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In a partial linear model, the dependence of a response variate Y on
covariates �W;X� is given by

Y =Wβ+ η�X� + E ;

where E is independent of �W;X� with densities g and f, respectively. In
this paper an asymptotically efficient estimator of β is constructed solely
under mild smoothness assumptions on the unknown η, f and g, thereby
removing the assumption of finite residual variance on which all least-
squares-type estimators available in the literature are based.

1. Introduction. In a partial linear model, one observesZi=�Wi;Xi;Yi�,
i = 1; : : : ; n, of which the Yi’s are response variates depending on covariates
�Wi;Xi� through the relationship

�1� Yi =Wiβ+ η�Xi� + Ei;

where �Wi;Xi;Ei� are iid as �W;X;E �. The covariate �W;X� is �c; d�×�0;1�-
valued with joint pdf f�w;x� with respect to ν = ν1× ν2, where ν1 is a σ-finite
measure on �c; d�, ν2 is the Lebesgue measure on �0;1� and the residual E
has a Lebesgue density g having a finite and positive Fisher information.
Moreover, E is assumed to be independent of �W;X�. The Lebesgue density of
the marginal distribution of X is denoted by f0. If we let γ = �η;f;g�, then
model (1) means that Zi = �Wi;Xi;Yi� are iid as Z = �W;X;Y� having pdf

p�zy β; γ� = f�w;x�g�y−wβ− η�x��; β ∈ R1 and γ ∈ 0;
with respect to µ = ν1 × ν2 × Lebesgue measure, where 0 is the set of all
�η;f;g� satisfying regularity conditions stated in Section 2. The probability
measure ofZ thus defined will be denoted byPβ;γ�·� orP�· y β; γ�. The problem
is to estimate the parameter β, treating γ as a nuisance parameter.

Assuming finite variance of the residual E , several estimators of β have
been constructed by least-squares methods using spline and kernel smooth-
ing, and properties such as

√
n-consistency, asymptotic normality and asymp-

totic efficiency in case of Gaussian errors have also been established for some
of these estimators. Basically, three approaches have been used to construct
these estimators, namely, the penalized least-squares method used by Wahba
(1984), Green, Jennison and Scheult (1985), Engle, Granger, Rice and Weiss
(1986), Heckman (1986), Rice (1986), Shiau, Wahba and Johnson (1986), and
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Chen and Shiau (1991), the partial residuals method used by Denby (1984),
Robinson (1988), Speckman (1988) and Cuzick (1992a) and the projection
method used by Chen (1988). Although some of these estimators of β are
asymptotically efficient under Gaussian errors, nothing is known about their
properties for non-Gaussian errors. Cuzick (1992b) considered the case of un-
known residual distribution and constructed an initial estimator of β from one
part of the data and used it to construct an efficient estimator of β from the
rest of the data. However, this method also requires finite variance since the
initial estimator is of the least-squares type. Another efficient estimator of β
for the case of unknown residual distribution with finite variance has been
developed by Schick (1993). The issue of achieving the information bound in
this and other non- and semiparametric models has been examined by Ritov
and Bickel (1990).

In this paper our main goal is to construct an asymptotically efficient esti-
mator of β for arbitrary residual distribution having pdf g with finite and pos-
itive Fisher information. This will be achieved solely under mild smoothness
conditions and an identifiability condition on η, f and g and the assumption
that f0 is bounded away from 0, but without any moment assumption on the
residual distribution g. In the process of constructing such an estimator of β,
an estimator of η will also be constructed.

In Section 2, we begin by stating the regularity conditions and the formu-
las for effective score function, effective information and efficient influence
function for estimating β when η, f and g are unknown. We then outline a
strategy for constructing an estimator of β which attains the effective infor-
mation limit, following a general scheme developed by Bickel (1982), Schick
(1986) and Klaassen (1987). In order to carry out this program, we shall con-
struct the following:

1. In Section 3, a
√
n-consistent estimator β̃n of β will be constructed by a

bandwidth-matched M-estimation procedure due to Bhattacharya (1989).
2. In Section 4, an estimator q̂n�x� of q�x� = E�W�X = x� with a desired

rate of a.s. uniform convergence will be constructed by the standard kernel
method.

3. Estimators η̂n�x�βn� of the location of the conditional distribution of Y −
Wβn given X = x and ϕ̂n�t�βn� of ϕ�t�βn� = −g′�t�βn�/g�t�βn�, where
g�·�βn� is the pdf of Y−Wβn−η�X�βn�, having suitable convergence prop-
erties for βn = β+O�n−1/2� as n→∞, will also be constructed in Section 4.
Of these, η̂n will be constructed by the M-smoother technique [see Härdle,
Janssen and Serfling (1988) and Hall and Jones (1990)] and ϕ̂n by the ker-
nel method.

The desired properties of these estimators and the estimated effective in-
fluence function will also be established in Section 4. Finally, all this will be
put together in Section 5 to construct an asymptotically efficient estimator
of β. The results of a simulation study were reported in Bhattacharya and
Zhao (1995). In these simulations, our procedure performed satisfactorily in a
variety of situations based on samples of 100 observations.
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2. Asymptotic lower bound in semiparametric formulation. We as-
sume that in the model described by (1), the joint pdf f of �W;X�, the pdf g of
the residual E and the regression function η satisfy the following regularity
conditions.

Condition A1. η belongs to CL�0;1�, the space of Lipschitz-continuous
functions on �0;1�.

Condition A2. (a) �f�w;x1� − f�w;x2�� ≤ c0 �x1 − x2� for some c0 and for
all w ∈ �c; d�, x1; x2 ∈ �0;1�.

(b) The marginal pdf f0�·� =
∫
f�w; ·�dν1�w� is bounded away from 0.

(c) E��W− q�X��2� > 0; where q�x� = E�W�X = x�:

Condition A3. (a) g has bounded derivative g′ and finite and positive
Fisher information, that is,

0 < I�g� =
∫ [
�g′�t��2/g�t�

]
dt <∞:

(b) g is symmetric about 0 and is positive in a neighborhood of 0.

We emphasize that no moment condition has been imposed on the residual
distribution.

Remark 1. Condition A2(a) implies that f0 is Lipschitz and is therefore
bounded.

Remark 2. Boundedness of g′ is used in Lemma 4.2 for the purpose of
applying Lemma 3.2 of Härdle, Janssen and Serfling (1988).

Remark 3. In Condition A3(b), the symmetry of g serves as an identifia-
bility condition to prevent �η + a;g�· + a�� and �η;g� from resulting in the
same model. We have used this condition in proving Lemma 4.2 and part (i)
of Lemma 4.5. In Remark 8 following the proof of Lemma 4.2, we have indi-
cated how this proof can be easily modified if Condition A3(b) is replaced by
a slightly more general condition A3(b′) suggested by a referee. In the proof
of Lemma 4.5(i), the symmetry condition can be avoided altogether, but at
the expense of additional requirement that f0, q and g have bounded second
derivatives.

We first define two functions,

ρ�y� = − 1
2 g
′�y�g−1/2�y�;

ϕ�y� = −g
′�y�
g�y� = 2g−1/2�y�ρ�y�;

(2)

for use throughout the paper. When γ = �η;f;g� is known, the score function
and the information for β are ρβ�z� = �∂p1/2/∂β� = f1/2�w;x�ρ�y − wβ −
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η�x��w and I0 = 4��ρβ��2µ = E�W2�I�g�, respectively. In the following theo-
rem, we state the efficient score function ρ∗ when γ is unknown, from which
the formulas for the effective information and efficient influence function are
obtained. For proof, see Bickel, Klaassen, Ritov and Wellner (1992). We also
refer to Bhattacharya and Zhao (1995) for a more easily accessible version of
the proof.

Theorem 1. For estimating β, the efficient score function is

�3� ρ∗�zy β; γ� = f1/2�w;x�ρ
(
y−wβ− η�x�

) (
w− q�x�

)
;

the effective information is

�4� I∗�β; γ� x= 4��ρ∗�· y β; γ���2µ = E
[{
W−E�W�X�

}2]
I�g�

and the efficient influence function is

J�zy β; γ� x= �I∗�β; γ��−1 2p−1/2�zy β; γ�ρ∗�zy β; γ�
= �I∗�β; γ��−1 ��w− q�x��ϕ�y−wβ− η�x���;

(5)

where z = �w;x;y�, q�x� = E�W�X = x�, I�g� =
∫
��g′�t��2/g�t��dt and ϕ is

given by (2).

Remark 4. Theorem 1 generalizes in a straightforward manner to the
case where W is a k-dimensional random vector taking values in �c; d�k and
the linear part of the regression is βTW where β ∈ Rk is to be estimated.
Now wβ is replaced by βTw in all formulas, q�x� is a vector function and
I∗�β; γ� = E��W−E�W�X���W−E�W�X��T�I�g�; the matrix E��· · ·��· · ·�T�
being assumed to be positive definite.

Our goal is to construct an asymptotically linear estimator β̂n, that is, one
which approximates

�6� β∗n x= β+ n−1
n∑
i=1

J�Ziy β; γ�

at the op�n−1/2� rate underPβ; γ: Such an estimator is a least dispersed regular
estimator of β in the presence of the nuisance parameter γ. All construction
schemes developed by Bickel (1982), Schick (1986, 1987, 1993) and Klaassen
(1987) [also see Bickel, Klaassen, Ritov and Wellner (1992)] follow this prin-
ciple. Here we shall use the construction given by Schick (1986) for which the
conditions are satisfied within our framework.

For this construction of an asymptotically linear estimator, we need the
following condition on the effective score function.

Condition B1. The map β ∈ R1 7→ ρ∗�· y β; γ� ∈ L2�µ� is continuous for
every γ = �η;f;g� ∈ 0.
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We also need an initial estimator β̃n of β and an estimator Ĵn�· y · ;Z�n�� ≡
Ĵn�· y · ;Z1; : : : ;Zn� ofJ�· y · ; γ� satisfying the following conditions underPβ;γ.

Condition B2. n1/2�β̃n − β� = Op�1�.

Condition B3. For every sequence βn = β+O�n−1/2�,

n1/2
∫
Ĵn�zy βn;Z�n��p�zy βn; γ�dµ = op�1�;

and
∫
�Ĵn�zy βn;Z�n�� −J�zy βn; γ��2p�zy βn; γ�dµ = op�1�:

The construction of an asymptotically linear estimator β̂n of β essentially
involves using β̃n for β and Ĵn for J on the right-hand side of (6). For technical
reasons, we actually use a discretized version of β̃n, namely, the point βn in
the set �jn−1/2x j is an integer� which is closest to β̃n [see Bickel (1982)],
and use Ĵn2�Ziy βn;Z�n;2�� for i = 1; : : : ; �n/2� and Ĵn1�Ziy βn;Z�n;1�� for
i = �n/2� + 1; : : : ; n in (6), where Ĵn1 is based on the first half of the sample
Z�n;1� = �Z1; : : : ;Z�n/2��, while Ĵn2 is based on the remaining half of the
sample Z�n;2� = �Z�n/2�+1; : : : ;Zn�. The resulting estimator is

�7� β̂n = βn +
1
n

[ �n/2�∑
i=1

Ĵn2
(
Ziy βn;Z�n;2�

)
+

n∑
i=�n/2�+1

Ĵn1
(
Ziy βn;Z�n;1�

)]
:

The following theorem is a restatement of Schick’s (1986) Theorem 1 in
which the asymptotic linearity of the above estimator was established.

Theorem 2. If Condition B1 holds and if the estimators β̃n and Ĵn sat-

isfy Conditions B2 and B3, respectively, then the estimator β̂n given by (7) is
asymptotically linear.

We now proceed to construct an initial estimator of β satisfying Condi-
tion B2 in Section 3 and an estimator of the efficient influence function J
satisfying Condition B3 in Section 4. The latter objective will be accomplished
by constructing estimators of the functions η, q and ϕ with appropriate rates
of convergence and then using these estimators in (5).

3. A bandwidth-matched M-estimator for b. Due to the smoothness
of η in model (1), we should have Yi −Yj ≈ �Wi −Wj�β + �Ei − Ej� for any
pair with Xi ≈Xj: In the spirit of M-estimation, this motivates an estimator
β̃n which minimizes

�n�n− 1�bn�−1
n∑
i=1

n∑
j=1

K��Xi −Xj�/bn� τ�Yi −Yj − �Wi −Wj�β�;
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with respect to β, where τ is a symmetric convex function on R1 which is
minimized at 0, Kx R1 7→ R1 is a kernel function and �bn� is a positive
sequence tending to 0 as n → ∞. For K�u� = I ��u� ≤ 1�, such an estimator
is based on all pairs �i; j� for which Xi;Xj are within a bandwidth bn of one
another. The term bandwidth-matched M-estimation comes from this. Such
an estimator has been proposed by Bhattacharya (1989) for the special case
when W in model (1) is 0–1-valued.

If the function τ is a.e. differentiable, then taking ψ = τ′ (which is odd
and monotone nondecreasing), the estimator β̃n is equivalently defined as the
solution of Sn�β� = 0; where

Sn�β� = �n�n− 1�bn�−1
n∑
i=1

n∑
j=1

K��Xi −Xj�/bn�

× ψ�Yi −Yj − �Wi −Wj�β� �Wi −Wj�:
(8)

Since Sn�β� may have many zero crossings, we formally define

β̃n = �β−n + β+n �/2;
β−n = sup�βx Sn�β� > 0�;
β+n = inf�βx Sn�β� < 0�:

(9)

For ψ�y� = y which corresponds to τ�y� = y2, the above estimator would
be another least-squares-type estimator, but since we are not assuming finite
variance of the residuals, we shall choose ψ in (8) from a suitable class of
bounded functions to make the estimator robust. Let ψ be a bounded, odd and
nondecreasing function, and define

L�u� =
∫
ψ�u− y�g�y�dy; u ∈ R:

Note that
∫
L�u�g�u�du = E�ψ�E1 − E2�� = 0.

We shall choose the kernel K subject to the following condition.

Condition K1. The kernel K is a bounded symmetric pdf on �−1;1�.

In the following theorem, we establish the asymptotic normality of
√
n �β̃n−

β�, thereby showing that β̃n satisfies Condition B2.

Theorem 3. Suppose that Conditions A1 and A2(a) and (c) hold. Assume
that L has a bounded continuous derivative with

∫
L′�y�g�y�dy > 0 and that

the kernel K satisfies Condition K1. If nbn → ∞ and nb2
n → 0; then the

estimator β̃n defined by (8) and (9) satisfies

√
n �β̃n − β� −→L N �0; ζ0/�αo�2� as n→∞;
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where

α0 = E�L′�E1��E�f0�X1�Var�W1�X1�� > 0;(10)

ζ0 = E�L2�E1��E�f2
0�X1�Var�W1�X1�� > 0:(11)

Remark 5. The condition on L is satisfied if ψ has a positive, bounded
and continuous derivative, such as ψ�y� = arctan�y�: For ψ�y� = sign�y�, the
condition holds if g is continuous, because L�u� = 2G�u� − 1. In this case,
E
[
L′�E1�

]
= 2 ��g��2λ and E�L2�E1�� = 1/3:

Proof. It suffices to show that, for each t ∈ R,

�12� √
nSn�β+ n−1/2t� →L N �−2α0 t;4ζ0�:

Indeed, the monotonicity of ψ�·� implies that of Sn�·�. Moreover, by Theorem 1
of Hodges and Lehmann (1963), both β−n and β+n have continuous cdf ’s. Hence

P�n1/2�β−n − β� ≤ t� = P�Sn�β+ n−1/2t� ≤ 0�

= P
[√

nSn�β+ n−1/2t� + 2α0 t√
4ζ0

≤ 2α0 t√
4ζ0

]
→ 8

(
t α0√
ζ0

)

by (12), 8 being the cdf of N�0;1�. Since the same holds for n1/2�β+n −β� and
β−n ≤ β̃n ≤ β+n with probability 1, the theorem follows.

To verify (12), fix t ∈ R; let Vi = �Wi;Xi;Ei� and note that Sn�β+ n−1/2t�
is a U-statistic with symmetric kernel

Un�Vi;Vj� = b−1
n K��Xi −Xj�/bn��Wi −Wj�
× ψ�η�Xi� − η�Xj� − n−1/2t�Wi −Wj� + Ei − Ej�:

Standard U-statistic argument now leads to

�13� Sn�β+ n−1/2t� = µn + 2n−1
n∑
i=1

�πn�Vi� − µn� +Rn;

where

πn�V1� = E�Un�V1;V2��V1�

= b−1
n

∫ d
c

∫ 1

0
K��X1 − x�/bn�

× �W1 −w�L�E1 + η�X1� − η�x� − n−1/2t�W1 −w��
× f�w;x�dν1�w�dx;

(14)

µn = E�Un�V1;V2�� = E�πn�V1��;



PARTIAL LINEAR MODEL 251

and

E�R2
n� ≤

(
n

2

)−1

E�U2
n�V1;V2��

≤M�nbn�−2
∫ 1

0

∫ 1

0
I�−bn; bn��x1 − x2�dx1 dx2

= O�n−2b−1
n � = o�n−1�;

since ψ, Wi and K are bounded, and K vanishes outside �−1;1�. Here, as well
as in what follows, M is a generic constant. Next let

π0�V1� = L�E1�
∫
�W1 −w�f�w;X1�dν1�w�

= L�E1�f0�X1��W1 −E�W1�X1��;

π1�V1� = L′�E1�
∫
�W1 −w�2f�w;X1�dν1�w�

= L′�E1�f0�X1��W2
1 − 2W1E�W1�X1� +E�W2

1�X1��;

and note that E�π0�V1�� = 0; E�π2
0�V1�� = ζ0 and E�π1�V1�� = 2α0.

The main thing is to show that πn�V1� − �π0�V1� − n−1/2t π1�V1�� is small
enough for our purpose. To this end, transform x to u = �X1 − x�/bn in (14)
and let

1n1 = η�X1� − η�X1 − bnu�;
1n2 = 1n1 − n−1/2t�W1 −w�;
1n3 = f�w;X1 − bnu� − f�w;X1�:

Note that u is integrated over An = An�X1� = �b−1
n �X1− 1�; b−1

n X1� ∩ �−1;1�;
so that In =

∫
An
K�u�du ∈ �0;1� and In = 1 for bn ≤ X1 ≤ 1 − bn: Hence

E��1 − In�r� ≤ M�1 − P�bn ≤ X1 ≤ 1 − bn�� ≤ Mbn for r > 0. Moreover,
�1n1� ≤Mbn, �1n2� ≤Mn−1/2 and �1n3� ≤Mbn a.s., by Conditions A1 and A2(a).
We now have

πn�V1� =
∫ ∫

K�u��W1 −w�L�E1 + 1n2��f�w;X1� + 1n3�dν1�w�du

=
∫ ∫

K�u��W1 −w� �L�E1� + 1n2L
′�E1� + 1n2�L′�E1n� −L′�E1���

× �f�w;X1� + 1n3�dν1�w�du;

where E1n lies between E1 and E1 + 1n2; so that L′�E1n� − L′�E1� → 0 a.s.
Rearrangement of terms in the last expression leads to

πn�V1� = π0�V1� − n−1/2t π1�V1� +Rn1 +Rn2 +Rn3;
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where

Rn1 = �π0�V1� − n−1/2t π1�V1���1− In�;

Rn2 =
∫ ∫

K�u��W1 −w�
[
�L�E1� − n−1/2t�W1 −w�L′�E1��1n3

+ 1n1L
′�E1n�f�w;X1 − bnu�

]
dν1�w�du;

Rn3 = −n1/2t
∫ ∫

K�u��W1 −w�2 �L′�E1n� −L′�E1��

× f�w;X1 − bnu�dν1�w�du:

Since π0�V1� and π1�V1� are bounded, �E�n1/2Rn1�� ≤ Mn1/2bn = o�1�. For
Rn2, the integrand is bounded by Mbn, so that E�n1/2Rn2� = o�1�. Next note
that since L′ is bounded and continuous, E�n1/2Rn3� is a five-fold integral of
which the integrand is bounded and converges to 0 a.e. Hence E�n1/2Rn3� =
o�1� by the Lebesgue dominated convergence theorem. Thus

n1/2µn = n1/2E�π0�V1�� − tE�π1�V1�� +
3∑
j=1

E�n1/2Rnj� = −2α0t+ o�1�:

Finally, E�R2
nj� = o�1� for j = 1;2;3 follows by straightforward argument

using the various boundedness properties mentioned above. Hence

E��πn�V1� − µn − π0�V1��2�

= E
[{
n−1/2t π1�V1� + µn −

3∑
j=1

Rnj

}2]

≤ 5
[
n−1t2E�π2

1�V1�� + n−1�2α0t+ o�1��2 +
3∑
j=1

E�R2
nj�
]
= o�1�:

Putting these results in (13), we have

n1/2Sn�β+ n−1/2t� = n1/2µn + 2n−1/2
n∑
i=1

�πn�Vi� − µn� + n1/2Rn

= −2α0t+ 2n−1/2
n∑
i=1

π0�Vi� + op�1�;

from which (12) follows. 2

Remark 6. If η ∈ C2�0;1� and g is continuous, then Theorem 3 holds for
ψ�y� = sign�y� and bn chosen so that nbn→∞ and nb4

n→ 0: In this case, the
bandwidth hn used in Section 4 can be taken to be the same as the bandwidth
bn chosen in this section. A simulation study reported in Bhattacharya and
Zhao (1995) was carried out like this.
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Remark 7. The bandwidth-matched M-estimation method discussed in
this section does not extend to the case of multidimensionalW in its full gener-
ality. A different method, using a result of Pollard (1991), has been developed
for such general multidimensional W by one of the authors [Zhao (1995)].
However, the method discussed here has a limited extension to the case of
k-dimensional W having its support on the Cartesian product W1 × · · · ×Wk

of finite sets, where Wr = �1; : : : ; αr�: This includes the case of 2k-factorial
observational studies in which the rth component βr of the parameter vector
β represents the main effect of the rth factor, ignoring all interactions, and
η�·� represents the nonparametric regression of the observable Y on a self-
selected covariate X: For such an extension, we define Ir�Wi;Wj� to be the
indicator of the event �Wis =Wjs for all s 6= r� and let

Snr�βr� = �n�n− 1�bn�−1
n∑
i=1

n∑
j=1

K

(
Xi −Xj

bn

)
ψ�Yi−Yj−�Wir−Wjr�βr�

× �Wir−Wjr�Ir�Wi;Wj�

and estimate βr by the zero crossing β̃nr of Snr�βr� for r = 1; : : : ; k: Then the
proof of Theorem 3 extends easily, showing that

√
n �β̃nr−βr� is asymptotically

normal with mean 0 for r = 1; : : : ; k; so that β̃n = �β̃n1; : : : ; β̃nk�T is
√
n-

consistent. The joint asymptotic distribution is not needed for our purpose,
although the asymptotic covariance matrix can be easily calculated.

4. Estimation of efficient influence function. The efficient influence
function J�zy β; γ� is given by (5). It involves q�x�, η�x�, ϕ�y−wβ−η�x�� and
I∗�β; γ�, so we have to estimate these quantities. Of these, q�x� = E�W�X = x�
can be estimated in a straightforward manner by a kernel estimator

�15� q̂n�x� =
[ n∑
i=1

K��Xi − x�/hn�Wi

]/[ n∑
i=1

K��Xi − x�/hn�
]
:

The following is a well-known result in the theory of nonparametric regression,
so we state it without proof.

Lemma 4.1. Suppose that Condition A2(a) and (b) holds and that the kernel
K in (15) satisfies Condition K1. If hn → 0 and nhn/ log n → ∞ as n → ∞,
and if we let rn = �nhn/ log n�−1/2 + hn, then

sup
x∈�0;1�

∣∣q̂n�x� − q�x�
∣∣ = Oa:s:�rn� under Pβ; γ:

To estimate the other quantities, first suppose that β is known. Since η�x�
is the location of Y−Wβ given X = x and ϕ�t� = −g′�t�/g�t�, where g is the
pdf of Y −Wβ − η�x�, we could use the M-smoothing technique to estimate
η�x� by the solution η̃n�x�β� of

�16� 0 = Dn�t �xy β� = �nhn�−1
n∑
i=1

K��Xi − x�/hn�χc�Yi −Wiβ− t�;
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with the same kernel K as above and the Huber function

χc�u� = u I ��u� ≤ c� + c�I �u > c� − I �u < −c��; c > 0;

and then estimate ϕ�y−wβ−η�x�� by ϕ̂n�y−wβ−η̃n�x�β��β�, where ϕ̂n�t �β�
is constructed from the estimated residuals

�17� Êi�β� = Yi −Wiβ− η̃n�Xi �β�

by the kernel method as follows. Let

ĝn�t �β� = an + �nan�−1
n∑
i=1

K0��t− Êi�β��/an�;

ĝn
′�t �β� = �∂/∂t�ĝn�t �β�;

(18)

using a logistic kernel Ko�u� = exp�u�/�1+exp�u��2 and a bandwidth an with
an→ 0 and na8

n→∞: Since g is symmetric, ϕ = −g′/g is odd, we would then
estimate ϕ�t� by

�19� ϕ̂n�t �β� = −
1
2

[
ĝn
′�t �β�

ĝn�t �β�
− ĝn

′�−t �β�
ĝn�−t �β�

]
:

Finally, if we let

�20� H�zy β; γ� = �w− q�x��ϕ�y−wβ− η�x��;

then I∗�β; γ� = E�H2�Zy β; γ��, so with β known, a natural estimator of
I∗�β; γ� would be

�21� În�β;Z�n�� = n−1
n∑
i=1

Ĥ2
n�Ziy β;Z�n��;

where

�22� Ĥn�zy β;Z�n�� = �w− q̂n�x�� ϕ̂n�y−wβ− η̃n�x�β� �β�:

We are now going to implement the above procedures by replacing β

throughout by the discretized version βn of its estimator β̃n obtained in
Section 3.

For notational convenience, let β′ be arbitrary and let η̃n�x�β′� denote the
solution of Dn�t �xy β′� = 0, replacing β by β′ in (16). Also replace β by β′ in
(17), (18), (19), (20), (21) and (22) to define Êi�β′�, ĝn�t �β′�, ĝn′�t �β′�, ϕ̂n�t �β′�,
H�zy β′; γ�, Ĥn�zy β′;Z�n�� and În�β′;Z�n�� for arbitrary β′. The estimated
efficient influence function is thus given by

�23� Ĵn�zy β′;Z�n�� = �În�β′;Z�n���−1 Ĥn�zy β′;Z�n��:

We first establish a rate of a.s. uniform convergence for the estimator
η̃n�x�βn� of η�x� with βn = β+O�n−1/2�.
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Lemma 4.2. Assume that Conditions A1, A2(a) and (b) and A3 hold, and
let the kernel K in (16) satisfy Condition K1. If hn → 0 and nhn/ log n→ ∞
as n→∞, then, for βn = β+O�n−1/2� and rn = �nhn/ log n�−1/2 + hn,

sup
x∈�0;1�

∣∣ η̃n�x�βn� − η�x�
∣∣= Oa:s:�rn� under Pβ; γ:

Proof. Let D�t �x� =
∫
χc�u−t�fo�x�g�u−η�x��du. Then, by Lemma 3.2

of Härdle, Janssen and Serfling (1988),

sup
t; x
�Dn�t �xy β� −D�t �x�� = Oa:s:�rn�:

Moreover, since the Wi’s are bounded,

�χc�u1� − χc�u2�� ≤ �u1 − u2� for all u1; u2

and

f̂0n�x� = �nhn�−1
n∑
i=1

K��Xi − x�/hn� → f0�x� a.s.

which is bounded, we have

sup
t; x

∣∣Dn�t �xy βn� −Dn�t �xy β�
∣∣ ≤ O��βn − β��

[
sup
x
f̂0n�x�

]

= Oa:s:�n−1/2� = Oa:s:�rn�:
(24)

Thus

�25� sup
t; x

∣∣Dn�t �xy βn� −D�t �x�
∣∣ = Oa:s:�rn�:

Next note that
∫
χc�u�g�u�du = 0 and that, for all u and ε, �χc�u+ε�−χc�u�� ≤

�ε� to conclude that, as ε→ 0,
∣∣∣∣ ε
−1
∫
χc�u+ ε�g�u�du

∣∣∣∣ =
∣∣∣∣ ε
−1
∫
�χc�u+ ε� − χc�u��g�u�du

∣∣∣∣

→
∣∣∣∣
∫
χc
′�u�g�u�du

∣∣∣∣=
∣∣∣∣
∫ c
−c
g�u�du

∣∣∣∣> 0:

Hence there exist δ > 0 and δ0 > 0 such that for �ε� < δ;

�26� inf
x∈�0;1�

∣∣∣∣
∫
χc�u−η�x�+ε�g�u−η�x��du

∣∣∣∣=
∣∣∣∣
∫
χc�u+ε�g�u�du

∣∣∣∣> δ0�ε�:

Since η̃n�x�βn� is the solution of Dn�t �xy βn� = 0, the lemma follows from
(25) and (26) by arguing as in Theorem 3.4 of Härdle, Janssen and Serfling
(1988). 2

Remark 8. If Condition A3(b) is replaced by the condition

Condition A3. (b′)
∫
χ�y�g�y�dy = 0 and

∫
χ′�y�g�y�dy > 0 for a known

bounded, nondecreasing, odd function χ with bounded derivative,
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as suggested by a referee, then in (16), we replace the Huber function χc by
this function χ. The proof of Lemma 4.2 remains valid if we use χ in place of
χc throughout and note that, for ε→ 0,

ε−1
∫
χ�u+ ε�g�u�du = ε−1

∫
�χ�u+ ε� − χ�u��g�u�du

→
∫
χ′�u�g�u�du > 0;

since
∫
χ�u�g�u�du=0 and χ′ is bounded. Condition A3(b′) is more gen-

eral than Condition A3(b) in the sense that Condition A3(b) implies Con-
dition A3(b′), but the requirement that a known function χ should make∫
χ�y�g�y�dy equal to 0 when g itself is unknown, may seem to be artifi-

cial.

In Lemma 4.2, if we replace βn = β + O�n−1/2� by the estimator β̃n =
β + Op�n−1/2� obtained in Section 3, then everything goes through except
that the a.s. rate in (24) and (25) is replaced by an “in probability” rate. This
leads to the following theorem, giving a weak uniform convergence rate of the
estimator η̂n�x� = η̃n�x�β̃n�, which is of interest aside from the main issue of
estimating β.

Theorem 4. Let η̂n�x� = η̃n�x�β̃n�. Then, under the conditions of Theo-
rem 3 and Lemma 4.2 and with rn as in Lemma 4.2,

sup
x∈�0;1�

∣∣ η̂n�x� − η�x�
∣∣= Op�rn� under Pβ; γ:

We now consider two variations of ϕ̂n�t �β′�; viz., ϕn�t �β′� obtained by using
Ei�β′� = Yi−Wiβ

′−η�Xi� in place of Êi�β′� = Yi−Wiβ
′− η̃n�Xi �β′� in (18)

and (19), and its leave-one-out version ϕn�i��t �β′� based on all samples except
Zi: In the following two lemmas, we state some properties of ϕ̂n; ϕn and ϕn�i�:
The proof of Lemma 4.3 is straightforward and we omit it, while Lemma 4.4
is a restatement of a result from page 100 of Schick (1987).

Lemma 4.3. The following hold for all t, t1, t2, β′ and β′′:

(a) �ϕ̂n�t �β′�� ≤ a−1
n ;

(b) �ϕ̂n�t1 �β′� − ϕ̂n�t2 �β′�� ≤ 3a−4
n �t1 − t2�;

(c) �ϕn�t1 �β′� − ϕn�t2 �β′�� ≤ 3a−4
n �t1 − t2�;

(d) �ϕn�t �β′� − ϕn�t �β′′�� ≤ 3Ma−4
n �β′ − β′′�, where P��W� ≤M� = 1;

(e) �ϕ̂n�t �β′� − ϕn�t �β′�� ≤ 3a−4
n supx∈�0;1� �η̃n�x�β′� − η�x��;

(f ) �ϕn�t �β′� − ϕn�i��t �β′�� ≤ 2n−1 a−3
n :

Lemma 4.4. If an → 0 and na6
n → ∞ as n → ∞; then Eβ; γ�

∫
�ϕn�t �β� −

ϕ�t��2 g�t�dt� → 0:
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In the Appendix, we use Lemmas 4.1–4.4 to prove the following lemma
which leads to the main result of this section.

Lemma 4.5. Suppose that Conditions A1, A2 and A3 hold. If an → 0,
na8

n → ∞, hn → 0 and n1/2 a−4
n ��nhn/ log n�−1/2 + hn�2 → 0, then, for every

sequence βn = β+O�n−1/2�, the following hold under Pβ; γ:

�i� n1/2
∫
Ĥn�zy βn;Z�n��p�zy βn; γ�dµ = op�1�;

�ii�
∫ ∣∣Ĥn�zy βn;Z�n�� −H�zy βn; γ�

∣∣2p�zy βn; γ�dµ = op�1�;

�iii� În�βn;Z�n�� = I∗�β; γ� + op�1�:

We now establish Condition B3 (discussed in Section 2) for our estimator
of the efficient influence function.

Theorem 5. Suppose that Conditions A1, A2 and A3 hold, and let an and

hn be chosen as in Lemma 4.5. Then the estimator Ĵn�·� of the efficient influence
function constructed by (23) satisfies Condition B3.

Proof. The theorem follows directly from Lemma 4.5 and formulas (5)
and (23) for J�·� and Ĵn�·�, respectively. 2

5. Efficient estimator of b. We now summarize the developments of
Sections 3 and 4 to describe our construction of an asymptotically efficient
estimator of β.

First, let β̃n be the
√
n-consistent estimator defined by (8) and (9), and

consider its discretized version βn, namely, the point in the set �jn−1/2x j
is an integer� which is closest to β̃n. Next, split the data in two halves:
�Zi = �Wi;Xi;Yi�, i ∈ 3n1�, �Zi = �Wi;Xi;Yi�, i ∈ 3n2�, where
3n1 = �1; : : : ; �n/2��, 3n2 = ��n/2� + 1; : : : ; n�, and, for l = 1;2, define
q̂nl�·�, η̃nl�· �βn�, restricting the sums in (15) and (16) to i ∈ 3nl: Let
Êi�βn� = Yi−Wiβn− η̃nl�Xi �βn� for i ∈ 3nl and, with these residuals, define
ĝnl�· �βn� and ĝnl′�· �βn�, again restricting the sums in (18) to i ∈ 3nl . Now
use ĝnl�· �βn� and ĝnl

′�· �βn� in (19) to construct two estimates ϕ̂nl�· �βn�,
l = 1;2, of the score function from the two halves of the data, namely,
Z�n;1� = �Z1; : : : ;Z�n/2�� and Z�n;2� = �Z�n/2�+1; : : : ;Zn�. Finally, use q̂nl�·�,
η̃nl�· �βn� and ϕ̂nl�· �βn� in (22), (21) and (23) to obtain

Ĥnl�zy β;Z�n; l�� = �w− q̂nl�x�� ϕ̂nl�y−wβn − η̃nl�x�βn�
∣∣βn�;

Înl�βn;Z�n; l�� = 2n−1 ∑
i∈3nl

Ĥ2
nl�Ziy βn;Z�n; l��;
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and the two estimates of the efficient influence function

Ĵnl�zy βn;Z�n; l�� = �Înl�βn;Z�n; l���−1 Ĥnl�zy βn;Z�n; l��
for l = 1;2. Evaluating Ĵn2�·� on Z1; : : : ;Z�n/2� and Ĵn1�·� on Z�n/2�+1; : : : ;Zn,
the efficient estimator β̂n of β is now given by (7), which we state again:

�27� β̂n = βn +
1
n

[ �n/2�∑
i=1

Ĵn2�Ziy βn;Z�n;2�� +
n∑

i=�n/2�+1

Ĵn1�Ziy βn;Z�n;1��
]
:

We have already shown in Theorem 3 that β̃n satisfies Condition B2 of being√
n-consistent, and in Theorem 5 the estimated efficient influence function

Ĵn�·� has been shown to satisfy Condition B3. Also, by Theorem 9.5 of Rudin
(1987), the map β 7→ ρ∗�· y β; γ� is continuous for every γ = �η;f;g� ∈ 0, so
that Condition B1 is also satisfied. By Theorem 2 [due to Schick (1986)], the
asymptotic linearity of the estimator β̂n is thus established. This is stated in
the following theorem.

Theorem 6. Suppose that Conditions A1, A2, A3 and K1 hold, and let
bn, an; and hn be chosen to satisfy nbn → ∞, nb2

n → 0, an → 0, na8
n →

∞, hn → 0, nhn/ log n → ∞ and n1/2 a−4
n ��nhn/ log n�−1/2 + hn�2 → 0: Then

the estimator β̂n of β given by (27) is asymptotically linear. Hence
√
n �β̂n −

β� is asymptotically N �0; �I∗�β; γ��−1�; thus attaining the smallest possible
asymptotic variance among all regular estimators.

Remark 9. The condition nh4
n → 0 is not stated explicitly in Theorem 6,

because it is implied by n1/2 a−4
n ��nhn/ log n�−1/2 + hn�2 → 0. An example

of bn, an, hn satisfying the conditions of Theorem 6 is bn = n−2/3; an =
�n−1/8 log n�1/3 and hn = �n−1 log n�1/3: However, if η ∈ C2�0;1�, then in The-
orem 6 the condition nb2

n → 0 can be replaced by nb4
n → 0 as pointed out

in Remark 6, so that bn can be chosen to be the same as hn: Of course, the
choice of bn, an, hn by a data-driven method to achieve good performance in
moderate-sized samples needs to be investigated.

Remark 10. Schick (1993) has developed a method of estimation in re-
gression models which avoids the sample-splitting technique described above.
This approach depends on conditions involving a leave-one-out type of condi-
tional expectation which can be easily verified in partial linear models with
finite residual variance, where the nonparametric regression can be effectively
estimated by averages over small intervals. However, the problem is much
harder without a moment condition on the residuals, because here the robust
M-smoother estimate of the nonparametric regression is not in a closed form
and the verification of these conditions leads to intractable calculations.

Remark 11. In this paper, we have mainly discussed the estimation of a
real parameter β: We now indicate how these results extend to the multipa-
rameter case. The asymptotic lower bound and the efficient influence function
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generalize to the multi-parameter case in a straightforward manner as men-
tioned in Remark 4. The bandwidth-matched M-estimation procedure for con-
structing a

√
n-consistent initial estimate generalize to the case of W having

its support on the cartesian product of finite sets, as described in Remark 7.
A
√
n-consistent estimate in the general multidimensional case has been con-

structed by Zhao (1995) following a different approach. With these multidi-
mensional generalizations of the results of Sections 2 and 3, everything else
extends in an obvious manner without any further difficulty to the multipa-
rameter case.

APPENDIX

Proof of Lemma 4.5. We sketch the proof and refer to Bhattacharya and
Zhao (1995) for more details. Let t = y − wβn − η�x�, E = y − wβ − η�x�,
αn�x� = η̃n�x�βn� −η�x� and δn�x� = q�x� − q̂n�x�: Then H�z� =H�zy β; γ� =
�w − q�x��ϕ�E �, Hn�z� = H�zy βn; γ� = �w − q�x��ϕ�t�, Ĥn�z� = Ĥn�zy βn;
Z�n�� = �w−q�x�+δn�x�� ϕ̂n�t−αn�x� �βn�; and pn�z�dµ = p�zy βn; γ�dµ =
f�w;x�g�t�dν�w;x�dt: Now let Mn�x� =

∫
ϕ̂n�t− αn�x� �βn�g�t�dt and note

that E��Mn�X��� <∞ by Lemma 4.3(a) so that we can write
∫
Ĥn�z�pn�z�dµ

= E�Mn�X�E�W− q�X��X��

+
∫
δn�x�

[∫
�ϕ̂n�t− αn�x� �βn� − ϕ̂n�t �βn��g�t�dt

]
f0�x�dx

+
[∫
δn�x�f0�x�dx

] [∫
ϕ̂n�t �βn�g�t�dt

]
:

The first term is clearly 0, the second term is oa:s:�n−1/2� by Lemmas 4.1, 4.2,
4.3(b) and the third term is 0 because ϕ̂n

(
t �βn

)
is an odd function and g is

symmetric. If g is not symmetric, we redefine ϕ̂n = −ĝn′/ĝn: Now the third
term can be shown to be op�n−1/2� if f′′0, q′′ and g′′ are bounded. This proves
part (i).

Next let 11n�z� = δn�x�ϕ̂n�t − αn�x� �βn�; 12n�z� = �w − q�x���ϕ̂n�t −
αn�x� �βn� − ϕn�t �β��, 13n�z� = �w − q�x���ϕn�t �β� − ϕ�t��, 10n�z� = �w −
q�x���ϕn�t �βn�−ϕn�E �β��, B1n�i��z� = �w−q�x���ϕn�E �β�−ϕn�i��E �β�� and

B2n�i��z� = �w−q�x���ϕn�i��E �β�−ϕ�E ��: Then Ĥn�z�−Hn�z� =
∑3
j=1 1jn�z�

and Ĥn�z� −H�z� =
∑2
j=0 1jn�z� +

∑2
j=1Bjn�i��z�: We thus have

∫
�Ĥn�z� −Hn�z��2pn�z�dµ ≤ 3

∫ [ 3∑
j=1

12
jn�z�

]
pn�z�dµ;

of which the first two terms are oa:s:�1� by Lemmas 4.1, 4.2, 4.3(a), (b),
(d) and (e), and taking expectation of the third term [with respect to Z�n�],
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under Pβ; γ,

E

[∫
12

3n�z�pn�z�dµ
]
= E�Var�W�X��E

[∫
�ϕn�t �β� − ϕ�t��2 g�t�dt

]
→ 0

by Lemma 4.4, which proves part (ii).
Finally, since I∗�β; γ� = E�H2�Z��; part (iii) will follow by the WLLN if we

show that

n−1
n∑
i=1

�Ĥ2
n�Zi� −H2�Zi�� = op�1�:

Let 1n�Zi� = Ĥn�Zi� −H�Zi�: Then by the Cauchy-Schwarz inequality,

n−1

∣∣∣∣
n∑
i=1

�Ĥ2
n�Zi� −H2�Zi��

∣∣∣∣

= n−1

∣∣∣∣
n∑
i=1

�12
n�Zi� + 2H�Zi�1n�Zi��

∣∣∣∣

≤ n−1
n∑
i=1

12
n�Zi� + 2

{
n−1

n∑
i=1

H2�Zi�
}1/2 {

n−1
n∑
i=1

12
n�Zi�

}1/2

:

Thus, showing n−1∑n
i=1 1

2
n�Zi� = op�1� is enough. But

n−1
n∑
i=1

12
n�Zi� ≤ 5n−1

[ 2∑
j=0

n∑
i=1

12
jn�Zi� +

2∑
j=1

n∑
i=1

B2
jn�i��Zi�

]
;

of which n−1∑n
i=1 1

2
jn�Zi�, j = 0;1;2 and n−1∑n

i=1B
2
1n�i��Zi� are oa:s:�1� by

Lemmas 4.1, 4.2, 4.3, and the expectation of the remaining term [with respect
to Z�n�] under Pβ ;γ is

E

[
n−1

n∑
i=1

B2
2n�i��Zi�

]

= n−1
n∑
i=1

EE�B2
2n�i��Zi� �Zi� = EE�B2

2n�1��Z1� �Z1�

=
∫ ∫ ∫

�w− q�x��2E��ϕn�1��E �β� − ϕ�E ��2�f�w;x�g�E �dν�w;x�dE

= E�Var�W�X��E
[∫
�ϕn�1��E �β� − ϕ�E ��2 g�E �dE

]
;

which tends to 0 by Lemmas 4.3(f) and 4.4, proving part (iii). 2
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