here.

APPENDIX

A.1. Proof of Theorem 2.1. We start with some additional notation:

Utj = n−1/2
n∑
i=1

{
∂

∂βt
φj�F�Xiyβ�� −Eβ

∂

∂βt
φj�F�Xyβ��

}
;

R1j = �β̃− β�′�n−1/2Uj� with Uj = �U1j; : : : ;Uqj�′;

R2j =
1
2
n−1

n∑
i=1

�β̃− β�′ ∂2

∂β∂β′
φj�F�Xiyβ��

∣∣∣
β=ξ
�β̃− β�;

Zj = �β̃− β�′Eβ

∂

∂β
φj�F�Xyβ��;

ak = �k− 1�n−1 log n;

vtj = varβ
∂

∂βt
φj�F�Xyβ��;

ynj = �ζ2�1− ε��k− 1��4kqρ2
1�−1n�1/2;

where ε, ζ and ξ are defined below; compare Lemma A.1 and its proof.
Throughout Section A.1 it is always assumed that the regularity conditions

(R1)–(R4) hold.
The proof of Theorem 2.1 consists of several lemmas. If d�n� is bounded,

Theorem 2.1 is easily obtained. We therefore assume w.l.o.g. d�n� → ∞ as
n→∞.

Let β ∈ B0 and η = η�β� as given in (R3).
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Lemma A.1. Assume (S1) and (S2). For each 0 < ε < 1 and 0 < ζ < 1, we
have on the set �β̃− β� < η�β�,

{
�Yn�β̃� −Yn�β�� ≥

√
�1− ε�ak

}
⊂
{( k∑

j=1

Z2
j

)1/2

≥ �1− ζ�
√
�1− ε�ak

}

∪
{( k∑

j=1

R2
1j

)1/2

≥ 1
2ζ
√
�1− ε�ak

}

∪
{( k∑

j=1

R2
2j

)1/2

≥ 1
2ζ
√
�1− ε�ak

}
:

Proof. By the Taylor expansion we get on the set �β̃ − β� < η�β�, for
some ξ between β̃ and β,

φj�F�Xiy β̃�� −φj�F�Xiyβ�� = �β̃− β�′
∂

∂β
φj�F�Xiyβ��

+ 1
2
�β̃− β�′ ∂2

∂β∂β′
φj�F�Xiyβ��

∣∣∣
β=ξ
�β̃− β�:

Hence

�A:1� φ̄j�β̃� − φ̄j�β� = Zj +R1j +R2j

and the result follows from the triangle inequality. 2

Lemma A.2. Assume (S1), (S2), (D2). For each 0 < ε < 1 and 0 < ζ < 1 we
have, for sufficiently large n,

d�n�∑
k=2

Pβ

({ k∑
j=1

R2
2j

}1/2

≥ 1
2ζ
√
�1− ε�ak

)
≤ c1d�n�n−c2ρ

2
1 :

Proof. In view of (R3), (S1) and (S2), there exists a constant c6 > 0 such
that on the set �β̃− β� < η�β�,

�A:2� �R2j� ≤ c6�β̃− β�2jm

with m = max�m1;m2�: Application of (R4) and (D2) yields, for sufficiently
large n,

d�n�∑
k=2

Pβ

({ k∑
j=1

R2
2j

}1/2

≥ 1
2ζ
√
�1− ε�ak

)

≤
d�n�∑
k=2

Pβ

(
c6�β̃− β�2km+1/2 ≥ 1

2ζ
√
�1− ε�ak

)
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=
d�n�∑
k=2

Pβ

(√
n�β̃− β� ≥

{
nc−1

6 k−m−1/2 1
2ζ
√
�1− ε�ak

}1/2)

≤
d�n�∑
k=2

Pβ
(√
n�β̃− β� ≥ ρ1

√
log n

)

≤ d�n�c1n
−c2ρ

2
1 : 2

Lemma A.3. Assume (S1). For each t = 1; : : : ; q,

sup
j

∣∣∣∣Eβ

∂

∂βt
φj�F�Xyβ��

∣∣∣∣
2

≤ varβ
∂

∂βt
log f�Xyβ�:

Proof. All expectations and (co)variances in this proof are with respect to
Pβ. Since for j ≥ 1 by orthonormality,

Eφj�F�Xyβ�� = 0;

we get

cov
(
φj�F�Xyβ��;

∂

∂βt
log f�Xyβ�

)
= E

{
φj�F�Xyβ��

∂

∂βt
log f�Xyβ�

}

=
∫
φj�F�xyβ��

∂

∂βt
f�xyβ�dx

=
∫ ∂

∂βt
�φj�F�xyβ��f�xyβ��dx

−E
{
∂

∂βt
φj�F�Xyβ��

}
:

By the dominated convergence theorem [cf. (R1), (R3), (S1)], we have

∫ ∂

∂βt
�φj�F�xyβ��f�xyβ��dx =

∂

∂βt
Eφj�F�Xyβ�� = 0

and hence
∣∣∣∣E

∂

∂βt
φj�F�Xyβ��

∣∣∣∣
2

=
∣∣∣∣cov

(
φj�F�Xyβ��;

∂

∂βt
log f�Xyβ�

)∣∣∣∣
2

≤ varφj�F�Xyβ�� var
∂

∂βt
log f�Xyβ�

= var
∂

∂βt
log f�Xyβ�

and the result follows. 2
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Lemma A.4. Assume (S1), (S2) and (D2). For each 0 < ε < 1 and 0 < ζ < 1
we have, for sufficiently large n,

d�n�∑
k=2

Pβ

({ k∑
j=1

R2
1j

}1/2

≥ 1
2ζ
√
�1− ε�ak

)
≤ c1

[
�d�n��−1 + d�n�n−c2ρ

2
1
]
:

Proof. By (R3) and (S1) we get, for some constant c7 > 0,

sup
x∈R

∣∣∣∣
∂

∂βt
φj�F�xyβ��

∣∣∣∣ = sup
x∈R

∣∣∣∣φ
′
j�F�xyβ��

∂

∂βt
F�xyβ�

∣∣∣∣ ≤ c7 j
m1 :

Application of Kolmogorov’s exponential inequality [cf., e.g., Shorack and Well-
ner (1986), page 855] yields

Pβ�U2
tjv
−1
tj > λ2� < 2 exp

{
− 1

2λh�λ�
}

with

h�λ� =
{
λ
{
1− 1

2λ�nvtj�−1/2c7j
m1�; if λ ≤ c−1

7 j−m1�nvtj�1/2;
1
2�nvtj�1/2c−1

7 j−m1; if λ ≥ c−1
7 j−m1�nvtj�1/2:

In view of (R4) we obtain

�A:3�

d�n�∑
k=2

Pβ

({ k∑
j=1

R2
1j

}1/2

≥ 1
2 ζ
√
�1− ε�ak

)

=
d�n�∑
k=2

Pβ

( k∑
j=1

R2
1j ≥ 1

4 ζ
2�1− ε�ak

)

≤
d�n�∑
k=2

Pβ

(
n−1�β̃− β�2

k∑
j=1

q∑
t=1

U2
tj ≥ 1

4 ζ
2�1− ε�ak

)

≤
d�n�∑
k=2

Pβ
(√
n�β̃− β� ≥ ρ1

√
log n

)
+
d�n�∑
k=2

Pβ

( k∑
j=1

q∑
t=1

U2
tj ≥ kqy2

nj

)

≤ d�n�c1n
−c2ρ

2
1 +

d�n�∑
k=2

k∑
j=1

q∑
t=1

Pβ�U2
tj ≥ y2

nj�

≤ c1d�n�n−c2ρ
2
1 +

d�n�∑
k=2

k∑
j=1

q∑
t=1

2 exp
{
− 1

2v
−1/2
tj ynjh�v−1/2

tj ynj�
}
:

If λ ≤ c−1
7 j−m1�nvtj�1/2, we have h�λ� ≥ 1

2λ. Therefore, if v−1/2
tj ynj ≤

c−1
7 j−m1�nvtj�1/2, we get, in view of (D2), for some positive constants c8 and c9

and sufficiently large n,

1
2v
−1/2
tj ynjh�v−1/2

tj ynj� ≥ 1
4v
−1
tj y

2
nj ≥ c8n�vtj�−1 ≥ c9nj

−2m1 ≥ c9n�d�n��−2m1

≥ 4 log d�n�:



1244 T. INGLOT, W. C. M KALLENBERG AND T. LEDWINA

Again in view of (D2), if v−1/2
tj ynj ≥ c−1

7 j−m1�nvtj�1/2, we have, by definition of
h, for some positive constants c10 and c11 and sufficiently large n,

1
2v
−1/2
tj ynjh�v−1/2

tj ynj� ≥ 1
4ynjn

1/2c−1
7 j−m1 ≥ c10nj

−m1

≥ c10n�d�n��−m1 ≥ c11n
1/2 ≥ 4 log d�n�:

Therefore, in any case, we have, for sufficiently large n,

d�n�∑
k=2

k∑
j=1

q∑
t=1

2 exp
{
− 1

2v
−1/2
tj ynjh�v−1/2

tj ynj�
}

≤ 2q�d�n��2 exp�−4 log d�n�� ≤ c1�d�n��−1;

which together with (A.3) completes the proof. 2

Lemma A.5. Assume (S1). LetK be fixed. For each 0 < ε < 1 and 0 < ζ < 1,
we have

lim
n→∞

K∑
k=2

Pβ

({ k∑
j=1

Z2
j

}1/2

≥ �1− ζ�
√
�1− ε�ak

)
= 0:

Proof. By definition of Zj and in view of Lemma A.3, we get

Z2
j ≤ �β̃− β�2�Eβ

∂

∂β
φj�F�Xyβ���2 ≤ �β̃− β�2b2

and hence, for each 2 ≤ k ≤K,

�A:4�
Pβ

({ k∑
j=1

Z2
j

}1/2

≥ �1− ζ�
√
�1− ε�ak

)

≤ Pβ
(√
n�β̃− β� ≥ √nk−1/2b−1�1− ζ�

√
�1− ε�ak

)
;

which tends to zero if n→∞ in view of (R4). 2

Lemma A.6. Assume (S1). Let ρ1b ≥ 1. For any c < c2b
−2 there exist 0 <

ε < 1; 0 < ζ < 1 and K such that, for all n ≥ n1 with n1 from (R4),

�A:5�
d�n�∑
k=K

Pβ

({ k∑
j=1

Z2
j

}1/2

≥ �1− ζ�
√
�1− ε�ak

)
≤ c1d�n�n−c:

Let ρ1b < 1. There exist 0 < ε < 1, 0 < ζ < 1 and K such that, for all n ≥ n1,

�A:6�
d�n�∑
k=K

Pβ

({ k∑
j=1

Z2
j

}1/2

≥ �1− ζ�
√
�1− ε�ak

)
≤ c1d�n�n−c2ρ

2
1 :
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Proof. Let ρ1b ≥ 1 and let c < c2b
−2. Then there exist 0 < ε < 1, 0 < ζ < 1

and K such that

c2b
−2�1− ζ�2�1− ε�K−1�K− 1� > c:

Since �1− ζ�
√

1− ε��K− 1�/K�1/2b−1 ≤ ρ1, we have by (A.4) and (R4), for all
k ≥K and n ≥ n1,

Pβ

({ k∑
j=1

Z2
j

}1/2

≥ �1− ζ�
√
�1− ε�ak

)

≤ c1 exp
{
−c2b

−2�1− ζ�2�1− ε�k−1�k− 1� log n
}
≤ c1 exp�−c log n�

and (A.5) easily follows.
Now let ρ1b < 1. Then there exist 0 < ε < 1, 0 < ζ < 1 and K such that for

all k ≥K,
√
nk−1/2b−1�1− ζ�

√
�1− ε�ak ≥ ρ1

√
log n and hence, again by (A.4)

and (R4), for all n ≥ n1,

Pβ

({ k∑
j=1

Z2
j

}1/2

≥ �1− ζ�
√
�1− ε�ak

)
≤ Pβ

(√
n�β̃− β� ≥ ρ1

√
log n

)

≤ c1n
−c2ρ

2
1

and (A.6) easily follows. 2

Proof of Theorem 2.1. Let ρ1b ≥ 1. In view of (D3) there exists c < c2b
−2

such that d�n� = o�nc�. Choose 0 < ε < 1, 0 < ζ < 1 and K such that (A.5)
holds. In view of Lemmas A.1, A.2, A.4, A.6 we get, for sufficiently large n,

�A:7�

d�n�∑
k=2

Pβ
(
�Yn�β̃� −Yn�β�� ≥ �1− ε���k− 1�n−1 log n�1/2

)

≤ d�n�Pβ
(
�β̃− β� ≥ η�β�

)

+
K∑
k=2

Pβ

({ k∑
j=1

Z2
j

}1/2

≥ �1− ζ�
√
�1− ε�ak

)

+ c1d�n�n−c + 2c1d�n�n−c2ρ
2
1 + c1�d�n��−1:

The first term on the right-hand side of (A.7) tends to 0 by (R4) and (D3),
the second term by Lemma A.5, the third and fourth terms by (D3) (note that
c2ρ

2
1 ≥ c2b

−2 > c�, while the last term tends to 0 by our assumption d�n� → ∞,
which we could make w.l.o.g.

The case ρ1b < 1 is similar. This completes the proof of Theorem 2.1. 2

A.2. Proof of Theorem 3.1. Let β ∈ B0 and η�β� be as given in (R3). In
view of the

√
n-consistency of β̃, we have

Pβ��β̃− β� > η�β�� → 0

and therefore in the following we restrict attention to the set �β̃−β� < η�β�.
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As in the proof of Lemma A.1 [cf. (A.1)], we write

φ̄j�β̃� = φ̄j�β� +Zj +R1j +R2j:

Since
√
n�β̃ − β� = OPβ

�1� and since n−1/2Uj = oPβ�1� by the law of large
numbers, we get

√
nR1j =

√
n�β̃− β�′n−1/2Uj→Pβ

0:

As in the proof of Lemma A.2 [cf. (A.2)], we have
√
n�R2j� ≤

√
nc6�β̃− β�2jm

and hence, again by the
√
n-consistency of β̃,

√
nR2j→Pβ

0:

Further note that by definition [cf. (3.1)],

�Z1; : : : ;Zk�′ = −�β̃− β�′Iβ
and therefore

�A:8� √
nYn�β̃� =

√
nYn�β� −

√
n�β̃− β�′Iβ + oPβ�1�:

By the Taylor expansion we get, for some ξ between β̃ and β,

∂

∂βt
log f�Xiy β̃� =

∂

∂βt
log f�Xiyβ� + �β̃− β�′Eβ

(
∂2

∂β∂βt
log f�Xiyβ�

)

+ �β̃− β�′
{

∂2

∂β∂βt
log f�Xiy ξ� −Eβ

(
∂2

∂β∂βt
log f�Xiyβ�

)}
:

By (R2),

n−1
n∑
i=1

{
∂2

∂βu∂βt
log f�Xiy ξ� −Eβ

∂2

∂βu∂βt
log f�Xiyβ�

}
→Pβ

0

and therefore [cf. (3.1) and (3.5)],

�A:9� Cn�β̃� = Cn�β� −
{
Iββ + oPβ�1�

}
�β̃− β�:

In view of (R1), (R3), (S1) and the continuity of φ′j, the continuity of Iβ is
easily obtained by the dominated convergence theorem. The continuity of Iβ
and Iββ [cf. (R2)], and the fact that β̃ is

√
n-consistent and that

√
nCn�β� = OPβ

�1�;

imply, together with (A.9),
√
nI′

β̃
I−1
β̃β̃
Cn�β̃� =

√
nI′βI

−1
ββCn�β� −

√
nI′β�β̃− β� + oPβ�1�

and hence [cf. (3.4) and (A.8)],
√
nỸn�β̃� =

√
nYn�β� −

√
nI′βI

−1
ββCn�β� + oPβ�1�:
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Also by the continuity of Iβ, Iββ and the convergence of β̃ to β, we have [cf.
(3.1)]

R�β̃� = R�β� + oPβ�1�:

The multivariate central limit theorem now gives
√
nỸn�β̃� →N�0yI−Aβ� with Aβ = I′βI−1

ββIβ:

Since

Aβ = I′βI−1
ββ�Iββ − IβI′β��Iββ − IβI′β�−1Iβ = R�β� −AβR�β�;

we get

�I−Aβ��I+R�β�� = I+R�β� −Aβ −AβR�β� = I:

The proof is now easily completed by invoking the definition of Wk�β̃� [cf.
(3.3)]. 2

A.3. Condition (R4) for β̃ = �X̄; �n−1∑n
i=1�Xi − X̄�2�1/2�′. Let ρ > 0 and

r = ρ�log n�1/2. All expectations and variances in this subsection are with
respect to Pβ. Writing Yi = �Xi −EX�/

√
varX, we have

�A:10�
Pβ
(√
n�β̃− β� ≥ r

)

= Pβ
(∥∥∥∥
(
Ȳ;

{
n−1

n∑
i=1

�Yi − Ȳ�2
}1/2)′

− �0;1�′
∥∥∥∥
√
n ≥ r/

√
varX

)
;

where β = �EX;
√

varX�′ by
√
n-consistency of β̃. Note that we do not restrict

to location/scale families.
Assume E�Xi�4+ε < ∞ for some ε > 0, implying E�Y2

i − 1�2+�1/2�ε < ∞.
Denoting by 8 the standard normal distribution function we have [cf., e.g.,
Petrov (1975), page 252],

Pβ

( n∑
i=1

�Y2
i − 1��var�Y2

i ��−1/2 ≥ x√n
)
= �1−8�x���1+ o�1��

for 0 ≤ x ≤ ��ε/4� log n�1/2. Since r = ρ�log n�1/2, we get, for ρ ≤
��ε/2� var�X2��1/2,

�A:11� Pβ

( n∑
i=1

�Y2
i − 1� ≥ r√n/

√
2 varX

)
≤ 1

4c1 exp�−c2r
2�

for some positive constants c1, c2 and n large enough. Similarly, for ρ ≤
��ε/2�min�varX; var�X2���1/2 = ρ1, say,

�A:12� Pβ

( n∑
i=1

�Y2
i − 1� ≤ −r√n/

√
2 varX

)
≤ 1

4c1 exp�−c2r
2�
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and

�A:13� Pβ

(∣∣∣∣
n∑
i=1

Yi

∣∣∣∣ ≥ r
√
n/
√

2 varX
)
≤ 1

2c1 exp�−c2r
2�:

It is seen that for sufficiently large n and for all 0 < ρ ≤ ρ1,
∣∣∣∣
n∑
i=1

�Y2
i − 1�

∣∣∣∣ < r
√
n/
√

2 varX and
∣∣∣∣
n∑
i=1

Yi

∣∣∣∣ < r
√
n/
√

2 varX

imply
∥∥∥∥
(
Ȳ;

{
n−1

n∑
i=1

�Yi − Ȳ�2
}1/2)′

− �0;1�′
∥∥∥∥
√
n < r/

√
varX:

In combination with (A.10)–(A.13), the result is obtained.
The larger c2, the larger the region for d�n� in (D3). Therefore, one might

look for the “best” c2 assuming existence of a certain absolute moment of Xi.
The following remark gives such optimal c2. It requires a slightly more delicate
proof than above.

Remark A.1. Let λ be the largest characteristic root of the matrix
(

1 cov�Yi;
1
2Y

2
i �

cov�Yi;
1
2Y

2
i � var� 1

2Y
2
i �

)
:

Assume that, for some ε > 0, a moment of order 4 + ε + 2ρ2
1�varX�−1λ−1

exists for Xi. Using formula (101) on page 343 of Rubin and Sethuraman
(1965), it can be shown that (R4) holds for any c2 <

1
2�varX�−1λ−1 and ρ1

from the above moment condition. If all absolute moments of Xi exist, ρ1 may
be taken as large as one wants and hence (D3) states d�n� = o�nc� for some
c < 1

2�varX�−1λ−1b−2. In particular, if X is normally distributed, λ = 1 and
hence (D3) reduces to d�n� = o�nc� for some c < 1

6 .
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