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SYMMETRIC, COHERENT, CHOQUET CAPACITIES

BY JOSEPH B. KADANE1 AND LARRY WASSERMAN 2

Carnegie Mellon University

Choquet capacities are a generalization of probability measures that
arise in robustness, decision theory and game theory. Many capacities
that arise in robustness are symmetric or can be transformed into sym-
metric capacities. We characterize the extreme points of the set of upper
distribution functions corresponding to coherent, symmetric Choquet ca-

w xpacities on 0, 1 . We also show that the set of 2-alternating capacities is a
simplex and we give a Choquet representation of this set.

Ž .1. Introduction. A Choquet capacity on a measurable space V, BB is a
w x Ž .mapping C: BB ª 0, 1 such that C B s 0. C is coherent if there exists a

Ž . Ž .nonempty set of probability measures M such that C A s sup P A forP g M
wevery A g BB. Coherent capacities are also called upper probabilities Walley

Ž . Ž . Ž . Ž .x1991 , Fine 1988 , Dempster 1967, 1968 , and Smith 1961 or upper
w Ž . Ž .x w xenvelopes Anger and Lembcke 1985 and Denneberg 1994 . Let V s 0, 1 ,

let BB be the Borel subsets of V and let m be Lebesgue measure. C is
Ž . Ž . Ž . Ž .symmetric if C A s C B whenever m A s m B . As we shall show, it is

possible to say exactly when a symmetric capacity is coherent.
Many robustness models used in statistics involve symmetric, coherent

capacities or can be transformed into the same by a smooth, one-to-one
w Ž . Ž .mapping Buja 1986 , Huber and Strassen 1973 , Wasserman and Kadane

Ž . Ž .x1990 and Fortini and Ruggeri 1994 . For example, the upper probability
wfor an «-contamination neighborhood around a probability measure P Berger

Ž . Ž .x1984, 1990 and Huber 1973, 1981 generates a symmetric capacity once
the set of probabilities is transformed to the unit interval under the inverse
integral transform corresponding to P. This is true for many neighborhoods.

w Ž .Capacities are also used in decision theory Gilboa 1987 and Schmeidler
Ž .x w Ž .x1989 and game theory Shapley 1971 . Symmetric Choquet integrals,
which are related to symmetric capacities, have been studied by Armstrong
Ž . Ž .1990 and Talagrand 1978 . Symmetric capacities were studied in Wasser-

Ž .man and Kadane 1992 under the additional assumption that M consisted of
nonatomic probabilities with bounded densities. Despite the ubiquity of ca-
pacities, there is little in the way of simple characterizations for capacities as
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there are for probabilities. This paper is concerned with such characteriza-
tions. In particular, we are interested in the following question: what are the
extreme points in the set of all distribution functions corresponding to
symmetric capacities?

Our interest in the extreme points is twofold. First, in Bayesian robust-
ness, where heavy use is made of sets of priors, the extreme points play a
crucial role. For example, one is typically interested in bounding posterior
expectations. These bounds occur at the extreme points. Thus, much atten-
tion in Bayesian robustness has focused on extreme points. Second, it is very
difficult to form an intuitive picture of the set M since it is typically infinite
dimensional. It is our hope that our characterization of the extreme points,

Ž .which has a simple geometric interpretation Corollary 3.1 , will cast light on
the structure of these sets.

A capacity is 2-alternating if

1 C A j B F C A q C B y C A l BŽ . Ž . Ž . Ž . Ž .
for all A, B g BB. Many capacities used in statistics are 2-alternating. Fur-
thermore, the 2-alternating condition is crucial for many important results.
For example, a particular generalization of the Neyman]Pearson lemma
holds if and only if the capacity generated by the underlying models is

w Ž .x2-alternating Huber and Strassen 1973 . Similarly, a particular generaliza-
tion of Bayes’ theorem for capacities holds if and only if the capacity is

w Ž .x2-alternating Wasserman and Kadane 1990 . In game theory, 2-alternating
w Ž .xcapacities represent certain convex games Shapley 1971 . Most work on

coherent capacities has focused on the 2-alternating case. Little is known
about the non-2-alternating case. Some work on non-2-alternating and nonco-

Ž .herent capacities is contained in Papamarcou and Fine 1986 and
Ž .Sadrolhefazi and Fine 1994 . We shall consider the general case in Sections 2

and 3 and the 2-alternating case in Section 4.
The following is an outline of the paper and serves as a summary of the

main contributions of this paper. In Section 2 we give a majorization repre-
Ž .sentation of symmetric capacities Theorem 2.1 which generalizes a theorem

Ž .in Wasserman and Kadane 1992 . In Section 3, which is the main section of
the paper, we study the distribution functions of symmetric capacities. There

Ž .we establish Lemmas 3.1 and 3.2 a correspondence between distribution
w x w xfunctions of symmetric capacities and functions a taking 0, 1 to 0, 1 that

satisfy
v a u y uŽ .

lim du s y`.H u 1 y uvª1 Ž .1r2

This correspondence allows us to characterize the extreme points in the set of
Ž .all distribution functions for symmetric capacities Theorem 3.2 . This is the

main theorem of the paper and, loosely, it says that F is extreme if and only
if the corresponding a function takes values 0 and 1 almost everywhere. In
Section 4 we identify the extreme points of the set of distribution functions

Ž .for 2-alternating capacities Theorem 4.1 and we give a Choquet representa-
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tion for this set by identifying the unique mixing measure over the extreme
Ž .points Theorem 4.2 . Closing remarks are contained in Section 5.

2. A characterization of symmetric, coherent capacities. Let PP be
the set of all probability measures on BB, let PP be the set of all P g PP thata
are absolutely continuous with respect to m and let PP be the set of alls
probability measures that are singular with respect to m. Suppose that
P, Q g PP and let p s dPrdm and q s dQrdm. We write p ; q ifa

2 m v ; p v ) t s m v ; q v ) t� 4 � 4Ž . Ž . Ž .Ž . Ž .

Ž .for all real t. If 2 holds we say that p and q are equimeasurable. We shall
also say that P and Q are equimeasurable and we will write P ; Q. Given
any P g PP with p s dPrdm, there exists a unique, nonincreasing, right-con-a
tinuous function p*, called the decreasing rearrangement of p, such that

w Ž .xp ; p* Ryff 1965 . We call the corresponding probability measure P* the
decreasing rearrangement of P.

Every P g PP may be written in terms of its Lebesgue decomposition
w xP s aP q aP , where P g PP , P g PP , a g 0, 1 and a s 1 y a . We definea s a a s s

Uthe decreasing rearrangement of P by P* s aP q ad , where d is a pointa 0 0
mass at 0. Note that, if P g PP , then this agrees with the earlier definition ofa
decreasing rearrangement. We say that P is majorized by Q, denoted by

Žw x. Žw x.P $ Q, if P* 0, t F Q* 0, t for every real t. Majorization has been studied
w Ž .x win discrete settings Marshall and Olkin 1979 and continuous settings Ryff

Ž .x1963, 1965, 1967, 1970 . Our definition is slightly different from previous
definitions to allow for probabilities with both absolutely continuous and
singular components.

Ž . Ž .Let M ; PP be nonempty and let C A s sup P A . Throughout theP g M
rest of the paper we restrict attention to symmetric, coherent capacities. We

Ž . Ž .say that P is dominated by C, written P eC, if P A F C A for all A g BB.

THEOREM 2.1. The following two statements are equivalent:

Ž .i C is symmetric.
Ž .ii P eC and Q $ P imply that QeC.

Before proving the theorem, we establish some lemmas.

w xLEMMA 2.1. For every P g PP and every t g 0, 1 , there exists A such thata t
Ž . Ž . Ž . Žw x. Ž . Ž . Ž . Ž .i m A s t, ii P* 0, t s P A and iii P A G P B for every B fort t t

Ž .which m B s t.

PROOF. The lemma is obvious for t s 0 and t s 1 so assume 0 - t - 1.
� Ž . Ž .4Let p s dPrdm and p* s dP*rdm. Define A s v; p v ) p* t and0

� Ž . Ž .4 Ž . Ž .A s v; p v G p* t . Then m A F t F m A and A ; A . Let u s00 0 00 0 00
Ž . Ž .m A . Choose B such that A ; B ; A and m B s t y u. Let A s A j B.0 0 00 t 0
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Ž . Ž . Ž . Ž . Žw x. Ž .Ž .Hence, m A s t and P A s P A q P B s P* 0, u q p* u t y u st t 0
Žw x. Ž .P* 0, t . Now let K be such that m K s t. Then

P A y P K s P A y K y P K y AŽ . Ž . Ž . Ž .t t t

G m A y K ess inf p v y m K y A ess sup p vŽ . Ž . Ž . Ž .t t
A yKt KyA t

s m A y K ess inf p v y ess sup p v G 0. IŽ . Ž . Ž .t ž /A yKt KyA t

Ž . Žw Ž .x.LEMMA 2.2. For every P g PP and every A g BB, P A F P* 0, m A .

UŽ . Žw Ž .x. Žw Ž .x.PROOF. Let t s m A . Then P* 0, m A s a P 0, m A q a sa
Ž . Ž . Ž . Ž . Ž .aP A q a G aP A q a G aP A q aP A s P A , where A is as de-a t a a s t

fined in Lemma 2.1. The second equality and the inequality that follows it are
both due to Lemma 2.1. I

Žw x. Žw x.LEMMA 2.3. If C is symmetric and P eC, then P* 0, t F C 0, t for
every t.

Žw x.PROOF. Let P s aP q aP and let S be the support of P . P* 0, t ss s
U Žw x. Ž . Ž . Ž .aP 0, t q a s a P A q a s aP A j S q a P A j S sa a t a t s t

Ž . Ž . Žw x.P A j S F C A j S s C 0, t . The second equality follows from Lemmat t
Ž . Žw x.2.1. The last equality follows since C is symmetric and m A j S s m 0, t .t

I

Ž . Ž .PROOF OF THEOREM 2.1. i implies ii . Let P eC and Q $ P. For any A,
Ž . Žw Ž .x. Žw Ž .x. Žw Ž .x. Ž .Q A F Q* 0, m A F P* 0, m A F C 0, m A s C A . This follows

Ž .from, respectively, Lemma 2.2, Q $ P, Lemma 2.3 and i . Thus, Q 1 C.
Ž . Ž . Ž . Ž .ii implies i . Let A and B be such that m A s m B . There exists P eC

Ž . Ž .such that P A s C A . Write P s aP q aP . Definea s

P A P AcŽ . Ž .a a cR ? s m ?l B q m ?l BŽ . Ž . Ž .a cm A m AŽ . Ž .

and define R s aR q aR , where R is any singular measure such thata s s
Ž . Ž . Ž . Ž .R B s P A . By construction, R B s P A . Furthermore, R $ P so that,s s
Ž . Ž . Ž . Ž . Ž .by ii , ReC. Thus, C A s P A s R B F C B . By a similar argument,

Ž . Ž .C B F C A . I

Now we consider some examples of symmetric capacities.

Ž . �Ž . 4EXAMPLE 2.1 «-contamination . Let M s 1 y « m q « Q; Q g PP where
w x Ž . Ž . Ž .« g 0, 1 . Then C A s 1 y « m A q « if A / B. This model is used exten-

w Ž . Ž .xsively in robustness Huber 1973, 1981 and Berger 1984 .
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Ž . Ž . < Ž . Ž . <EXAMPLE 2.2 Total variation . Let d P, Q s sup P A y Q A beAg BB
� Ž . 4the total variation distance between P and Q. Let M s P; d m, P F « .

Ž . � Ž . 4Then C A s min P A q « , 1 . This is also common in robustness.

Ž .EXAMPLE 2.3 Density bounded class . Let a - 1 - b and let M be the set
Ž . Ž .of all P with densities p with respect to m such that a F p v F b for

Ž . � Ž . Ž c.4 Ž .m-almost all v. Then C A s min bm A , 1 y am A . Lavine 1991a, b uses
this class in Bayesian robustness.

Ž .EXAMPLE 2.4 Density ratio class . Let k G 1 and let M be the set of all P
Ž . Ž . Ž .with densities p with respect to m such that ess sup p v ress inf p v F k.
Ž . Ž .w Ž . Ž c.xy1It turns out that C A s km A km A q m A . This is a specialization of

Ž .a class used by DeRobertis and Hartigan 1981 in Bayesian robustness.

3. Distribution functions for capacities. The distribution function for
Ž . Žw x.a symmetric capacity C is defined by F v s C 0, v . Conversely, a function

w x w x Ž . Ž Ž ..F: 0, 1 ª 0, 1 defines a symmetric capacity by way of C A s F m A .
Ž .Distribution functions for capacities were used by Buja 1986 and Bednarski

Ž .1981 in a different context.

Ž .EXAMPLES 2.1]2.4 Continued . The distribution functions for these exam-
Ž . Ž . Ž . � 4 Ž .ples are, respectively, F v s 1 y « v q « , F v s min v q « , 1 , F v s

� Ž .4 Ž . w Ž .xy1min bv, 1 y a 1 y v and F v s kv kv q 1 y v .
�Ž . w x w x Ž .4 Ž .Let gr F s v, y g 0, 1 = 0, 1 ; y F F v . If a s a , a and b s1 2

Ž . Ž . Žb , b are two points in the plane with a - b , let L v s a q v y1 2 1 1 a, b 2
.Ž . Ž . Ž . �Ž Ž .. 4a b y a r b y a and LL a, b s v, L v ; a F v F b . We say that1 2 2 1 1 a, b 1 1

Ž . ŽF is doubly star-shaped if a g gr F implies that LL 0, a ; gr F and LL a,
. Ž . Ž .1 ; gr F, where 0 s 0, 0 and 1 s 1, 1 .

In general, it is difficult to know whether a capacity is coherent; see Anger
Ž .and Lembcke 1985 for example. The next theorem characterizes coherent,

symmetric capacities in terms of their distribution functions.

THEOREM 3.1. If C is symmetric and coherent, then its distribution F is
w x w xdoubly star-shaped. Conversely, if F: 0, 1 ª 0, 1 is doubly star-shaped,

Ž . Žw x.then there exists a symmetric, coherent capacity C such that F v s C 0, v
for every v g V.

w x Ž .PROOF. Let C be symmetric. Fix A s 0, t , t g 0, 1 . There exists P eC
Ž . Ž . Ž . Ž . Ž . Ž . Ž c. Žsuch that P A s C A . Define R ? s P A m ?l A rm A q P A m ?l

c. Ž c. Ž . ŽwA rm A . Then R $ P; hence ReC. So, for every v g V, G v ' R 0,
x. Žw x. Ž . Ž .v F C 0, v s F v . Since G is piecewise linear this implies that LL 0, a

Ž . Ž Ž ..g gr F and LL a, 1 g gr F, where a s v, F v . It follows that gr F is
doubly star-shaped.

Now we construct a class M that generates a symmetric capacity C with
Ž .distribution F. For every measurable set A such that 0 - m A - 1, define

Ž . Ž Ž .. Ž . Ž . Ž Ž Ž ... Ž c . Ž c .P ? s F m A m ?l A rm A q 1 y F m A m ?l A rm A . ForA
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Ž . Ž . Ž . Ž Ž .. Ž .nonempty A such that m A s 0, define P ? s F 0 d q 1 y F 0 m ? ,A vA
Ž . �where v g A. For A with m A s 1, define P s m. Let M s P ; A g BB,A A A

4 Ž . Ž . Ž . Ž .A / B and C A s sup P A . We claim that C A s P A . First, sup-P g M A
w x Ž . Ž . Ž . Ž .pose that A s 0, t , t g 0, 1 . For any C, P A G P A G P A , whereˆA C C

ˆ w Ž .xC s 0, m C . The first inequality is from the fact that F is doubly star-
Ž . Ž .shaped. The second follows from how P is defined. Hence, P A s C A .A A

ˆŽ . w Ž .xNow consider any A such that m A ) 0. Let C be any set, let A s 0, m A
ˆŽ . Ž . Ž . Ž . Ž .and let D be such that m D s m C and m D l A s m C l A . Then P AA

ˆ ˆŽ . Ž . Ž . Ž . Ž .s P A G P A s P A . Hence, P A s C A . It follows that C is sym-Â D C A
Žw x. Ž .metric and that C 0, v s F v . I

w x w xLet FF be the set of doubly star-shaped functions taking 0, 1 to 0, 1 . The
following propositions record some basic properties of doubly star-shaped
functions. The proof of Proposition 3.1 is straightforward and is omitted.

PROPOSITION 3.1. If F g FF, then:

Ž . Ž .i F 1 s 1;
Ž . Ž .ii F v G v for every v g V;
Ž . � Ž . 4iii F is strictly increasing on v; F v - 1 ;
Ž .iv F is continuous.

Ž .Given a function F and a point v g 0, 1 , define

1 y F v F v y vŽ . Ž .
vv y s y q ,Ž . ž / ž /1 y v 1 y v

F vŽ .
vl y s y ,Ž .

v

3Ž .

j v y s lv y I y q v v y I y .Ž . Ž . Ž . Ž . Ž .w w v , 1x0, v .

vŽ . vŽ .When v s 1, define v y ' 1 and l y s y.

PROPOSITION 3.2. Let F: V ª V. The following four statements are equiva-
lent:

Ž .i F g FF.
Ž . Ž x vŽ . Ž . vŽ .ii For all v g 0, 1 and all 0 F y F v, l y F F y F v y .
Ž . Ž .iii F is a continuous function such that F 1 s 1 and is strictly increasing
� Ž . 4on v; F v - 1 . Hence, the derivative exists almost everywhere. Further-

Ž xmore, for almost all v g 0, 1 ,

1 y F v F vŽ . Ž .
4 F F9 v F .Ž . Ž .

1 y v v

Ž . Ž . Ž .iv For every v g V, F v s sup G v , where GG is a nonempty set ofG g GG
Ž . Ž . Ž . Ž .functions such that each G g GG satisfies a G: V ª V, b G 1 s 1, c G is

Ž . Ž . Ž .concave and d G v F F v for all v.
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Ž . x xREMARK. Statement ii shows that l and v provide a lower and upper
bound for F.

Ž . Ž .PROOF. i implies ii : straightforward.
Ž . Ž .ii implies iii : straightforward.
Ž . Ž . Ž x Ž xiii implies iv : fix v g 0, 1 . Suppose there exists y g 0, v such that
Ž . vŽ .F y - j y .

� w x Ž . vŽ .4 Ž . vŽ . Ž .Let y s inf z g y, v ; F z G j z . Thus, F y s j y and F x -0 0 0
vŽ . w . Ž . Ž vŽ . vŽ .. Ž .j x for x g y, y . Hence, F v rv s j y y j y r y y y -0 0 0

Ž Ž . Ž .. Ž . Ž .F y y F y r y y y . From this, together with 4 we derive the following0 0
contradiction:

F v F y y F y H y0 F9 s dsŽ . Ž . Ž . Ž .0 y
- s

v y y y y y y0 0

H y0 F s rs ds H y0j v s rs dsŽ . Ž .y yF -
y y y y y y0 0

H y0 F v rv ds F vŽ . Ž .ys s .
y y y v0

Ž . vŽ . Ž xSo we conclude that F y G j y for all y g 0, v . A similar argument
Ž . vŽ . w x � v w x4shows that F y G j y for all y g v, 1 . Now take GG s j ; x g 0, 1 .

Ž . Ž . w x Ž . Ž .iv implies i : for v g 0, 1 and « ) 0, find G g GG such that G v G F v«

Ž . v Ž .y « . Let S v be defined as j is defined in 3 except with G in place of F.« «

Ž . Ž . vThe concavity of G implies that S y F F y for all y. Note that S ­ j as« « «
v Ž .« x0. It follows that j F F. This holds for every v and i follows. I

Ž .Note that, by Proposition 3.2 iii , if F: V ª V is in FF, then there exists a
Ž .measurable function a on V such that 0 F a v F 1 almost everywhere and

a v F v 1 y a v 1 y F vŽ . Ž . Ž . Ž .Ž . Ž .
5 F9 v s qŽ . Ž .

v 1 y vŽ .

almost everywhere. From this observation, we are motivated to consider the
transform from F to the corresponding a .

Ž . � 4Define the function a by a v s 1 for all v g V. Let AA s a j AA ,1 1 1 `

Ž .where AA is the set of all measurable functions on V such that 0 F a v F 1`

for m-almost all v and

v a u y uŽ .
6 lim du s y`.Ž . H u 1 y uvª1 Ž .1r2
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Ž . Ž .Define the function F by F v s v. Given a function F, define a s TT F1 1
Ž .and c s UU F by

¡ F9 v y 1 y F v r 1 y vŽ . Ž . Ž .Ž .
, if F / F ,1~7 a v s F v rv y 1 y F v r 1 y vŽ . Ž . Ž . Ž . Ž .Ž .¢1, if F s F1

Ž .and c s F 1r2 y 1r2.

Ž . Ž .LEMMA 3.1. Let F g FF. If a s TT F and c s UU F , then a g AA and 0 F
c F 1r2. Furthermore, c s 0 if and only if a s a .1

PROOF. If F s F , then a s a g AA and c s 0. Suppose that F / F . Since1 1 1
Ž .F g FF, we have by Proposition 3.2 iii that

1 y F v F vŽ . Ž .
F F9 v FŽ .

1 y v v

Ž . Žfor almost all v. Thus, for some function b such that 0 F b v F 1 almost
.all v , we can write

F v 1 y F vŽ . Ž .
F9 v s b v q 1 y b v .Ž . Ž . Ž .Ž .

v 1 y v

Ž . Ž . Ž .Solving this equation and comparing it to 7 , we see that b v s a v which
Ž . Ž .shows that 0 F a v F 1 almost everywhere. Now we show that 6 holds.

Ž . Ž Ž .. Ž Ž . . Ž Ž . .Note that a v r v 1 y v s F9 v y 1 r F v y v . Since this last ex-
Ž Ž . .pression is equal to d log F v y v rdv, it follows that

v a u y u 1 1Ž .
lim du s lim log F v y v y log F y s y`,Ž .Ž .H ž /ž /ž /u 1 y u 2 2vª1 vª1Ž .1r2

Ž . Ž .since F 1 s 1 and F 1r2 ) 1r2. Thus, a g AA. The remarks about c follow
Ž . Ž .immediately from the fact that 1r2 F F 1r2 F 1 and the fact that F 1r2 s

1r2 if and only if F s F . I1

Ž .Given a function a and a real number c, define a function F s RR a , c by

v a u y uŽ .
8 F v s v q c exp du .Ž . Ž . H½ 5u 1 y uŽ .1r2

Also, let

v a u y uŽ .
c s inf 1 y v exp y du .Ž . Ha ½ 5u 1 y uv Ž .1r2

Ž .LEMMA 3.2. Let a g AA and c g R be given. Let F s RR a , c . If 0 F c F c ,a

Ž . Ž .then F g FF. Furthermore, TT F s a and UU F s c.
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PROOF. If a s a , then c s 0 and the claim follows easily. So assume that1
Ž . Ž . Ž .c ) 0. From 6 we deduce that F 1 s 1. Clearly, F v G 0 for v and F is

Ž .continuous. That F v F 1 for all v follows from the condition on c. Now
Ž .differentiate F and use the fact that 0 F a v F 1 for almost all v to

conclude that

1 y F v F vŽ . Ž .
F F9 v FŽ .

1 y v v

Ž .for almost all v. Since F v F 1 for all v, this implies that F9 is nonnegative
� Ž . 4almost everywhere. Furthermore, on the set v; F v - 1 , F9 is strictly

positive wherever the derivative is defined. Thus, F is strictly increasing on
Ž . Ž .this set. By Proposition 3.2 iii it follows that F g FF. That TT F s a and

Ž .UU F s c follow from direct calculation. I

Finally, we are in a position to characterize the extreme points of FF.
Denote the set of extreme points by EE.

Ž .THEOREM 3.2 Characterization of extreme F . Suppose that F g FF. Then
F g EE if and only if :

Ž . Ž� Ž .Ž . 4.i m v; 0 - TT F v - 1 s 0;
Ž . Ž . � 4ii UU F g 0, c .a

Ž . � 4PROOF. Suppose first that ii fails to hold. Choose 0 - « - min c, c y c .a

Ž .Define c s c q « and c s c y « . Let F s RR a , c , i s 1, 2. By Lemma 3.2,1 2 i i
Ž . Ž .F g FF, i s 1, 2. Clearly, F , F and F are distinct and F s 1r2 F q 1r2 F1 2 1 2

Ž .so F is not extreme. Suppose now that i fails to hold. Let A be a set of
positive measure such that a is strictly between 0 and 1. We may findF

Ž . Ž . Ž .d ) 0, v g 0, 1 and a ) 0 such that d - ess inf a v F ess sup a v - 1 y0
Ž . Ž .d for d g I s v y a, v q a ; 0, 1 . Fix D g R. Define0 0

v 1 y v f 9 vŽ . Ž .
a v s a v qŽ . Ž .1 1 q f vŽ .

and
v 1 y v f 9 vŽ . Ž .

a v s a v y ,Ž . Ž .2 1 y f vŽ .
Ž . Ž . Ž . Ž .where f v s D v y v for v g I and f v s 0 otherwise. Let F s RR a , c ,0 i i

i s 1, 2. Now

v a u y uŽ .
F v y F v s 2 f v exp ,Ž . Ž . Ž . H1 2 ½ 5u 1 y uŽ .1r2

Ž . Ž .so F and F are distinct. It is easy to see that F s 1r2 F q 1r2 F .1 2 1 2
Finally, we claim that, for D ) 0 sufficiently small, F , F g FF. For D small1 2
and from the fact that a is almost surely between d and 1 y d on I, we
conclude that a and a are almost surely between 0 and 1. It is easy to1 2
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Ž .verify that 6 holds for both a and a . Also, for i s 1, 2, c ª c as D ª 0 so1 2 a i
� 4that, for small D, 0 F c F min c , c . Hence, Lemma 3.2 implies that F , Fa a 1 21 2

g FF. Hence, F is not extreme.
Ž . Ž . Ž . Ž .Now suppose that i and ii hold. Let F s pF q 1 y p F with p g 0, 1 .1 2

Ž . Ž . � Ž . 4Let a s TT F and let a s TT F , i s 1, 2. Let A s v; a v s 1 . Supposei i 1
Ž . Ž . Ž .there exists A ; A such that m A ) 0 and a v - 1 on A. From 5 ,1 1

XŽ . Ž .together with the fact that F v F F v rv for almost all v, we conclude1 1
XŽ . Ž .that F v - F v rv for almost all v g A. Thus, for almost all v g A, we1 1

have

F9 v s pFX v q 1 y p FX v - pF v rv q 1 y p F v rvŽ . Ž . Ž . Ž . Ž . Ž . Ž .1 2 1 2

s F v rv .Ž .

Ž . Ž . Ž .But since a v s 1 on A we have that F9 v s F v rv which is a contradic-
Ž .tion. Hence, a v s 1 for almost all v in A and similarly for a . By a1 1 2

Ž . Ž . � Ž . 4similar argument, a v s a v s 0 for almost all v g A s v; a v s 0 .1 2 0
Ž .Since m A j A s 1, a s a s a almost everywhere. It follows that c s0 1 1 2 a1

Ž .c s c . Let c s UU F , i s 1, 2. Since c s 0 or c s c it follows that c sa a i i a2

c s c . Thus, F s F s F . I1 2 1 2

Now we consider another characterization of the extreme points. Given
F g FF, define

G F s v ; lv y - F y - v v y for all y - v ,� 4Ž . Ž . Ž . Ž .0

G F s v ; there exists some y - x such that F z s v v y for all�Ž . Ž . Ž .1

w xz g y , v ,4
G F s v ; there exists some y - x such that F z s lv y for all�Ž . Ž . Ž .2

w xz g y , v .4

Ž . Ž . Ž . Ž xPROPOSITION 3.3. If F g FF, then G F , G F and G F partition 0, 1 .0 1 2

Ž . vŽ . Ž Ž ..PROOF. Suppose that F y s v y for some y - v. Let a s y, v y and
Ž Ž .. w xb s x, F x . For all x g y, v , the double star-shaped condition implies

Ž . Ž . vŽ . Ž . Ž . vŽ .that F z G LL z s v z . By Proposition 3.2 ii , F z F v z . Hence,a, b
Ž . vŽ . Ž . Ž . vŽ .F z s v z and v g G F . By a similar argument, if F y s l y for1

Ž . Ž .some y - v, then it can be shown that v g G F . If F y is never equal to2
vŽ . vŽ . Ž .v y or l y for any y - z, then v g G F . I3

Ž .COROLLARY 3.1. F is an extreme point in FF if and only if G F s B.0

Ž . Ž . Ž .PROOF. Let a s TT F . Suppose that G F / B. Choose v g G F . Then0 0
Ž xa is strictly between 0 and 1 in some interval v y d , v . Hence, by the

previous theorem, F is not extreme. Now suppose that F is not extreme.
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Thus, either 0 - c - c or a is strictly between 0 and 1 on a set of positivea

Ž .measure. First suppose that 0 - c - c . It is easy to see that 1 g G F soa 0
Ž .that G F / B. Now suppose that a is strictly between 0 and 1 on a set of0

Ž .positive measure. In particular, this is true for some open interval a, b .
Ž .Thus, b g G so that G F / B. I0 0

The latter corollary gives a geometric interpretation to the extreme points:
they are piecewise linear functions that oscillate between the upper and
lower supporting lines v v and lv.

4. The 2-alternating case. In the previous section we identified the
extreme points of FF. In this section we identify the extreme points of the
subset FF of distribution functions corresponding to 2-alternating Choquet2
capacities. It turns out that FF is a simplex so that each F g FF has a unique2 2
Choquet representation as a mixture of the extreme points. We identify the
mixing distribution explicitly.

Ž x Ž . � 4 Ž .For every t g 0, 1 , define F v s min vrt, 1 . Also, define F v ' 1. Lett 0
EE be the extreme points of FF .2 2

� 4THEOREM 4.1. EE s F ; 0 F t F 1 .2 t

PROOF. It is easy to establish that each F is an extreme point. That thist
set exhausts all extreme points follows from Theorem 4.2. I

ŽTHEOREM 4.2 Choquet representation for symmetric, 2-alternating capaci-
. Žw x .ties . For every F g FF there exists a probability measure Q on 0, 1, , BB2

such that, for all v g V,

1
9 F v s F v Q dt .Ž . Ž . Ž . Ž .H t

0

Ž .Furthermore, Q is unique and satisfies dQrdn s r v , where

r v s F 0 I y vF0 v I v y v F9 vq y F9 vy I c v ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .0 B B

n s m q m, m is counting measure on B c and B is the set where F0 exists. By˜ ˜
Ž q. cconvention, we set F9 1 s 0 and we include 0 and 1 in B .

PROOF. Since F g FF , it is concave by a straightforward generalization of2
Ž .Theorem 5 of Wasserman and Kadane 1992 . Thus, F0 exists on a set B

c Ž . Ž . Ž .such that B is countable. Define G v s H r s n ds . Now G is non-w0, v x l B
negative, nondecreasing and right-continuous and so is a distribution func-

Ž .tion for a measure Q. We need only show that 9 holds. This will establish
Ž .that Q is a probability measure since F v s 1.
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Ž . Ž q. Ž y. cLet a t s F9 v y F9 v . First suppose that B is finite. We can thus
c � 4write B s v , . . . , v , where 0 s v - v - ??? - v s 1. Suppose that0 n 0 1 n

v - v , say. Thenj jq1

1
F v Q dtŽ . Ž .H t

0

dQ1
s F v t n dtŽ . Ž . Ž .H t dn0

1
s F v r t m dt q F v r tŽ . Ž . Ž . Ž . Ž .ÝH t t

c0 tgB

1
s y F v tF0 t m dt y F v ta tŽ . Ž . Ž . Ž . Ž .ÝH t t

c0 tgB

v 1
s y tF0 t m dt y v F0 t m dtŽ . Ž . Ž . Ž .H H

0 v

y ta t y v a tŽ . Ž .Ý Ý
c cw x Ž xtgB l 0, v tgB l v , 1

jy1
y qs y v F9 v y v F9 v q F v y F 0Ž . Ž .Ž . Ž .Ž .Ý iq1 iq1 i i j

is0

yvF9 v q v F9 vq q F v y F v y vF9 vyŽ . Ž . Ž .Ž . Ž .j j j jq1

ny1
y qqvF9 v y v F9 v y F9 vŽ . Ž . Ž .Ž .Ý iq1 i

isjq1

y ta t y v a tŽ . Ž .Ý Ý
c cw x Ž xtgB l 0, v tgB l w , 1

j
y qs F v y F 0 q v F9 v y F9 vŽ . Ž . Ž . Ž .Ž .Ý i i i

is1
n

y qqv F9 v y F9 vŽ . Ž .Ž .Ý i i
isjq1

y ta t y v a tŽ . Ž .Ý Ý
c cw x Ž xtgB l 0, v tgB l v , 1

s F v .Ž .
A similar calculation can be used when v g B c.

c �Now suppose that B is denumerable. Fix « ) 0. Choose A s v , . . . ,0
4 c Ž .v ; B such that 0 s v - v - ??? - v s 1, and yÝ v a v )n 0 1 n v g A

Ž . w . Ž x Ž xcyÝ v a v y « . Let W s 0, v , W s v , v , . . . , W s v , 1 . Wev g B 1 1 2 1 2 n ny1
< Ž . Ž . < < YŽ .can find F g FF such that sup F v y F v - « , sup F v y« 2 v g V « v g B «

Ž . <F0 v - « and
X Xq y q yF9 v y F9 v y F v y F v - « .Ž . Ž . Ž . Ž .Ž .Ý « «

vgA
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Let Q be the representing measure for F and let r s dQ rdn . Now r ª r« « « « «

uniformly in v as « ª 0. It follows that Q converges weakly to Q. Now«

1 1
F v y F v Q dt s F v y F v q F v y F v Q dtŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .H Ht « « t «ž /0 0

1 1
q F v Q dt y F v Q dt .Ž . Ž . Ž . Ž .H Ht « tž /0 0

The first term tends to 0 as « ª 0 since F approximates F. The second term«

is identically 0. The third term tends to 0 as « ª 0 since F is bounded andt
since Q converges weakly to Q. Taking the limit of both sides of the equation«

Ž .as « ª 0 establishes 9 .
Finally, we show the uniqueness of Q. Suppose there exists another

representing probability R. Note that R < n . Let q s dQrdn and r s
Ž . 1 Ž . Ž . 1 Ž . Ž .dRrdn . Since, for all v, F v s H F v Q dt s H F v R dt we conclude0 t 0 t

1Ž Ž .. Ž . 1Ž Ž .. Ž .that H 1 y F v Q dt s H 1 y F v R dt which implies that0 t 0 t

v q t y r tŽ . Ž .
dn t s 0Ž .H y11 y t0

Ž . Ž .for all v. Differentiating with respect to v, we conclude that q v s r v for
almost all v. I

Since FF is convex and since each F can be represented as a unique2
w Ž .mixture of extreme points, it follows that FF is a simplex Choquet 1969 ,2

xSection 28 . The class FF might be pictured as a triangle inscribed in a circle,2
being representable as a unique mixture of the extreme points of FF ; FF but,2
of course, representable as many different mixtures of the elements of EE.
Finally, we remark that 2-alternating is equivalent to

a v 1 y a vŽ . Ž .Ž .
a 9 v FŽ .

v 1 y vŽ .
for almost all v.

5. Conclusion. In this paper we gave a characterization of the extreme
points of the set of distribution functions for symmetric capacities. With the
appropriate transform, these correspond to a subset of the 0]1 functions on
the unit interval. In the 2-alternating case, each distribution function has a
Choquet representation as a unique mixture of the extreme points. Given the
special role that 2-alternating capacities play in robustness theory, it would
be interesting to develop a measure of the degree to which a capacity fails to
be 2-alternating. An open question is whether the characterizations given in
this paper can be used to develop such a measure. If they can, then it might

wbe possible to quantify the degree to which the Huber]Strassen Huber and
Ž .xStrassen 1973 theorem and the Bayes theorem for Choquet capacities

w Ž .xWasserman and Kadane 1990 fail when a capacity is not 2-alternating.



SYMMETRIC CAPACITIES 1263

Acknowledgments. The authors thank the associate editor and a ref-
eree for helpful comments.

REFERENCES

Ž .ANGER, B. and LEMBCKE, J. 1985 . Infinitely subadditive capacities as upper envelopes of
measures. Z. Wahrsch. Verw. Gebiete 68 403]414.

Ž .ARMSTRONG, T. 1990 . Comonotonicity, simplical subdivision of cubes and non-linear expected
utility via Choquet integrals. Technical Report, Dept. Math. Statist., Univ. Maryland.

Ž .BEDNARSKI, T. 1981 . On solutions of minimax test problems for special capacities. Z. Wahrsch.
Verw. Gebiete 58 397]405.

Ž .BEDNARSKI, T. 1982 . Binary experiments, minimax tests and 2-alternating capacities. Ann.
Statist. 10 226]232.
Ž . Ž .BERGER, J. 1984 . The robust Bayesian viewpoint with discussion . In Robustness in Bayesian

Ž .Statistics J. Kadane, ed. . North-Holland, Amsterdam.
Ž .BERGER, J. 1990 . Robust Bayesian analysis: sensitivity to the prior. J. Statist. Plann. Inference
25 303]328.

Ž .BUJA, A. 1986 . On the Huber]Strassen theorem. Probab. Theory Related Fields 73 367]384.
Ž .CHOQUET, G. 1969 . Lectures on Analysis 2. BenjaminrCummings, Reading, MA.

Ž .DEMPSTER, A. P. 1967 . Upper and lower probabilities induced from a multivalued mapping.
Ann. Math. Statist. 38 325]339.

Ž . Ž .DEMPSTER, A. P. 1968 . A generalization of Bayesian inference with discussion . J. Roy. Statist.
Soc. Ser. B 30 205]247.

Ž .DENNEBERG, D. 1994 . Non-additive Measure and Integral. Kluwer, Dordrecht.
Ž .DEROBERTIS, L. and HARTIGAN, J. A. 1981 . Bayesian inference using intervals of measures.

Ann. Statist. 9 235]244.
Ž .FINE, T. 1988 . Lower probability models for uncertainty and nondeterministic processes. J.

Statist. Plann. Inference 20 389]411.
Ž .FORTINI, S. and RUGGERI, F. 1994 . Concentration functions and Bayesian robustness. J. Statist.

Plann. Inference 40 205]220.
Ž .GILBOA, I. 1987 . Expected utility theory with purely subjective non-additive probabilities. J.
Math. Econom. 16 65]88.

Ž .HUBER, P. J. 1973 . The use of Choquet capacities in statistics. Bull. Inst. Internat. Statist. 45
181]191.

Ž .HUBER, P. J. 1981 . Robust Statistics. Wiley, New York.
Ž .HUBER, P. J. and STRASSEN, V. 1973 . Minimax tests and the Neyman]Pearson lemma for

capacities. Ann. Statist. 1 251]263.
Ž .LAVINE, M. 1991a . Sensitivity in Bayesian statistics: the prior and the likelihood. J. Amer.

Statist. Assoc. 86 396]399.
Ž .LAVINE, M. 1991b . An approach to robust Bayesian analysis for multidimensional parameter

spaces. J. Amer. Statist. Assoc. 86 400]403.
Ž .MARSHALL, A. W. and OLKIN, I. 1979 . Inequalities: Theory of Majorization and Its Applications.

Academic Press, New York.
Ž .PAPAMARCOU, A. and FINE, T. 1986 . A note on undominated lower probability. Ann. Probab. 14

710]723.
Ž .RYFF, J. 1963 . On the representation of doubly stochastic operators. Pacific J. Math. 13
1379]1386.

Ž . 1RYFF, J. 1965 . Orbits of L -functions under doubly stochastic transformations. Trans. Amer.
Math. Soc. 117 92]100.

Ž .RYFF, J. 1967 . On Muirhead’s theorem. Pacific J. Math. 21 567]576.
Ž .RYFF, J. 1970 . Measure preserving transformations and rearrangements. J. Math. Anal. Appl.

31 449]458.
Ž .SADROLHEFAZI and FINE, T. 1994 . Finite-dimensional distributions and tail behavior in station-

ary interval-valued probability models. Ann. Statist. 22 1840]1870.



J. B. KADANE AND L. WASSERMAN1264

Ž .SCHMEIDLER, D. 1989 . Subjective probability and expected utility without additivity. Economet-
rica 57 571]587.
Ž .SHAPLEY, L. 1971 . Cores of convex games. Internat. J. Game Theory 1 11]26.

Ž . Ž .SMITH, C. A. B. 1961 . Consistency in statistical inference and decision with discussion . J.
Roy. Statist. Soc. Ser. B 23 1]37.

Ž . Ž .TALAGRAND, M. 1978 . Capacites invariantes extremales. Ann. Inst. Fourier Grenoble 28´ ´
79]146.

Ž .WALLEY, P. 1991 . Statistical Reasoning with Imprecise Probabilities. Chapman and Hall,
London.

Ž .WASSERMAN, L. A. and KADANE, J. 1990 . Bayes’ theorem for Choquet capacities. Ann. Statist.
18 1328]1339.

Ž .WASSERMAN, L. A. and KADANE, J. 1992 . Symmetric upper probabilities. Ann. Statist. 20
1720]1736.

DEPARTMENT OF STATISTICS

CARNEGIE MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213
E-MAIL: kadane@stat.cmu.edu

wasserman@stat.cmu.edu


