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SYMMETRIC, COHERENT, CHOQUET CAPACITIES

By JosepH B. KADANE! AND LARRY WASSERMAN 2

Carnegie Mellon University

Choquet capacities are a generalization of probability measures that
arise in robustness, decision theory and game theory. Many capacities
that arise in robustness are symmetric or can be transformed into sym-
metric capacities. We characterize the extreme points of the set of upper
distribution functions corresponding to coherent, symmetric Choquet ca-
pacities on [0, 1]. We also show that the set of 2-alternating capacities is a
simplex and we give a Choquet representation of this set.

1. Introduction. A Choquet capacity on a measurable space ({, %) is a
mapping C: & — [0,1] such that C(&) = 0. C is coherent if there exists a
nonempty set of probability measures M such that C(A) = supp 5, P(A) for
every A € %. Coherent capacities are also called upper probabilities [Walley
(1991), Fine (1988), Dempster (1967, 1968), and Smith (1961)] or upper
envelopes [Anger and Lembcke (1985) and Denneberg (1994)]. Let Q = [0, 1],
let & be the Borel subsets of ) and let u be Lebesgue measure. C is
symmetric if C(A) = C(B) whenever u(A) = w(B). As we shall show, it is
possible to say exactly when a symmetric capacity is coherent.

Many robustness models used in statistics involve symmetric, coherent
capacities or can be transformed into the same by a smooth, one-to-one
mapping [Buja (1986), Huber and Strassen (1973), Wasserman and Kadane
(1990) and Fortini and Ruggeri (1994)]. For example, the upper probability
for an e-contamination neighborhood around a probability measure P [Berger
(1984, 1990) and Huber (1973, 1981)] generates a symmetric capacity once
the set of probabilities is transformed to the unit interval under the inverse
integral transform corresponding to P. This is true for many neighborhoods.
Capacities are also used in decision theory [Gilboa (1987) and Schmeidler
(1989)] and game theory [Shapley (1971)]. Symmetric Choquet integrals,
which are related to symmetric capacities, have been studied by Armstrong
(1990) and Talagrand (1978). Symmetric capacities were studied in Wasser-
man and Kadane (1992) under the additional assumption that M consisted of
nonatomic probabilities with bounded densities. Despite the ubiquity of ca-
pacities, there is little in the way of simple characterizations for capacities as
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there are for probabilities. This paper is concerned with such characteriza-
tions. In particular, we are interested in the following question: what are the
extreme points in the set of all distribution functions corresponding to
symmetric capacities?

Our interest in the extreme points is twofold. First, in Bayesian robust-
ness, where heavy use is made of sets of priors, the extreme points play a
crucial role. For example, one is typically interested in bounding posterior
expectations. These bounds occur at the extreme points. Thus, much atten-
tion in Bayesian robustness has focused on extreme points. Second, it is very
difficult to form an intuitive picture of the set M since it is typically infinite
dimensional. It is our hope that our characterization of the extreme points,
which has a simple geometric interpretation (Corollary 3.1), will cast light on
the structure of these sets.

A capacity is 2-alternating if

(1) C(AUB) < C(A) +C(B) — C(ANB)

for all A, B € %#. Many capacities used in statistics are 2-alternating. Fur-
thermore, the 2-alternating condition is crucial for many important results.
For example, a particular generalization of the Neyman—Pearson lemma
holds if and only if the capacity generated by the underlying models is
2-alternating [Huber and Strassen (1973)]. Similarly, a particular generaliza-
tion of Bayes’ theorem for capacities holds if and only if the capacity is
2-alternating [Wasserman and Kadane (1990)]. In game theory, 2-alternating
capacities represent certain convex games [Shapley (1971)]. Most work on
coherent capacities has focused on the 2-alternating case. Little is known
about the non-2-alternating case. Some work on non-2-alternating and nonco-
herent capacities is contained in Papamarcou and Fine (1986) and
Sadrolhefazi and Fine (1994). We shall consider the general case in Sections 2
and 3 and the 2-alternating case in Section 4.

The following is an outline of the paper and serves as a summary of the
main contributions of this paper. In Section 2 we give a majorization repre-
sentation of symmetric capacities (Theorem 2.1) which generalizes a theorem
in Wasserman and Kadane (1992). In Section 3, which is the main section of
the paper, we study the distribution functions of symmetric capacities. There
we establish (Lemmas 3.1 and 3.2) a correspondence between distribution
functions of symmetric capacities and functions o taking [0, 1] to [0, 1] that
satisfy

m [© 2 T g

w-1712 u(1 —u)
This correspondence allows us to characterize the extreme points in the set of
all distribution functions for symmetric capacities (Theorem 3.2). This is the
main theorem of the paper and, loosely, it says that F' is extreme if and only
if the corresponding o function takes values 0 and 1 almost everywhere. In
Section 4 we identify the extreme points of the set of distribution functions
for 2-alternating capacities (Theorem 4.1) and we give a Choquet representa-
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tion for this set by identifying the unique mixing measure over the extreme
points (Theorem 4.2). Closing remarks are contained in Section 5.

2. A characterization of symmetric, coherent capacities. Let & be
the set of all probability measures on %, let &2, be the set of all P € & that
are absolutely continuous with respect to u and let %, be the set of all
probability measures that are singular with respect to w. Suppose that
P,Qex, andlet p = dP/du and q = dQ/dpn. We write p ~ q if

(2) r({o; p(@) > t}) = u({w; g(w) > t})

for all real ¢. If (2) holds we say that p and g are equimeasurable. We shall
also say that P and @ are equimeasurable and we will write P ~ @. Given
any P € #, with p = dP/du, there exists a unique, nonincreasing, right-con-
tinuous function p*, called the decreasing rearrangement of p, such that
p ~ p* [Ryff (1965)]. We call the corresponding probability measure P* the
decreasing rearrangement of P.

Every P €% may be written in terms of its Lebesgue decomposition
P=aP, + aP, where P, e® 6 P, e?, 6 ac[0,1]and @ = 1 — a. We define
the decreasing rearrangement of P by P* = aP} + ad,, where §, is a point
mass at 0. Note that, if P €%, then this agrees with the earlier definition of
decreasing rearrangement. We say that P is majorized by @, denoted by
P < Q,if P*([0,¢] < Q*(0, t] for every real ¢t. Majorization has been studied
in discrete settings [Marshall and Olkin (1979)] and continuous settings [Ryff
(1963, 1965, 1967, 1970)]. Our definition is slightly different from previous
definitions to allow for probabilities with both absolutely continuous and
singular components.

Let M c% be nonempty and let C(A) = supp 5, P(A). Throughout the
rest of the paper we restrict attention to symmetric, coherent capacities. We
say that P is dominated by C, written P < C, if P(A) < C(A) for all A €.%.

THEOREM 2.1. The following two statements are equivalent:

(1) C is symmetric.
({i) P<Cand @ < Pimply that Q@ < C.

Before proving the theorem, we establish some lemmas.

LEmMMA 2.1.  For every P € &, and every t € [0, 1], there exists A, such that
@ u(A) =t¢, Gi) P*(0,tD = P(A,) and (iii) P(A,) > P(B) for every B for
which w(B) = t.

Proor. The lemma is obvious for ¢ = 0 and ¢ = 1 so assume 0 <¢ < 1.
Let p=dP/dp and p* = dP*/du. Define A, ={w; p(w) > p*(t)} and
Ay ={w; p(w) > p*)}. Then u(A,)) <t < u(Ay) and Ay CAy. Let u =
u(A,). Choose B suchthat A, c BcA,,and w(B) =¢ —u.Let A, = A, U B.
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Hence, u(A,) =t and P(A,) = P(A,) + P(B) = P*(0,u]) + p*(u)t — w) =
P*(0, t]. Now let K be such that u(K) = ¢t. Then

P(A,) - P(K)=P(A, —K)-P(K—-A)

= w(A, - K)essinfp(w) — u(K - At)eifs sAupp(w)

=pun(4, —K)(eisigfp(w) - esssupp(w)) > 0. |

LEMMA 2.2. For every P € % and every A € %, P(A) < P*(0, uw(A))).

Proor. Let ¢ = u(A). Then P*(0, (A = aPF(0, u(A))D + a =
aP(A,) +a>aP(A) + a> aP,(A) + aP(A) = P(A), where A, is as de-
fined in Lemma 2.1. The second equality and the inequality that follows it are
both due to Lemma 2.1. O

LemMa 2.3. If C is symmetric and P < C, then P*(0,t]) < C(0,t] for
every t.

Proor. Let P = aP + aP, and let S be the support of P.. P*(0,¢]) =
aP*(0,t) +a = aP(A)+a = aP(A,US)+ aP(A, US) =
P(A,US) <C(A,US)=C(0,¢]. The second equality follows from Lemma
2.1. The last equality follows since C is symmetric and u(A, U S) = ([0, t].

O

ProOF oF THEOREM 2.1. (i) implies (ii). Let P <C and @ < P. For any A,
Q(A) < @*([0, u(A)) < P*([0, w(A)D < C(0, u(A)D = C(A). This follows
from, respectively, Lemma 2.2, @ < P, Lemma 2.3 and (i). Thus, @ < C.

(ii) implies (i). Let A and B be such that u(A) = w(B). There exists P < C
such that P(A) = C(A). Write P = aP, + aP,. Define

P.(A) P,(A%)
w(A) OB S

and define R = aR, + aR_, where R_ is any singular measure such that
R (B) = P,(A). By construction, R(B) = P(A). Furthermore, R < P so that,
by (i), R < C. Thus, C(A) = P(A) = R(B) < C(B). By a similar argument,
C(B) < C(A). O

R,() = n(-N B°)

Now we consider some examples of symmetric capacities.

ExaMPLE 2.1 (s-contamination). Let M ={(1 — &)u + £Q; Q .2} where
g €[0,1]. Then C(A) = (1 — &)u(A) + ¢ if A # . This model is used exten-
sively in robustness [Huber (1973, 1981) and Berger (1984)].
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ExaMpPLE 2.2 (Total variation). Let d(P, Q) = sup,c 4/P(A) — Q(A)| be
the total variation distance between P and Q. Let M ={P; d(pu, P) < &}.
Then C(A) = min{P(A) + &, 1}. This is also common in robustness.

ExaMmPLE 2.3 (Density bounded class). Let a < 1 < b and let M be the set
of all P with densities p (with respect to w) such that a < p(w) < b for
p-almost all w. Then C(A) = min{bu(A),1 — au(A°)}. Lavine (1991a, b) uses
this class in Bayesian robustness.

ExaMPLE 2.4 (Density ratio class). Let £ > 1 and let M be the set of all P
with densities p (with respect to w) such that ess sup p(w)/essinf p(w) < k.
It turns out that C(A) = Eu(A)Nku(A) + w(A°)] L. This is a specialization of
a class used by DeRobertis and Hartigan (1981) in Bayesian robustness.

3. Distribution functions for capacities. The distribution function for
a symmetric capacity C is defined by F(w) = C([0, w]). Conversely, a function
F: [0,1] - [0,1] defines a symmetric capacity by way of C(A) = F(u(A)).
Distribution functions for capacities were used by Buja (1986) and Bednarski
(1981) in a different context.

ExampLES 2.1-2.4 (Continued). The distribution functions for these exam-
ples are, respectively, F(w) = (1 — £)o + &, F(w) = min{w + ¢,1}, F(w) =
min{bw,1 — a1l — w)} and F(w) = kolkow + (1 — &)] L.

Let grF ={(w,y) €[0,1] X[0,1]; y < F(w)}. If a =(aj,a,) and b =
(b, by) are two points in the plane with a; <b,, let L, ,(w) =a, + (0 —
a, by, — ay)/(b; — a;) and (a, b) = {(w, L, ,(w)); a; < o < b;}. We say that
F is doubly star-shaped if a € gr F' implies that #(0,a) C gr F and “(a,
1) cgrF, where 0 = (0,0) and 1 = (1, 1).

In general, it is difficult to know whether a capacity is coherent; see Anger
and Lembcke (1985) for example. The next theorem characterizes coherent,
symmetric capacities in terms of their distribution functions.

THEOREM 3.1. If C is symmetric and coherent, then its distribution F is
doubly star-shaped. Conversely, if F: [0,1] — [0, 1] is doubly star-shaped,
then there exists a symmetric, coherent capacity C such that F(w) = C(0, w])
for every w € Q.

Proor. Let C be symmetric. Fix A = [0, ¢], ¢t € (0, 1). There exists P <C
such that P(A) = C(A). Define R(:) = P(A)u(-NA)/u(A) + P(A)u(-N
A°)/u(A°). Then R < P; hence R <C. So, for every w € Q, G(w) = R([0,
w]) < C(0, w]) = F(w). Since G is piecewise linear this implies that .#(0, a)
egrF and “(a,1) € grF, where a = (0, F(w)). It follows that grF is
doubly star-shaped.

Now we construct a class M that generates a symmetric capacity C with
distribution F. For every measurable set A such that 0 < u(A) < 1, define
P,() = F(u(A)u(-Nn A)/u(A) + 1 = F(u(A))u(-N A°)/u(A°). For
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nonempty A such that w(A) =0, define P,(-) = F(0)5, + (1 — F(O)u(),
where w, € A. For A with u(A) = 1, define P, = n. Let M ={P,; A €%,
A # J} and C(A) = supp ., P(A). We claim that C(A) = P,(A). First, sup-
pose that A =[0,¢], ¢ €(0,1). For any C, P,(A) = Ps(A) = P.(A), where
C =[0, w(C)]. The first inequality is from the fact that F is doubly star-
shaped. The second follows from how P, is defined. Hence, P,(A) = C(A).
Now consider any A such that u(A) > 0. Let C be any set, let A =10, u(A)]
and let D be such that (D) = w(C) and u(D N A) = uw(C N A). Then P,(A)
= P;(A) = P,(A) = P,(A). Hence, P,(A) = C(A). 1t follows that C is sym-
metric and that C([0, w]) = F(w). O

Let .7 be the set of doubly star-shaped functions taking [0, 1] to [0, 1]. The
following propositions record some basic properties of doubly star-shaped
functions. The proof of Proposition 3.1 is straightforward and is omitted.

ProposiTION 3.1. If F € .7, then:

G FQ) =1;

(i) F(w) = o for every w € Q;
(ii1) F is strictly increasing on {w; F(w) < 1};
(iv) F is continuous.

Given a function F and a point o € (0, 1), define

o) = [y (5222,

@ (=",

£°(y) =21, (¥) + o), 1y(¥)-

When o = 1, define v®(y) =1 and A“(y) = y.

PROPOSITION 3.2. Let F: Q — Q. The following four statements are equiva-
lent:

G) Fex

(i) For all w € (0,1l and all 0 <y < w, A“(y) < F(y) < v*(y).

(ii1) F'is a continuous function such that F(1) = 1 and is strictly increasing
on {w; F(w) < 1}. Hence, the derivative exists almost everywhere. Further-
more, for almost all o € (0, 1],

(4) —1 1 F(ww) <F'(w) < Fle) .

w

(iv) For every w € Q, F(w) = sup; . » G(w), where & is a nonempty set of
functions such that each G € Z satisfies (a) G: Q - Q, (b) G(1) =1, () G is
concave and (d) G(w) < F(w) for all o.
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REMARK. Statement (ii) shows that A* and v* provide a lower and upper
bound for F.

Proor. (i) implies (ii): straightforward.

(i1) implies (iii): straightforward.

(ii1) implies (iv): fix o € (0, 1]. Suppose there exists y € (0, w] such that
F(y) < &°(y).

Let y, =inflz € [y, w]; F(2) > £€“(2)}. Thus, F(y,) = é“(y,) and F(x) <
£9(x) for x €[y, y,). Hence, F(w)/w = (£°(y,) — £°(y)/(y, — y) <
(F(yy) — F(y))/(y, — y). From this, together with (4) we derive the following
contradiction:

F(w) _F(yo) ~F(y) _ [°F'(s) ds

w Yo — Y Yo — Y
_IPR(s)/sds _ [e(s) /5ds
Yo~V Yo~ ¥
[J°F(0)/0ds F(o)
T vy e

So we conclude that F(y) > £“(y) for all y € (0, w]. A similar argument
shows that F(y) > £“(y) for all y € [w,1]. Now take & = {£°; x € [0, 1]}.

(iv) implies (i): for w € [0,1] and & > 0, find G, € & such that G(w) > F(w)
— &. Let S, (w) be defined as ¢ is defined in (3) except with G, in place of F.
The concavity of G, implies that S,(y) < F(y) for all y. Note that S, 1 £“ as
£ 10. It follows that £ < F. This holds for every w and (i) follows. O

Note that, by Proposition 3.2(Gii), if F: Q — Q is in .7, then there exists a
measurable function « on Q such that 0 < a(w) < 1 almost everywhere and

a(0)F(o) (1-a(e)-F())

(5) Fio) = —— -

almost everywhere. From this observation, we are motivated to consider the
transform from F to the corresponding «.

Define the function «; by a(w) =1 for all w € Q. Let & = {a,} Uz,
where o7, is the set of all measurable functions on ) such that 0 < a(w) < 1
for p-almost all w and

w u) —u
(6) fim (¢S T
w-171,2 u(1 —u)



SYMMETRIC CAPACITIES 1257

Define the function F; by Fi(w) = w. Given a function F, define a = I(F)
and ¢ = #(F) by
F'(0) - (1-F(0))/(1 - o)
(7 a(w)={ F(o)/o—(1-F(w))/(1-o0)’
1, if F = F,

if F + F,,

and ¢c = F(1/2) — 1/2.

LEMMA 3.1. Let F € 7. If a=9(F) and ¢ = #(F), then a €% and 0 <
¢ < 1/2. Furthermore, ¢ = 0 if and only if a = a;.

Proor. If F' = F,, then a = a; € and ¢ = 0. Suppose that F' # F,. Since
F € .7, we have by Proposition 3.2(iii) that

for almost all w. Thus, for some function 8 such that 0 < 8(w) < 1 (almost
all w), we can write

Fr(w) = Blw) L )+(1—/s< y ) (“’)

Solving this equation and comparing it to (7), we see that B(w) = a(w) which
shows that 0 < a(w) < 1 almost everywhere. Now we show that (6) holds.
Note that a(w)/(0(l — w)) = (F'(w) — 1)/(F(w) — w). Since this last ex-
pression is equal to d log(F(w) — w)/dw, it follows that

o a(u) —

1 1
al)l_l’)l’ll 1/2m du = (‘1)1_1')1'11 (log(F(w) - w) - IOg(F(E) - E)) = —x,

since F(1) = 1 and F(1/2) > 1/2. Thus, a €.«. The remarks about ¢ follow
immediately from the fact that 1/2 < F(1/2) < 1 and the fact that F(1/2) =
1/2if and only if F = F,. O

Given a function « and a real number c, define a function F =%(a, ¢) by
o a(\u) —u

aw)—u |
s2u(l —u)

(8) F(w)=w+cexp{f1

Also, let

¢, = inf(1 — w)exp{—/w Mdu}.

s2u(l—u)

LEMMA 3.2. Let e e andc € R be given. Let F = %(a,c). If 0 <c <c,,
then F € F. Furthermore, 9(F) = a and %(F) = c.
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Proor. If @ = a4, then ¢ = 0 and the claim follows easily. So assume that
¢ > 0. From (6) we deduce that F(1) = 1. Clearly, F(w) > 0 for v and F is
continuous. That F(w) < 1 for all o follows from the condition on c¢. Now
differentiate F and use the fact that 0 < a(w) <1 for almost all o to
conclude that

L) pry < T
l1-w )
for almost all w. Since F(w) < 1 for all w, this implies that F’ is nonnegative
almost everywhere. Furthermore, on the set {w; F(w) < 1}, F’ is strictly
positive wherever the derivative is defined. Thus, F is strictly increasing on
this set. By Proposition 3.2(iii) it follows that F € . That 9(F) = a« and
#(F) = c follow from direct calculation. O

Finally, we are in a position to characterize the extreme points of 7.
Denote the set of extreme points by &.

THEOREM 3.2 (Characterization of extreme F). Suppose that F € .F. Then
F € & if and only if:

() pw; 0 <IAFNw) <1} = 0;
(i) %(F) € {0, c,).

PrOOF. Suppose first that (i) fails to hold. Choose 0 < & < min{c, ¢, — c}.
Define ¢; = ¢ + ¢ and ¢, = ¢ — ¢. Let F;, =%(a,c;), i = 1,2. By Lemma 3.2,
F e€%,i=1,2.Clearly, F,, F, and F are distinct and F = (1/2)F; + (1/2)F,
so F is not extreme. Suppose now that (i) fails to hold. Let A be a set of
positive measure such that «j is strictly between 0 and 1. We may find
8> 0, w, €(0,1) and a > 0 such that § < essinf a(w) < esssup a(w) <1 —
dfordel=(w,—a,w,+a) c(0,1). Fix A € R. Define

o(l - o)f'(w)
(o) = alw) + S
and
o(l - o)f'(w)

ay(w) = a(w) - 1-f(w) )

where f(w) = Alw — w,) for v € I and f(w) = 0 otherwise. Let F;, = %(«;, ¢),
i =1,2. Now

Fi(o) = Fu(o) = 2fwpesn|* S0,

so F, and F, are distinct. It is easy to see that F = (1/2)F, + (1/2)F,.
Finally, we claim that, for A > 0 sufficiently small, F,, F, € #. For A small
and from the fact that « is almost surely between 8 and 1 — 8 on I, we
conclude that «, and a, are almost surely between 0 and 1. It is easy to
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verify that (6) holds for both &, and «,. Also, for i = 1,2,¢, —cas A > 0so
that, for small A, 0 < ¢ < min{c,, c,,}. Hence, Lemma 3.2 implies that F;, F,
€ Z. Hence, F is not extreme.

Now suppose that (i) and (ii) hold. Let F = pF, + (1 — p)F, with p € (0, 1).
Let a =9(F) and let o; = 9(F)), i = 1,2. Let A; = {w; a(w) = 1}. Suppose
there exists A Cc A; such that w(A) >0 and a;(w) <1 on A. From (5),
together with the fact that Fij(w) < Fy(w)/w for almost all w, we conclude
that Fi(w) < F\(w)/w for almost all w € A. Thus, for almost all w € A, we
have

F'(w) =pFi(o) + (1 - p)Fy(w) <pF(o)/0+ (1 -p)F(e)/o
=F(w)/o.

But since a(w) = 1 on A we have that F'(w) = F(w)/® which is a contradic-
tion. Hence, a;(w) =1 for almost all w in A, and similarly for «,. By a
similar argument, a;(®) = ay,(w) = 0 for almost all w € A; = {w; a(w) = O}
Since w(Ay U A;) =1, @ = a; = @, almost everywhere. It follows that ¢, =
Co, = Co- Let ¢; = Z(F)), i = 1,2. Since ¢ =0 or ¢ =c, it follows that ¢ =

[e3

¢, =cy. Thus, F=F, =F, 0O

Now we consider another characterization of the extreme points. Given
F € 7, define

Fo(F) = {w; A°(y) <F(y) <v®(y)forall y < o},

I'(F) = { w; there exists some y < x such that F(z) = v“(y) for all
z €[y, 0l},

I'y(F) = { w; there exists some y < x such that F(z) = A“(y) for all
zely, o]}

ProposITION 3.3. If F € 7, then T'y(F), T'\(F) and T'y(F) partition (0, 1].

ProOF. Suppose that F(y) = v“(y) for some y < w. Let a = (y,v(y)) and
b =(x,F(x)). For all x €[y, ], the double star-shaped condition implies
that F(z) >, ,(2) = v“(z). By Proposition 3.2(ii), F(z) < v“(z). Hence,
F(z) =v“(z) and w € T'(F). By a similar argument, if F(y) = A“(y) for
some y < w, then it can be shown that o € I,(F). If F(y) is never equal to
v®(y) or A“(y) for any y < z, then w € I'y(F). O

COROLLARY 3.1. F is an extreme point in F if and only if Ty(F) = .
Proor. Let a =9(F). Suppose that T'((F) # . Choose w € T'y(F). Then

a is strictly between 0 and 1 in some interval (w — §, w]. Hence, by the
previous theorem, F' is not extreme. Now suppose that F is not extreme.
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Thus, either 0 < ¢ < ¢, or « is strictly between 0 and 1 on a set of positive
measure. First suppose that 0 < ¢ < c,. It is easy to see that 1 € T,(F) so
that T',(F) # . Now suppose that « is strictly between 0 and 1 on a set of
positive measure. In particular, this is true for some open interval (a, b).
Thus, b € T, so that I'y(F) = &. O

The latter corollary gives a geometric interpretation to the extreme points:
they are piecewise linear functions that oscillate between the upper and
lower supporting lines v and A“.

4. The 2-alternating case. In the previous section we identified the
extreme points of . In this section we identify the extreme points of the
subset %, of distribution functions corresponding to 2-alternating Choquet
capacities. It turns out that %, is a simplex so that each F' € %, has a unique
Choquet representation as a mixture of the extreme points. We identify the
mixing distribution explicitly.

For every ¢t (0, 1], define F,(w) = min{w/¢, 1}. Also, define Fy(w) = 1. Let
&, be the extreme points of 7.

THEOREM 4.1. &, ={F,;0 <t < 1}.

Proor. It is easy to establish that each F, is an extreme point. That this
set exhausts all extreme points follows from Theorem 4.2. O

THEOREM 4.2 (Choquet representation for symmetric, 2-alternating capaci-
ties). For every F € 7, there exists a probability measure @ on ([0, 1], %)
such that, for all v € Q,

(9) F(w) = ['F(0)Q(dr).

Furthermore, Q is unique and satisfies dQ /dv = r(w), where
r(w) =F(0)I, - oF"(w)Ip(®) — o(F'(0") = F'(0"))Iz(®),

v=pu+ [, & is counting measure on B¢ and B is the set where F" exists. By
convention, we set F'(1*) = 0 and we include 0 and 1 in B°.

Proor. Since F € %,, it is concave by a straightforward generalization of
Theorem 5 of Wasserman and Kadane (1992). Thus, F” exists on a set B
such that B¢ is countable. Define G(w) = [, ,;~ p7(s)¥(ds). Now G is non-
negative, nondecreasing and right-continuous and so is a distribution func-
tion for a measure @. We need only show that (9) holds. This will establish
that @ is a probability measure since F(w) = 1.
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Let a(t) = F'(w™) — F'(w™). First suppose that B¢ is finite. We can thus

write B® = {wg,..., w,}, where 0 = w, < w; < - < w, = 1. Suppose that
w; < w;, 4, say. Then
1
J F)Q(dt)
1 aq
= [ F(w)—(t)v(dt)
0 v

['F()r(t)u(dt) + ¥ F(w)r(t)
0

teB¢

— [F()F" () u(dt) - ¥ F(w)ta(t)
0

teB°

= [ (@ude) — o[ () u(d)

- Y B -e T a@)

teB°N[0, wl] teB°N (w,1]

= T (0 (00) — 0 () + F) = F(0)
—oF'(0) + o;F' (0] ) + F(0) = F(0;) — oF'(w},,)

+oF' () - wii 1(F’(w;l) —F'(0))
— Y, ta(t) - w by a(t)
teB°N[0, w] teB°n (w,1]
=F(0) —F(0) + ¥ o, (F'(w) - F'(o}))

i=1
to Y (F'(07) = F'(o))
i=j+1
- X t(t)-eo X a(?)
teB°N[0, wl] teB°N( w,1]
=F(w).

A similar calculation can be used when o € B*.

Now suppose that B¢ is denumerable. Fix &> 0. Choose A = {w,,...,
w,} CB° such that 0 = wy < w; < * <w, =1, and -X ., 0adw) >
—Y,cpow) — e Let W, =1[0, w)), Wy = (01, 05],...,W, = (w,_;,1]. We
can find F, €%, such that sup,.,lF.(0) — F(w)l < e, sup,.lF/(w)—
F’"(w)| < & and

L ([F'(0") = F'(o)] - [E(0") - F(o)]) < =

weA
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Let @, be the representing measure for F, and let r, = dQ,/dv. Now r, —> r
uniformly in @ as ¢ — 0. It follows that @, converges weakly to @. Now

F(w) - folFt(w)Q(dt) — (F(0) - F.(0)) + (Fg(w) - fOlFt(w)Qg(dt))

+(/;1Ft(w)Q£(dt) - j:Ft(w)Q(dt)).

The first term tends to 0 as ¢ — 0 since F, approximates F. The second term
is identically 0. The third term tends to 0 as & — 0 since F, is bounded and
since @, converges weakly to @. Taking the limit of both sides of the equation
as ¢ — 0 establishes (9).

Finally, we show the uniqueness of . Suppose there exists another
representing probability R. Note that R < v. Let ¢ =d®/dv and r =
dR/dv. Since, for all 0, F(w) = [(F(0)Q(dt) = [{F,(w)R(dt) we conclude
that [{(1 — F(0))Q(dt) = [{(1 — F(»))R(dt) which implies that

oq(l) —r(t
fo%dm):o

for all w. Differentiating with respect to w, we conclude that g(w) = r(w) for
almost all w. O

Since %, is convex and since each F can be represented as a unique
mixture of extreme points, it follows that %, is a simplex [Choquet (1969),
Section 28]. The class %, might be pictured as a triangle inscribed in a circle,
being representable as a unique mixture of the extreme points of %, C ¥ but,
of course, representable as many different mixtures of the elements of &.
Finally, we remark that 2-alternating is equivalent to

L alw)(1 - a(w)
(@) = o(l - )

for almost all w.

5. Conclusion. In this paper we gave a characterization of the extreme
points of the set of distribution functions for symmetric capacities. With the
appropriate transform, these correspond to a subset of the 0—1 functions on
the unit interval. In the 2-alternating case, each distribution function has a
Choquet representation as a unique mixture of the extreme points. Given the
special role that 2-alternating capacities play in robustness theory, it would
be interesting to develop a measure of the degree to which a capacity fails to
be 2-alternating. An open question is whether the characterizations given in
this paper can be used to develop such a measure. If they can, then it might
be possible to quantify the degree to which the Huber—Strassen [Huber and
Strassen (1973)] theorem and the Bayes theorem for Choquet capacities
[Wasserman and Kadane (1990)] fail when a capacity is not 2-alternating.



SYMMETRIC CAPACITIES 1263

Acknowledgments. The authors thank the associate editor and a ref-
eree for helpful comments.

REFERENCES

ANGER, B. and LEMBCKE, J. (1985). Infinitely subadditive capacities as upper envelopes of
measures. Z. Wahrsch. Verw. Gebiete 68 403-414.

ARMSTRONG, T. (1990). Comonotonicity, simplical subdivision of cubes and non-linear expected
utility via Choquet integrals. Technical Report, Dept. Math. Statist., Univ. Maryland.

BEDNARSKI, T. (1981). On solutions of minimax test problems for special capacities. Z. Wahrsch.
Verw. Gebiete 58 397-405.

BEDNARSKI, T. (1982). Binary experiments, minimax tests and 2-alternating capacities. Ann.
Statist. 10 226-232.

BERGER, J. (1984). The robust Bayesian viewpoint (with discussion). In Robustness in Bayesian
Statistics (J. Kadane, ed.). North-Holland, Amsterdam.

BERGER, J. (1990). Robust Bayesian analysis: sensitivity to the prior. J. Statist. Plann. Inference
25 303-328.

BuJa, A. (1986). On the Huber—Strassen theorem. Probab. Theory Related Fields 73 367-384.

CHOQUET, G. (1969). Lectures on Analysis 2. Benjamin /Cummings, Reading, MA.

DEMPSTER, A. P. (1967). Upper and lower probabilities induced from a multivalued mapping.
Ann. Math. Statist. 38 325-339.

DEMPSTER, A. P. (1968). A generalization of Bayesian inference (with discussion). J. Roy. Statist.
Soc. Ser. B 30 205-247.

DENNEBERG, D. (1994). Non-additive Measure and Integral. Kluwer, Dordrecht.

DEROBERTIS, L. and HARTIGAN, J. A. (1981). Bayesian inference using intervals of measures.
Ann. Statist. 9 235-244.

FINE, T. (1988). Lower probability models for uncertainty and nondeterministic processes. /.
Statist. Plann. Inference 20 389-411.

ForTiNI, S. and RUGGERI, F. (1994). Concentration functions and Bayesian robustness. J. Statist.
Plann. Inference 40 205-220.

GILBOA, 1. (1987). Expected utility theory with purely subjective non-additive probabilities. /.
Math. Econom. 16 65—-88.

HUBER, P. J. (1973). The use of Choquet capacities in statistics. Bull. Inst. Internat. Statist. 45
181-191.

HUBER, P. J. (1981). Robust Statistics. Wiley, New York.

HUBER, P. J. and STRASSEN, V. (1973). Minimax tests and the Neyman-Pearson lemma for
capacities. Ann. Statist. 1 251-263.

LAVINE, M. (1991a). Sensitivity in Bayesian statistics: the prior and the likelihood. J. Amer.
Statist. Assoc. 86 396—-399.

LAVINE, M. (1991b). An approach to robust Bayesian analysis for multidimensional parameter
spaces. J. Amer. Statist. Assoc. 86 400—403.

MARSHALL, A. W. and OLKIN, I. (1979). Inequalities: Theory of Majorization and Its Applications.
Academic Press, New York.

PAPAMARCOU, A. and FINE, T. (1986). A note on undominated lower probability. Ann. Probab. 14
710-723.

RyYFF, J. (1963). On the representation of doubly stochastic operators. Pacific J. Math. 13
1379-1386.

RyFF, J. (1965). Orbits of L!-functions under doubly stochastic transformations. Trans. Amer.
Math. Soc. 117 92-100.

RYFF, J. (1967). On Muirhead’s theorem. Pacific J. Math. 21 567-576.

RYFF, J. (1970). Measure preserving transformations and rearrangements. J. Math. Anal. Appl.
31 449-458.

SADROLHEFAZI and FINE, T. (1994). Finite-dimensional distributions and tail behavior in station-
ary interval-valued probability models. Ann. Statist. 22 1840-1870.



1264 J. B. KADANE AND L. WASSERMAN

SCHMEIDLER, D. (1989). Subjective probability and expected utility without additivity. Economet-
rica 57 571-587.

SHAPLEY, L. (1971). Cores of convex games. Internat. J. Game Theory 1 11-26.

SmiTH, C. A. B. (1961). Consistency in statistical inference and decision (with discussion). .
Roy. Statist. Soc. Ser. B 23 1-37.

TALAGRAND, M. (1978). Capacités invariantes extrémales. Ann. Inst. Fourier (Grenoble) 28
79-146.

WALLEY, P. (1991). Statistical Reasoning with Imprecise Probabilities. Chapman and Hall,
London.

WASSERMAN, L. A. and KADANE, J. (1990). Bayes’ theorem for Choquet capacities. Ann. Statist.
18 1328-1339.

WasSERMAN, L. A. and KADANE, J. (1992). Symmetric upper probabilities. Ann. Statist. 20
1720-1736.

DEPARTMENT OF STATISTICS
CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA 15213
E-MAIL: kadane@stat.cmu.edu
wasserman@stat.cmu.edu



